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Abstract. We consider diffusion on rough and spatially periodic surfaces. The macroscopic
diffusion tensor D is determined by averaging the local fluxes over the unit cell. D is proved to be
the unit tensor for macroscopically isotropic surfaces. For general surfaces, an asymptotic analysis is
applied, when the ratio of the oscillation amplitude to the size of the unit cell is a small parameter
ε. The microscopic field is determined up to O(ε6) in analytical form and an algorithm is derived
to calculate higher order terms. We also deduce general analytical formulae for D up to O(ε6) and
derive an algorithm to compute D as a series in ε2.
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1. Introduction. Diffusion on surfaces has important applications in several
fields and it has attracted attention for a long time ([1, 2, 3, 4, 5] among many
others); however, in these references, attention is mostly focused on the interaction
between the diffusing atom and the underlying solid lattice. In a different field of
applications, the phenomenon of surface conduction plays a role in electrolytes; it is
presently explained [6] by diffusion of ions within the Stern layer.

In both situations, real surfaces are expected to be rough and the major purpose
of the present paper is to study diffusion on a rough surface S, a phenomenon governed
by the following equations [7]

∇S · j = 0, j = −D∇Sc, (1.1)

where ∇S is the surface gradient operator, j the local flux, c the solute concentration,
and D the molecular diffusion coefficient. For sake of simplicity, D is constant and
normalized to 1. The macroscopic diffusion was introduced in [8] where it is called the
surface capacity. General analysis of flow and transport on surfaces is presented in
[9]. The purpose of the present paper is to describe local fields on periodical surfaces
and to determine the macroscopic diffusion in analytic form.

The surface gradient operator and the Laplace equation on surfaces are detailed in
Section 2. In Section 3, diffusion is studied on doubly periodic surfaces by asymptotic
analysis; the ratio of the oscillation amplitude to the size of the unit cell is assumed
to be equal to a small parameter ε. We derive the local concentration in the surface
in Theorem 3.1 up to O(ε4).

In Section 4 we investigate the macroscopic diffusion tensor when the represen-
tative cell is a square. An isomorphism is defined which relates diffusion on surfaces
and conductivity of special composite materials (for instance, polycristals). The main
results of Section 4 are summarized by the two properties

Theorem 1.1. Let the representative cell be a square. Then, detD = D2 = 1.
Corollary 1.2. Let the representative cell be a square and the surface be macro-

scopically isotropic. Then, D is the unit tensor I.
The proof parallels a Matheron’s formula [10, p.122] and the well-known Dykhne-

Keller manipulations for composite materials [11, 12, 13].
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Section 5 is devoted to the determination of the effective diffusion tensor D of
the general surface up to O(ε6). In Section 6, we study square representative cells.
First, a general algorithm is derived to calculate D in analytical form up to O(ε2n+2)
for a given number n. Second, the general form of D is represented up to O(ε6)
in terms of the Fourier series and a general algorithm is derived for higher order
terms. Examples of determination of D up to O(ε22) are given for some surfaces. The
symbolical algorithm is detailed in the Appendix.

2. Gradient operator and Laplace equation on surfaces. In the present
section, we derive the Laplace operator on a surface S in a form convenient for our
purposes. Let the surface S be defined as the function

z = f(x, y), or r(x, y) =
(
x, y, f(x, y)

)
, (x, y) ∈ Q (2.1)

in the space R3 where Q is a simply connected domain with piece-wise smooth bound-
aries. (x, y, z) is an orthonormal system of coordinates. We assume that the function
f(x, y) has continuous second derivatives in the closure of Q.

The gradient operator ∇S on S has the form [7]

∇Sc = (I− nn>) · ∇c, (2.2)

where the function c(x, y, z) is continuously differentiable in the vicinity of S; I is

the identity operator; ∇c :=
(

∂c
∂x , ∂c

∂y , ∂c
∂z

)>
, where > denotes the transpose operator;

the normal unit vector n can be expressed as follows n = ∇f
δ = 1

δ (fx, fy,−1)>;

δ :=
(
1 + f2

x + f2
y

)1/2. Here, the dyadic nn> is given by

nnT =
1
δ2




f2
x fxfy −fx

fxfy f2
y −fy

−fx −fy 1


 .

One can write the gradient in the expanded form

∇Sc =
1
δ2




1 + f2
y −fxfy fx

−fxfy 1 + f2
x fy

fx fy f2
x + f2

y







∂c
∂x
∂c
∂y
∂c
∂z


 . (2.3)

Let us apply (2.3) to the surface z = f(x, y). Instead of the concentration c(x, y, z),
it is convenient to use the function φ(x, y) = c(x, y, f(x, y)). Then, (2.3) becomes

∇Sφ =
1
δ2




1 + f2
y −fxfy

−fxfy 1 + f2
x

fx fy


 ∇xyφ , (2.4)

where ∇xy =
(

∂
∂x , ∂

∂y

)T

. Let us introduce the matrix

K =
1
δ2

[
1 + f2

y −fxfy

−fxfy 1 + f2
x

]
. (2.5)

Then, the first two components of (2.3) can be written as a two-dimensional vector

q = K∇xyφ . (2.6)
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q denotes the two components in the (x, y)−plane of the opposite of the flux on
the surface S. The formula (2.6) will be used for calculating the effective diffusivity
tensor. The Laplace operator on the surface S is given by the following formula [16]

4Sφ =
1
δ
∇xy · (δ K∇xyφ) . (2.7)

Here, K can be considered as the contravariant metric tensor of S. To prove this, we
first consider the vector-function r(x, y) =

(
x, y, f(x, y)

)
from (2.1) which determines

the surface S. Next we contract the covariant metric tensor

M =
[
rx · rx rx · ry

rx · ry ry · ry

]
=

[
1 + f2

x fxfy

fxfy 1 + f2
y

]
(2.8)

and calculate the determinant δ2. The contravariant metric tensor is constructed as
the inverse matrix of (2.8). M−1 is equal to K defined by (2.5).

It follows from (2.7) that the Laplace equation can be written as follows

1
δ
∇xy · (δ K∇xyφ) = 0 (2.9)

or in an expanded form

(
1− f2

x

δ2

)
φxx +

(
1− f2

y

δ2

)
φyy − 2fxfy

δ2
φxy (2.10)

− 1
δ4

[(
1 + f2

y

)
fxx − 2fxfyfxy +

(
1 + f2

x

)
fyy

](
fxφx + fyφy

)
= 0 .

3. Asymptotic expansion and boundary value problem for general cells.
In the following, the surface S is assumed to be spatially periodic with a unit cell whose
projection on the xy–plane is Q. For our purpose, it is sufficient to consider the case
where the domain Q is a rectangle

{
(x, y) ∈ R2 : |x| < λ1/2, |y| < λ2/2

}
with sides

λ1 and λ2 and of area λ1λ2. When an external concentration gradient ∇c = (−1, 0)
is applied along the x–direction, the concentration c(x, y, z) satisfying equations (1.1)
on the surface S must verify the following periodicity conditions

c(x + λ1, y, z)− c(x, y, z) = λ1, ∇Sc(x + λ1, y, z) = ∇Sc(x, y, z),
c(x, y + λ2, z) = c(x, y, z), ∇Sc(x, y + λ2, z) = ∇Sc(x, y, z).

(3.1)

The conditions (3.1) must be fulfilled at the edges of the surface located on the planes
x = ±λ1

2 , y = ±λ2
2 . Then (1.1) and (3.1) are considered as a conjugation problem on

S.
It follows from Section 2 that the same problem can be stated in terms of the

function φ(x, y) := c(x, y, f(x, y)) with the following boundary conditions

φ(
λ1

2
, y)− φ(−λ1

2
, y) = λ1,

∂φ

∂x
(
λ1

2
, y) =

∂φ

∂x
(−λ1

2
, y),

φ(x,
λ2

2
) = φ(x,−λ2

2
),

∂φ

∂y
(x,

λ2

2
) =

∂φ

∂y
(x,−λ2

2
).

(3.2)

The problem (2.10,3.2) is a standard jump problem on the torus represented by the
rectangle Q with identified opposite sides for the elliptic equation (2.10). There are
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various methods to solve such problems. The most popular ones are the method of
integral equations [15] and the method of finite elements [9]. However, they give only
numerical results. Here, a perturbation method based on asymptotic analysis will
be used. Computations of the integrals are avoided and the solution of the problem
(2.10,3.2) is derived in an explicit form.

We assume that the sides λ1 and λ2 of the rectangle Q are sufficiently large in
comparison to the amplitude A of the oscillation of the surface. A is supposed to
be of order 1; hence, the ratio A

λ1
is characterized by the small parameter ε = 2π

λ1
.

We also assume that λ1 and λ2 have the same scale, i.e., the parameter ω = λ1
λ2

is of
order O(ε0). Let us make a change of variables in the function f(x, y) from (2.1) and
equate it to h(ξ, η), where the function h(ξ, η) is defined for |ξ| ≤ π, |η| ≤ π

ω ; the new
variables ξ = εx, η = εy are the so called fast variables. We assume that h(ξ, η) is
doubly periodic, i.e., h(ξ +2π, η) = h(ξ, η) = h(ξ, η + 2π

ω ) and it is twice differentiable
in the closure of Q. The small oscillation of the surface in terms of h(ξ, η) means that
the absolute values of hξ, hη, hξξ, hξη, hηη are of smaller order than λ1 and λ2 since

fx = εhξ, fy = εhη,

fxx = ε2hξξ, fxy = ε2hξη, fyy = ε2hηη.
(3.3)

Theorem 3.1. The problem (2.10,3.2) has a unique solution up to an arbitrary
additive constant. This solution is represented in the form

φ(x, y) = x + εΦ(ξ, η) + O(ε2) , (3.4)

where Φ(ξ, η) is a periodic solution of the problem

Φξξ + Φηη = hξ(hξξ + hηη) . (3.5)

The proof of the theorem is standard and it is based on the asymptotic analysis
applied to the problem (2.10,3.2).

Remark 1. An explicit form of the function Φ can be given through Green’s
function for a rectangle Q (see [15]). We do not write it here, because another formula
in Section 6 which is considerably simpler, will be used.

Remark 2. The asymptotic analysis applied to the problem (2.10,3.2) can be
extended to higher terms O(εm), where m ≥ 3. We shall do it in Section 6 for the
case λ1 = λ2.

4. Diffusion tensor. The square cell. Diffusion on the surfaces is described
at the large scale by a second order macroscopic diffusion tensor

D =
[
Dxx Dxy

Dxy Dyy

]
,

which is understood as follows. First, we note that the macroscopic diffusion in the
z–direction is absent, since S is periodic in x and y, and hence the macroscopic tensor
D has only x– and y–components. Locally, the surface S (x and y belong to the cell
Q) has a unit diffusion coefficient. Let S be substituted by the plane domain Q.

The macroscopic tensor D can be shown to be defined by the surface integral

D · ∇c =
1

λ1λ2

∫∫

S

q dσS =
1

λ1λ2

∫∫

Q

q δ dxdy , (4.1)
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where the imposed gradient is equal to the vector ∇c. The opposite q of the local
flux is defined by (2.6), and corresponds to ∇c. Let us recall that δ =

√
1 + f2

x + f2
y .

The tensor D is symmetric as it should from general principles [17]. Note that the
definition (4.1) is consistent with the definition of the surface capacity [8].

The Laplace equation (2.9) can be considered as a two-dimensional elliptic equa-
tion with respect to the potential φ(x, y), which derives conductivity of the plane
composite material with the local conductivity tensor Λ := δ K. Then the vector
−δ q can be treated as a flux in the composite material, and the tensor D from (4.1)
as the effective conductivity tensor. Therefore, we have created an isomorphism be-
tween the diffusion on the surface S and the conduction in the composite material
represented by the cell Q with the local conductivity tensor Λ. Let us study this
tensor

Λ =
1
δ

[
1 + f2

y −fxfy

−fxfy 1 + f2
x

]
. (4.2)

The eigenvalues of Λ are δ and δ−1. Hence, the tensor Λ in the principal axes becomes

Λ =
[
δ 0
0 δ−1

]
.

The local conductivities along the principal axes are δ and δ−1. Let

Λe ∼
[
σ1 0
0 σ2

]

denote the effective conductivity tensor corresponding to the local tensor Λ.
For the rest of this section, we assume that Q is a square cell. Following Matheron

[10], we rotate the cell Q of the composite material (of the surface) by 90◦. Then, for
the new structure the conductivity tensor in the principal axes becomes

R∗ ∼
[
δ−1 0
0 δ

]
.

Let us consider another composite material defined by the resistivity tensor R∗, i.e.,
δ−1 and δ denote the local resistances along the principal axes. Hence, conductivity is
changed into resistivity and vice versa. Since conductivity is the inverse of resistivity,
the conductivity tensor Λ∗ corresponding to the resistivity tensor R∗ in the principal
axes becomes

Λ∗ ∼
[
δ 0
0 δ−1

]
.

The effective conductivity tensor Λ∗
e has the same form as Λe, since the local tensors

have the same form. Rotate the cell by 90◦ backward. Hence, the effective resistivity
tensor of the original composite material is obtained

Re ∼
[
σ2 0
0 σ1

]
.

Using the relation between the conductivity and resistivity coefficients, we arrive at
the fundamental formula

σ1 σ2 = 1 .
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Therefore, the effective conductivity tensor Λe (the macroscopic diffusion tensor D)
in the principal axes becomes

D ∼
[
σ1 0
0 σ−1

1

]
.

Then the invariant detD is always equal to unity for the square cell (Theorem 1.1
from Section 1)

detD = DxxDyy −D2
xy = 1 . (4.3)

There is a surprising consequence of (4.3) for a macroscopically isotropic surface,
namely σ1 = σ−1

1 or σ1 = 1, i.e., the macroscopic diffusion tensor for isotropic surfaces
with a square unit cell is always equal to the unit tensor (Corollary from Section 1).

Consider an example which illustrates the physical essence of Theorem 1.1. Let
the surface be cylindrical and its generator parallel to the x–axis (see Figure A.1).
The unit cell Q is a square of side 1; however, the length of the arc of circle is l.

First, the imposed gradient ∂c
∂x is parallel to the x–axis. Then, the total flux

of solute is equal to −lD ∂c
∂x . Second, the imposed gradient is along the y-axis; the

corresponding flux is given by −D
l

∂c
∂y .

Hence, these relations can be summarized by Dxx = lD and Dyy = D
l ; therefore

we get DxxDyy = D2. In words, the longer length in one direction implies a smaller
conductivity; but, when it is viewed from another direction, it offers a larger surface
and thus a larger conductivity.

5. Diffusion tensor for a general cell at low order. In the previous section,
we have obtained an exact result for diffusion on isotropic surfaces. For general
surfaces represented by a square cell, formula (4.3) has been deduced. We now proceed
to discuss general surfaces represented by a rectangular cell. In order to determine D
from (4.1), it is sufficient to consider diffusion under two external fields in the x– and
y–directions, separately. Let us first choose the x–direction; then, we can determine
the two components of the diffusion tensor

(
Dxx, Dxy

)
=

1
λ1λ2

∫∫

S

q dσS =
1

λ1λ2

∫∫

Q

q δ dxdy, (5.1)

where the vector q is defined by (2.6). Substituting (2.5), (2.6) into (5.1), we obtain

Dxx =
1

λ1λ2

∫∫

Q

1√
f2

x + f2
y + 1

((
f2

y + 1
) ∂φ

∂x
− fxfy

∂φ

∂y

)
dxdy. (5.2)

The component Dxy is calculated as follows

Dxy =
1

λ1λ2

∫∫

Q

1√
f2

x + f2
y + 1

(
−fxfy

∂φ

∂x
+

(
f2

x + 1
)∂φ

∂y

)
dxdy. (5.3)

The function φ(x, y) from (5.2,5.3) is solution of the problem (2.10,3.2).
Let us apply the formulae (5.2) and (5.3) to the first order approximation. Sub-

stitution of (3.4) into (5.2,5.3) yields

Dxx = 1− ε2 ω

4π2

π∫

−π

π/ω∫

−π/ω

(
1
2
(
h2

ξ − h2
η

)− Φξ

)
dξdη + O(ε4) ,
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Apply the Green formula
∫∫

G

(Φ)ξdξdω =
∫

∂G

Φdω (5.4)

and use the periodicity of Φ to obtain

Dxx = 1− ε2 ω

8π2

π∫

−π

π/ω∫

−π/ω

(
h2

ξ − h2
η

)
dξdη + O(ε4) . (5.5)

Similar arguments yield the formulae

Dxy = ε2 ω

π2

π∫

−π

π/ω∫

−π/ω

hξhη dξdη + O(ε4) , (5.6)

Dyy = 1 + ε2 ω

8π2

π∫

−π

π/ω∫

−π/ω

(
h2

ξ − h2
η

)
dξdη + O(ε4) . (5.7)

In terms of f , (5.5–5.7) take the form

D =




1− 1
2λ1λ2

∫∫
Q

(
f2

x − f2
y

)
dxdy − 1

λ1λ2

∫∫
Q

fxfy dxdy

− 1
λ1λ2

∫∫
Q

fxfy dxdy 1 + 1
2λ1λ2

∫∫
Q

(
f2

x − f2
y

)
dxdy


 + O(λ−m

1 λ−n
2 ),

(5.8)
where m + n = 4.

The formulae (5.5–5.8) have the following interpretation in the space L2 endowed
by the scalar product and the norm

〈
F, G

〉
=

ω

4π2

π∫

−π

π/ω∫

−π/ω

F (ξ, η)G(ξ, η) dξdη , ‖F‖2 =
〈
F, F

〉
. (5.9)

For instance, (5.5–5.7) can be written as

D = I− ε2

[− 1
2

(‖hξ‖2 − ‖hη‖2
) 〈

hξ, hη

〉
〈
hξ, hη

〉
1
2

(‖hξ‖2 − ‖hη‖2
)
]

+ O(ε4) . (5.10)

The formula (5.10) is valid up to O(ε4) in terms of the fast variables. Let us
deduce a higher order formula for D using the function Φ(ξ, η) from Theorem 3.1.
For the definiteness, consider the component Dxx. (3.4) can be further expanded as

φ(x, y) = x + εΦ(ξ, η) + ε2φ2(ξ, η) + ε3φ3(ξ, η) + O(ε4) , (5.11)

where φ2 and φ3 are unknown functions. Substitution of (5.11) into (5.2) yields

Dxx =
ω

4π2

π∫

−π

π/ω∫

−π/ω

(
1− ε2

(1
2
(h2

ξ − h2
η)− Φξ

)
+ ε3(φ2)ξ+ (5.12)

ε4
(
(φ3)ξ − 1

2
(h2

ξ − h2
η)Φξ − hξhηΦη +

1
2
(h2

ξ + h2
η)(

3
4
− h2

η)
))

dξdη + O(ε5) .
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First, we note that application of the Green formula (5.4) cancels the unknown func-
tions φ2 and φ3. Hence, (5.12) becomes

Dxx =
ω

4π2

π∫

−π

π/ω∫

−π/ω

(
1− ε2

2
(h2

ξ − h2
η)+ (5.13)

ε4
(
−1

2
(h2

ξ − h2
η)Φξ − hξhηΦη +

1
8
(
3h4

ξ + 2h2
ξh

2
η − h4

η

)))
dξdη + O(ε6) .

Here, O(ε5) was changed into O(ε6), because it can be shown that D is an even
function of ε. The formula (5.13) can be written as follows

Dxx = 1 +
ε2

2
(‖hξ‖2 − ‖hη‖2

)
+ ε4

(1
8
(
3‖h2

ξ‖2 + 2
〈
h2

ξ , h
2
η

〉− ‖h2
η‖2

)

− 1
2
(
h2

ξ − h2
η ,Φξ

)− (
hξhη ,Φη

))
+ O(ε6) .

(5.14)

Recall that |∇h|2 = h2
ξ +h2

η . (5.14) shows that calculation of Dxx up to O(ε6) requires
only the knowledge of function Φ(ξ, η) from Theorem 3.1. The same is true for the
tensor D.

Let us consider an elementary example of surface

f(x, y) = sin
2πx

λ1
sin

2πy

λ2
, |x| ≤ λ1

2
, |y| ≤ λ2

2
.

Then,

h(ξ, η) = sin ξ sinωη , |ξ| ≤ π , |η| ≤ π

ω
,

where ω is recalled to be equal to λ1/λ2. The Poisson equation (3.5) becomes

Φξξ + Φηη = −(1 + ω2) cos ξ sin ξ sin2 ωη . (5.15)

It is easily seen that the function

Φ(ξ, η) =
1
16

sin 2ξ
(
1 + ω2 − cos 2ωη

)

is doubly periodic and satisfies (5.15). Dxx is deduced from (5.14) as

Dxx = 1 +
ε2

8
(1− ω2) +

ε4

512
(21− 8ω2 − 13ω4) + O(ε6) .

Along similar lines, we obtain

Dxy = 0 ,

Dyy = 1 +
ε2

8
(ω2 − 1) +

ε4

512
(21ω4 − 8ω2 − 13) + O(ε6) .

One can see that DxxDyy = 1 up to O(ε6) and that it verifies Theorem 1.1.
Remark 3. Note that when ω is replaced by ω−1, Dxx is not replaced by Dyy.

This is due to the fact that when (λ1, λ2) is replaced by (λ2, λ1), ω is replaced by ω−1

and ε is multiplied by a factor λ1/λ2.
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6. Diffusion tensor for square cells at higher orders.

6.1. General. Let us discuss anisotropic surfaces in the present section. Con-
sider the case λ1 = λ2 = λ where calculations become easier since it is possible to
avoid calculations of the integrals and to deduce analytical formulae for the tensor D
of higher order in ε = 2π

λ . According to the general scheme given in Section 3, we solve
the surface Laplace equation on the surface with the following boundary conditions

φ(
λ

2
, y)− φ(−λ

2
, y) = λ,

∂φ

∂x
(
λ

2
, y) =

∂φ

∂x
(−λ

2
, y),

φ(x,
λ

2
) = φ(x,−λ

2
),

∂φ

∂y
(x,

λ

2
) =

∂φ

∂y
(x,−λ

2
) ,

(6.1)

by using the fast variables ξ = εx, η = εy, where ε = 2π
λ . Hence, ω is equal to one.

We decompose φ(x, y) onto slow and fast components

φ(x, y) = F0(x, y) + F (εx, εy).

It is known from Theorem 3.1 that F0(x, y) = x. We are looking for F (ξ, η) in the
form of an expansion

F (ξ, η) =
∞∑

k=1

εkφk(ξ, η) .

Then,

φ(x, y) =
∞∑

k=−1

εkφk(ξ, η) , (6.2)

where φ−1(ξ, η) = ξ, φ0(ξ, η) = 0; the unknown functions φk (k = 1, 2, . . .) are
periodic in the square (−π, π)× (−π, π), i.e., φk(ξ + π, η) = φk(ξ, η + π) = φk(ξ, η).

Let us rewrite (2.9) as an expansion in ε in terms of the fast variables. First, we
introduce the matrices

P =
[

h2
ξ hξhη

hξhη h2
η

]
, I =

[
1 0
0 1

]
.

In order to calculate (5.1) and (5.3), we rewrite the vector q in terms of the fast
variables

q = δ K∇xyφ =
1
δ

(I + ε2P)∇xyφ . (6.3)

Here, in agreement with (6.2)

∇xyφ =
∞∑

k=0

εk∇φk−1 , (6.4)

since ∇xy = ε∇, where ∇ =
(

∂
∂ξ , ∂

∂η

)T

is the gradient in the fast variables. Using
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(6.3) and (6.4), we obtain

q =
1
δ
(I + ε2P)(ε∇φ) = ∇φ−1+ (6.5)

+
∞∑

n=1

ε2n

(
∇φ2n−1 +

n∑
m=1

AmHm−1
(
(2m− 1)HI− 2mP

)∇φ2n−2m−1

)
+

+
∞∑

n=1

ε2n+1

(
∇φ2n +

n∑
m=1

AmHm−1
(
(2m− 1)HI− 2mP

)∇φ2n−2m

)
,

where

Am =
(−1)m(2m− 3)!!

(2m)!!
and H := |∇h|2 = h2

ξ + h2
η. (6.6)

We put n!! = 1 for all n ≤ 0. Applying the operator ∇xy to (6.5), we obtain the
Laplace operator on S as a series in the powers of ε

δ ∆Sφ = ∇xy · (δ K∇xyφ) = ε2∇ · (1
δ

(I + εP )∇φ
)

=

∞∑
n=1

ε2n+1

(
∆φ2n−1 +

n∑
m=1

AmLm(φ2n−2m−1)

)

+
∞∑

n=1

ε2n+2

(
∆φ2n +

n∑
m=1

AmLm(φ2n−2m)

)
,

(6.7)

where the linear operator Lm acts on the scalar function φ(ξ, η) as follows

Lm(φ) = (2m− 1)Hm∆φ

+ mHm−1
(
(2m− 1)∇H · ∇φ− 2∇ · (P∇φ)

)

− 2m(m− 1)Hm−2∇H · (P∇φ) ,

(6.8)

where ∆ is the Laplace operator in the fast variables. The Laplace equation ∆Sφ = 0
holds if and only if the coefficient of every power of ε is equal to zero. This implies
that we have reduced the Laplace equation to the two separate cascades of Poisson
equations

∆φ2n−1 = −
n∑

m=1

AmLm(φ2n−2m−1) , (6.9)

∆φ2n = −
n∑

m=1

AmLm(φ2n−2m) , (6.10)

where n = 1, 2, . . . .
One can see that (6.10) becomes

∆φ2n = 0 , n = 1, 2, . . . , (6.11)

since the initial term φ0 is equal to zero. It follows from the Liouville’s theorem for
the class of doubly periodic functions [18] that φ2n = constant for n = 1, 2, . . . .
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Let us write the first two equations of (6.9)

∆φ1 = hξ

(
hξξ + hηη

)
,

∆φ3 =
1
2
(
h2

ξ − h2
η

)(
(φ1)ξξ − (φ1)ηη

)
+ 2hξhη(φ1)ξη

+
(
hξξ + hηη

)(
hξ(φ1)ξ + hη(φ1)η

)

− 1
2

hξ

(
h2

ξ

(
3hξξ + hηη

)
+ h2

η

(
hξξ + 3hηη

)
+ 4hξhηhξη

)
.

(6.12)

One can see that φ1 satisfies a Poisson equation with a known right-hand part; φ3

satisfies a Poisson equation with a right-hand part depending on ∇φ1 and so on.
Therefore, the cascade (6.9) is correct, i.e., each function is determined by the previous
ones.

A Poisson equation has a unique solution in the class of doubly periodic functions
up to an arbitrary additive constant. Since we need in the final formulae the flux, i.e.,
the derivatives of φk(ξ, η), it is useless to determine this arbitrary constant at each
step of the cascade (6.9).

The components Dxx and Dxy by performing the integration in the fast variables
can be calculated as follows

(Dxx, Dxy)T =
1

4π2

π∫

−π

π∫

−π

δ q dξdη , (6.13)

where q has the form (6.5). Hence, (6.13) becomes

(Dxx, Dxy)T = (1, 0)T +
∞∑

n=1

ε2n
n∑

m=1

Am

[
(2m− 1)bn,m − 2m cn,m

]
, (6.14)

where the vectors bn,m and cn,m are given by

bn,m =
1

4π2

π∫

−π

π∫

−π

Hm∇φ2n−2m−1dξdη

cn,m =
1

4π2

π∫

−π

π∫

−π

Hm−1 P∇φ2n−2m−1dξdη ,

(6.15)

and Am, H are given by (6.6).
Let us represent the function h as a Fourier series

h(ξ, η) =
∑
s,t

(
ast cos(sξ + tη) + bst sin(sξ + tη)

)
. (6.16)

We can assume in the representation (6.16) that s varies from 0 to +∞, and that t
varies from −∞ to +∞, because

as,t cos(sξ + tη) + bs,t sin(sξ + tη) = as,t cos(−sξ − tη)− bs,t sin(−sξ − tη) .

We can also take b0,t = 0 for t ≤ 0, since b0,t sin tη = −b0,t sin(−tη). Moreover, we
put a00 = 0, since we shall only use derivatives of h(ξ, η).
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In order to apply the above algorithm to (6.16), we have to solve in each step of
the cascade (6.12) a Poisson equation with a right hand side of the general form

γ(ξ, η) = α cos(sξ + tη) + β sin(sξ + tη), (6.17)

where α and β are constants. The terms (6.17) appear because of the following
operations at each step of the cascade (6.9):

i) all partial derivatives of (6.17) have the form (6.17);
ii) the result of the multiplication of the terms (6.17) is also reduced to a linear

combination of terms of the same type;
iii) the Poisson equation

φξξ + φηη = γ(ξ, η)

has the unique solution

φ(ξ, η) = − γ(ξ, η)
s2 + t2

, (6.18)

Hence, this solution is of the same form as (6.17).
It is necessary to note that at each step of the cascade (6.9), the constant term

with s = t = 0 never appears because the right hand side of (6.9) is a sum of derivatives
of trigonometric functions. Hence, the denominator of (6.18) is never zero.

In order to calculate the integrals in (6.13), we represent the integrands as Fourier

series. Then, 1
4π2

π∫
−π

π∫
−π

p(ξ, η) dξdη is equal to the zeroth term of this series for any

double periodical function p(ξ, η). Hence, at each step we do not perform any direct
integration, since it is reduced to arithmetic operations. The longest operation consists
of reexpanding the trigonometric series.

6.2. Procedure to derive the second order terms. We shall use the ex-
panded form of (6.13)

Dxx = 1− ε2

4π2

π∫

−π

π∫

−π

1√
1 + ε2(h2

ξ + h2
η)

(
h2

ξ

(
1 + ε2(φ1)ξ + ε4(φ3)ξ + . . .

)
(6.19)

+ hξhη

(
ε2(φ1)η + ε4(φ3)η + . . .

))
dξ dη := 1 +

∞∑

k=1

D(k)
xx ε2k ,

Dxy = − ε2

4π2

π∫

−π

π∫

−π

1√
1 + ε2(h2

ξ + h2
η)

(
hξhη

(
1 + ε2(φ1)ξ + ε4(φ3)ξ + . . .

)
(6.20)

+ h2
η

(
ε2(φ1)η + ε4(φ3)η + . . .

))
dξ dη :=

∞∑

k=1

D(k)
xy ε2k .

If the expansion is limited up to the order O(ε6), (6.19) and (6.20) imply

Dxx = 1+ ε2D(1)
xx + ε4D(2)

xx + O(ε6) ,

Dxy = ε2D(1)
xy + ε4D(2)

xy + O(ε6) ,
(6.21)
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where

D(1)
xx = − 1

8π2

π∫

−π

π∫

−π

(
h2

ξ − h2
η

)
dξ dη , (6.22)

D(2)
xx =

1
4π2

π∫

−π

π∫

−π

(1
8
(
h2

ξ + h2
η

)(
3h2

ξ − h2
η

)
(6.23)

− 1
2
(
h2

ξ − h2
η

)
(φ1)ξ − hξhη(φ1)η

)
dξ dη ,

D(1)
xy = − 1

4π2

π∫

−π

π∫

−π

hξhη dξ dη , (6.24)

D(2)
xy =

1
4π2

π∫

−π

π∫

−π

(1
2
(
h2

ξ + h2
η

)
hξhη − hξhη(φ1)ξ (6.25)

+
1
2
(
h2

ξ − h2
η

)
(φ1)η

)
dξ dη .

To calculate the integrals (6.22)-(6.25), we use the following Parseval formula for the
scalar product (5.9)

〈
F,G

〉
=

1
4π2

π∫

−π

π∫

−π

F (ξ, η)G(ξ, η) dξ dη =
1
2

∑
s,t

(
F

(1)
st G

(1)
st + F

(2)
st G

(2)
st

)
, (6.26)

where

F (ξ, η) =
∑
s,t

[
F

(1)
st cos(sξ + tη) + F

(2)
st sin(sξ + tη)

]
. (6.27)

We recall that F
(1)
00 = 0, F

(1)
st = F

(2)
st = 0 for s < 0 and F

(2)
0t = 0 for t ≤ 0. Application

of (6.26) to (6.22) and (6.24) yields

D(1)
xx = −1

4

∑
s,t

(s2 − t2)
(
a2

st + b2
st

)
,

D(1)
xy = −1

2

∑
s,t

st
(
a2

st + b2
st

)
.

(6.28)

The algorithm described in Section 6.1 implies

φ1(ξ, η) =
1
2

∑
s1,t1,s2,t2

s1(s2
2 + t22)

(s1 − s2)2 + (t1 − t2)2
[

(a1b2 + a2b1) cos
(
(s1 + s2)ξ + (t1 + t2)η

)

− (a1a2 − b1b2) sin
(
(s1 + s2)ξ + (t1 + t2)η

)

− (a1b2 − a2b1) cos
(
(s1 − s2)ξ + (t1 − t2)η

)

− (a1a2 + b1b2) sin
(
(s1 − s2)ξ + (t1 − t2)η

)]
.

(6.29)
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The integral (6.23) is calculated by means of (6.26). After tedious calculations, we
obtain

D(2)
xx =

1
64

( ∑′

s4=s1−s2+s3
t4=t1−t2+t3

α1A1 +
∑′

s4=s1+s2−s3
t4=t1+t2−t3

α1A2 (6.30)

+
∑′

s4=−s1+s2−s3
t4=−t1+t2−t3

α1A3 +
∑′

s4=−s1−s2−s3
t4=−t1−t2−t3

α1A4 +
∑′

s4=s1−s2+s3
t4=t1−t2+t3

α2A5

+
∑′

s4=s1+s2+s3
t4=t1+t2+t3

α2A6 +
∑′

s4=−s1+s2+s3
t4=−t1+t2+t3

α2A7 +
∑′

s4=−s1−s2+s3
t4=−t1−t2+t3

α2A8

)
,

where

α1 =

[
t1t2

(
3s3

3s4 + s3s4

(
7s2

4 + 3t23 + 4t3t4 + 7t24
)

− t3t4
(
s2
4 + (t3 + t4)2

)
+ s2

3

(
10s2

4 − t4(t3 − 4t4)
))

+ s1

(
−8s3t2(t3 + t4)

(
s2
4 + t24

)
+ s2

(
3s2

3s4 − s3s4

(
s2
4 − 3t23 − 4t3t4 + t24

)

− t3t4
(
s2
4 + (t3 + t4)2

)
+ s2

3

(
2s2

4 − t4(t3 + 4t4)
)))]/[

(s3 + s4)2 + (t3 + t4)2
]
,

α2 =

[
t1t2

(
3s3

3s4 + s3s4

(
7s2

4 + 3t23 − 4t3t4 + 7t24
)

− t3t4
(
s2
4 + (t3 − t4)2

)− s2
3

(
10s2

4 + t4(t3 + 4t4)
))

+ s1

(
8s3t2(t3 − t4)

(
s2
4 + t24

)
+ s2

(
3s2

3s4 − s3s4

(
s2
4 − 3t23 + 4t3t4 + t24

)

− t3t4
(
s2
4 + (t3 − t4)2

)− s2
3

(
2s2

4 + t4(t3 − 4t4)
)))]/[

(s3 − s4)2 + (t3 − t4)2
]
,

A1 = −a1

(
a2(a3a4 − b3b4)− b2(a3b4 + b3a4)

)
− b1

(
a3(a2b4 + b2a4) + b3(a2a4 − b2b4)

)
,

A2 = a1

(
a2(a3a4 − b3b4) + b2(a3b4 + b3a4)

)
+ b1

(
a3(a2b4 − b2a4) + b3(a2a4 + b2b4)

)
,

A3 = −a1

(
a2(a3a4 − b3b4) + b2(a3b4 + b3a4)

)
+ b1

(
a3(a2b4 − b2a4) + b3(a2a4 + b2b4)

)
,

A4 = a1

(
a2(a3a4 − b3b4)− b2(a3b4 + b3a4)

)
− b1

(
a3(a2b4 + b2a4) + b3(a2a4 − b2b4)

)
,

A5 = a1

(
a2(a3a4 + b3b4)− b2(a3b4 − b3a4)

)
+ b1

(
a3(a2b4 + b2a4)− b3(a2a4 − b2b4)

)
,

A6 = −a1

(
a2(a3a4 + b3b4) + b2(a3b4 − b3a4)

)
− b1

(
a3(a2b4 − b2a4)− b3(a2a4 + b2b4)

)
,

A7 = a1

(
a2(a3a4 + b3b4) + b2(a3b4 − b3a4)

)
− b1

(
a3(a2b4 − b2a4)− b3(a2a4 + b2b4)

)
,

A8 = −a1

(
a2(a3a4 + b3b4)− b2(a3b4 − b3a4)

)
+ b1

(
a3(a2b4 + b2a4)− b3(a2a4 − b2b4)

)
.
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There are some conventions assumed in the sums from (6.30). For instance, the first
sum

∑′
s4=s1−s2+s3
t4=t1−t2+t3

denotes that s1, s2 and s3 vary from 0 to +∞; t1, t2 and t3 vary

from −∞ to +∞; moreover, s4 = s1 − s2 + s3, t4 = t1 − t2 + t3. Finally, the terms
with (s3 ± s4)2 + (t3 ± t4)2 = 0 are excluded from α1 and α2.

6.3. Numerical examples.

6.3.1. Example 1. Let us consider an example where the surface S is given by
the function (see Figure A.2)

h(ξ, η) = sin ξ sin 2η =
1
2

(
cos(ξ − 2η)− cos(ξ + 2η)

)
. (6.31)

Then, application of the algorithm yields the following formula for D

Dxx =
1 + 9.49508 ε2 + 33.0992 ε4 + 52.0167 ε6 + 36.1186 ε8 + 8.71534 ε10

1 + 9.12008 ε2 + 30.1069 ε4 + 43.9516 ε6 + 27.7049 ε8 + 5.97388 ε10
,

Dxy = 0 , Dyy = D−1
xx . (6.32)

Here, we apply the Padé approximation (10, 10) which provides an approximation up
to O(ε22) to the polynomial form of Dxx obtained by the algorithm from Subsection
6.1. The last two equalities from (6.32) are obtained by straightforward computations
up to O(ε22) and they numerically confirm Theorem 1.1. The components of the tensor
D (6.32) for 0 ≤ ε ≤ 1 are presented as function on ε in Figure A.3. The tensor ellipse
of D [14] is presented in Figure A.4.

6.3.2. Example 2. Consider another example when the surface S is given by
the function (see Figure A.5)

h(ξ, η) = cos(3ξ − η)− 3
4

cos(ξ − 3η) +
1
2

cos(ξ + 3η)− 1
4

cos(3ξ + η) . (6.33)

In this case, we obtain

Dxx =
1 + 65.0538 ε2 + 1442.10 ε4 + 12868.4 ε6 + 40773.5 ε8 + 25197.8 ε10

1 + 65.5538 ε2 + 1471.43 ε4 + 13418.5 ε6 + 44493.4 ε8 + 32159.0 ε10
, (6.34)

Dxy =
1.875 ε2 + 104.697 ε4 + 1881.82 ε6 + 11724.5 ε8 + 15838.8 ε10

1 + 65.5259 ε2 + 1509.92 ε4 + 14484.6 ε6 + 51634.2 ε8 + 37182.9 ε10
, (6.35)

Dyy =
1 + 75.2283 ε2 + 1968.17 ε4 + 20570.5 ε6 + 70022.0 ε8 + 46386.5 ε10

1 + 74.7283 ε2 + 1930.49 ε4 + 19610.8 ε6 + 61118.0 ε8 + 30072.0 ε10
. (6.36)

We apply here the Padé approximation (10, 10). The components of the tensor D
(6.34) are presented inn Figure A.3. The tensor ellipse of D is presented in Figure A.6.

7. Conclusion. The main purpose of this paper was to obtain analytical for-
mulae for the macroscopic diffusion tensor of surfaces. We derived a boundary value
problem for the Laplace operator (2.10). We applied an asymptotic analysis to study
the boundary problem and deduced approximate analytical formulae. We proved
Theorem 3.1, where the local field is determined up to O(ε2) in terms of the function
Φ(ξ, η) satisfying a Poisson equation. For a square representative cell, an analytical
form of this function (6.29) was obtained. The results of the calculation of the local
field were applied to the determination of the macroscopic diffusion tensor D. First,



16 P. M. ADLER, A. E. MALEVICH, AND V. V. MITYUSHEV

D was proved to be the unit tensor for isotropic surfaces. A general algorithm to
calculate higher order terms was constructed which is based on a cascade of Poisson
equations. In particular, analytical formulae for D were deduced. The tensor D was
computed up to O(ε22) for two particular surfaces.

Acknowledgment. V.M. has been partly supported by a position of Professeur
Invité at IPGP.

Appendix.
Almost all manipulations of this paper have been performed with Mathematica

in interactive (or semi-automatic) mode. Use of Mathematica allows us to create a
constructive algorithm to solve the small parameter method in closed symbolic form.
In particular, the cascade (6.9) and the solver of the Poisson equation (6.18) have
been constructed in symbolic form. The operators have been constructed not only to
simplify manipulations, but to write solutions of the boundary value problems and
the macroscopic tensor in symbolic form.

The present section gives some of the key ideas. First, we expand possibilities
of Mathematica by introducing auxiliary definitions which significantly reduce the
computational cost.

One example (see Section 6) is presented as follows. First, we introduce auxiliary
definitions

(i) the double factorial

In[1]:= Off[General::"spell",RuleDelayed::"rhs"];
In[2]:= Unprotect[Factorial2];

Factorial2[n_/;n<=0]= 1;
Protect[Factorial2];

(ii) the operator which simplifies trigonometrical polynomials

In[3]:= TrigCollect[expr_]:= Collect[expr//TrigReduce,_Cos|_Sin];

(iii) the nabla operator acting on scalars and vectors

In[4]:= Del[φ_List?VectorQ/;Length[φ]==2]:=D[φ[[1]], ξ]+D[φ[[1]], η];
Del[φ_]:= {D[φ, ξ],D[φ, η]};

(iv) the Laplace operator

In[5]:= ∆[φ_][ξ_Symbol,η_Symbol]:= D[φ[ξ, η],{ξ,2}]+D[φ[ξ, η],{η,2}];
We construct the solver of the Poisson equation with periodic boundary conditions

In[6]:= Poisson[expr_Plus,args:{__Symbol}]:= Poisson[#,args]&/@expr;
Poisson[a_ expr_,{ξ_Symbol,η_Symbol}]:=

a Poisson[expr,{ξ, η}]/;FreeQ[a,ξ]∧FreeQ[a,η];
Poisson[expr:(Sin|Cos)[s_ (ξ_|η_)],

{ξ_Symbol,η_Symbol}]:= -expr/s2;
Poisson[expr:(Sin|Cos)[s_ ξ_ + t_ η_],

{ξ_Symbol,η_Symbol}]:= -expr/(s2+t2);

The integrator of trigonometrical polynomial over the unit cell can be expressed as

In[7]:= TrigIntegrate[expr_]:=
Collect[expr//TrigReduce,_Cos|_Sin]/._Cos|_Sin_→0;
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Let us consider an example of surface described by the equation (see Subsection 6.3.2)

In[8]:= h[ξ_,η_]:=Cos[3ξ-η]- 3
4Cos[ξ-3η]+

1
2Cos[ξ+3η]-

1
4Cos[3ξ+η];

According to the algorithm, we introduce the functions

In[9]:= H[ξ_Symbol,η_Symbol]= D[h[ξ, η],ξ]2 + D[h[ξ, η],η]2//TrigCollect;
H[ξ_Symbol,η_Symbol,m_/;m<=0]= 1;
H[ξ_Symbol,η_Symbol,m_]:= Block[
{result= H[ξ, η,m-1]H[ξ, η]//TrigCollect},
DownValues[H]= Prepend[DownValues[H],

H[ξ_Symbol,η_Symbol,m]:>Evaluate[result]];
result];

and the matrix

In[10]:= P [ξ_Symbol,η_Symbol]= {
{ D[h[ξ, η],ξ]2, -D[h[ξ, η],ξ] D[h[ξ, η],η] },
{ -D[h[ξ, η],ξ] D[h[ξ, η],η], D[h[ξ, η],η]2 }

}//TrigCollect;
We are now ready to create a cascade of Poisson equations. Coefficients of the surface
gradient are introduced by

In[11]:= CG[m_]:= CG[m]= (-1)m(2m-3)!!/(2m)!!;

The coefficients of the Laplace operator are given by

In[12]:= CLapm [ξ_Symbol,η_Symbol]:= (2m-1) H[ξ, η,m] ∆[φ][ξ, η] +
+m H[ξ, η,m-1]((2m-1)∇H[ξ, η]·∇φ[ξ, η] - 2∇(P [ξ, η]·∇φ[ξ, η])s)+
-2m(m-1) H[ξ, η,m-2] ∇H[ξ, η]·(P [ξ, η]·∇φ[ξ, η]);

The right hand side of Poisson equation is written as follows

In[13]:= RHSn [ξ_Symbol,η_Symbol]:= −
n∑

m=1
CG[m]CLapm[φ2n−2m−1][ξ, η];

Introduce the potential φ−1 and the potentials with even indices as zeros

In[14]:= φ−1[ξ_Symbol,η_Symbol]:= ξ;
φ_?EvenQ[ξ_Symbol,η_Symbol]= 0;

Coefficients of the expansion of the potential in series of ε have the form

In[15]:= φn_?OddQ[ξ_Symbol,η_Symbol]:= φn[ξ_Symbol,η_Symbol]=
TrigCollect[Poisson[RHS(n+1)/2[φ][ξ, η]//TrigCollect,{ξ, η}]];

The gradient of the potential is given by

In[16]:= Φ[n_,m_]:= Φ[n,m]= TrigCollect[ ∇φ2n−2m−1][ξ, η] ];

We now are ready to compute the macroscopic diffusion tensor. We introduce the
integrals

In[17]:= IH[n_,m_]:= IH[n,m]= H[ξ, η,m]Φ[n,m]//TrigIntegrate;
IP[n_,m_]:= IP[n,m]= H[ξ, η,m-1](P [ξ, η]·Φ[n,m])//TrigIntegrate;

The first two components of the macroscopic tensor are calculated by

In[18]:= xD[0]= {1,0};
xD[n_]:= xD[n]=

n∑
m=1

CG[m]((2m-1)IH[n,m]-2m IP[n,m]);
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The first two components of the macroscopic tensor, for instance up to ε6 are calcu-
lated by the following expression

In[19]:=

(
{Dxx,Dxy}=

3∑
n=0

xD[n]ε2n + O[ε]8

)
//TableForm

Out[19]//TableForm=

1− ε2

2
+

441ε4

128
− 82409ε6

2048
+ O[ε]8

15ε2

8
− 2325ε4

128
+

3855ε6

16
+ O[ε]8
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Fig. A.1. Cylindrical surface.
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Fig. A.2. Example 1. The surface S defined by (6.31).
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Fig. A.3. Dependence of the tensor D components on ε for the surfaces defined by (6.31) (solid
lines) and by (6.33) (broken lines).
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Fig. A.4. Example 1. Dependence of the tensor D on ε for the surface defined by (6.31):
ε = 0, 0.5, 1 in the first three pictures and for all ε (0 ≤ ε ≤ 1) in the last picture.
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Fig. A.5. Example 2. The surface S defined by (6.33).
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Fig. A.6. Example 2. Dependence of the tensor D on ε for the surface defined by (6.33).


