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ABSTRACT

The generalized method of Schwarz allows us to construct the solution of the Dirichlet or Neumann
problems for a domain with multi-component boundary in the form of the series. If the boundary of
the domain consists of the mutually disjoint spheres then for the Dirichlet problem we obtain the
Poincare series. In the previous works the absolute and uniform convergence of these series has
been discussed. It has been note that such a series can be absolutely divergent. It depends on the
domain. In the present paper we separate the absolute and uniform convergence, and prove the
uniform convergence of the series for arbitrary domain. The problem considered is applied to
composite materials.

1. INTRODUCTION

The classical method of images [1, 2] can be used to solve the  classical  boundary value problems
of Dirichlet or Neumann involving circular  or  spherical boundaries. It is possible to construct a
formal solution  of  the  Dirichlet  problem which boundary consists of finite number of disjoint
spheres.  This solution is written in the form of series. Golusin [3] showed that if  the  spheres  are
sufficiently far  removed  from  one  another,  then  this  series  is  absolutely convergent. If the
number of spheres is equal  to  two,  then convergence holds too. In the present paper uniform
convergence has  been proved for each spherical domain.

Golusin [3], Mityushev [4 - 6] considered the method of images as a special case of  the
method of functional equations. In the spatial  case  for  the  Dirichlet problem the both methods
lead to the same series.  Mityushev [4 - 6] modified the method of functional equations in the plane
to get a convergent series. The last series is related to  the  Poincare  θ -series. Akaza&Inouue [7,
8] constructed an  example  of  the  absolutely  divergent  Poincare  θ -series of second order.
Mityushev [5, 15] proved the  uniform  convergence  of  the  Poincare θ -series of second order in
the plane. It follows from Sec.4 of the  present  paper  the  Poincare series converges uniformly for
each spherical domain in the space.

The generalized method of Schwarz has been studied in [3, 9 - 11]. For a spherical domain
this method coincides with the method  of functional equations. Let us note that  "usual"
alternating  method  of  Schwarz  always  converges [12].  However,  there  is  the  same  question
of  convergence for the generalized method. This question has been solved in [6] for the Dirichlet
problem.  In Sec.3  of the present paper this question has been solved  for the Neumann problem.

Let us consider the mutually disjoint bounded simple domains Dk  with Lyapunov's
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consider the Dirichlet problem
( ) ( )u t f t= ` ,  ( ) ( )lim :x u x u→∞ = ∞ = 0 .                                      (1)

We shall write x, when we consider a relation in  a  domain  and t - in a surface. We assume that the

given function ( )f C D∈ 1 ∂ ,  i.e. f is continuously differentiable in ∂D . Then the unknown function

( )u C D∈ 1  . In Sec. 3 we solve the Neumann problem
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where ∂
∂n  is the outward normal derivative. As consequence in Sec.4  we  show uniform

convergence of the Poincare  θ -series for each  spherical  domain.
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Let us consider the Banach space B which  consists  of  functions  harmonic in ∪ =k
n

kD0

and continuous in ∪ =k
n

kD0 . The norm ( )f f tk Dk: max max= ∂ . Harnack's theorem implies that

convergence in B means uniform convergence. Introduce the spaces

( ) ( ){ }h G u C G u in G u− = ∈ = ∞ =( ): : ,1 0 0∆ ,  when  the domain G contains the infinite point,

and  ( ){ }h G u C G u in G+ = ∈ =( ): :1 0∆ ,  when G is bounded.

2. Dirichlet problem

Let us consider the integral operator Sk which is defined by the following  Dirichlet problem
            ( ) ( )S f t f t t Dk k= ∈, ,∂

with respect to the function ( )S f h Dk k∈ − . Here ( )f C Dk∈ 1 ∂ .

    Theorem 1 [6]. The Dirichlet problem (1) has the unique solution
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where k n k n k k= = ≠01 011 1, ,..., ; , ,..., ;  in the sum 
k kk
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10 ≠=
∑∑ . The series (3) converges uniformly

in D  and corresponds  to  the  generalized  method  of  Schwarz.



In the present section Theorem 1 is applied to the case of  spherical domains D, when

{ } ( )D x R x a r k nk k k: , , ,...,= ∈ − = =3 01 . In this case the integral operator

( ) ( )S h D h Dk k k: + − −→  becomes  the  shift  operator
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 is the inversion with respect to the sphere

∂Dk . The representation (4) allows us to simplify the series (3) and obtain the exact solution  of
the  Dirichlet  problem (1).

For a spherical domain the function f(x) takes the form
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Let us denote the  sequence of the inversion with respect to the spheres with numbers k k km1 2, ,...,
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   ( ) ( ) ( )u x f x
r

x a

r

x a
f xk

k

n
k

kk k

k

k k

k k
k

n

= −
− −

+
= ≠=
∑ ∑∑*

*

* ...
0 0 1

1

1

1
  .                             (5)

The last series converges uniformly in D. Let us note that the series (5) involves rational
transformations and doesn't contain integral operators. Moreover, if the boundary date f(t) is
polynomial, then f(x) can be readily calculated by the algorithm of Axler & Ramey [13].

3. Neumann problem

     Following [6] and Sec.2 we consider the operator ( ) ( )T h D h Dk k k: + −→  which is defined by the

following way. For ( )u h Dk k∈ +  calculate ∂ ∂u nk /  on ∂Dk  and solve the Neumann problem

∂ν ∂ ∂ ∂k kn u n/ /=  on ∂Dk   with respect to ( )ν k kh D∈ − − .   Thus we construct the operator

( ) ( )T u x x x Dk k k k: , .= ∈ −ν  It follows from the definition that the operator satisfies the identity

( )( )∂
∂

∂
∂ ∂

n
T u t

u

n
t Dk k

k
k= ∈,   for each   ( )u h Dk k∈ + .                          (6)

The Neumann problems is reduced to the system of integral equations
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     Lemma 1. The system (7) has the unique  solution
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 The last series converges uniformly in Dk .



Theorem 2. The Neumann problem (2) has  the unique solution
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The last series converges uniformly in D.

The Dirichlet problem for a spherical domain has been solved in Sec.2 because the integral
operator Sk has been written as the shift operator (4). We cannot solve the Neumann problem for a
spherical domain in terms of non-integral operators, because we cannot write the operator  Tk in a
simple form. It is related to the complicated  method of images for the Neumann problem. Using
asymptotic expansions for the imaging rule, Poladian [2] overcame this obstacle for two spheres.
Applying Poladian's formalism to Tk it is possible to obtain a simple asymptotic representation for
the series (8).

4. Poincare θθθθ−−−−series

The transformations xk k km m−1 1...
*  having been introduced in Sec.2 generate  some Schottky group K

[7, 8]. The number m is called the level of  transformation. Let us fix the transformations
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where ( )γ j x'  is the measure of local stretching at the point x.  The  elements ( )γ j x  (j = 0,1, ..., n )
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Definition. Let { }W w w wn= 1 2, ,...  be a set of points belonging  to D. Let f(x) be a

function harmonic in { }( )R W3 ∪ ∞ − . The series
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is called the Poincare θ-series according to the group K.

Put G D V:= − , where { }V x R x w k mk: , , , ,...,= ∈ − < =3 12ε  be  spheres of the

sufficiently small radii ε.

Theorem 3. The series (9) converges uniformly in ( )R D W3 ∩ −  for each  group K and

each set W D⊂ .

     The proof of the theorem is based on the uniform  convergence  of  the series (9) because the
series (5) and (9) are related by the  equality f(x) + u(x) = θ(x).



5. Composite materials

A problem of great theoretical and practical interest is that of calculating the effective transport
properties of periodic composite materials. Following [14, 15] we consider a lattice Q which is

defined by three fundamental translation vectors ( )ωωωω i i = 1 2 3, ,  in the space R3. The zero cell Q0,

the basis of Q, is the set x t ti i
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Let us consider a ball { }D x R x r1
3: := ∈ <  in the zero cell Q0. Let D Q D: .= −0 1  We

study the conductivity of the periodic composite materials, when the domains D ek+  and D ek1 +
are occupied by materials of conductivity λλλλ = 1 and λλλλ1, respectively. We find the potentials ( )u x

and ( )u x1  to be harmonic in D ek+  and D ek1 +  with the boundary conditions:
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Moreover, the function ( )u x  is quasiperiodic in R3:
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( ) ( )u x x x u x x x1 2 3 3 1 2 3, , , ,+ =ωωωω .                                                                            (11)

The last equalities denote that the external field is fixed in the x1 −  direction. The problem (10) is
equivalent to the following problem
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where ( ) ( ) ( ) ( ) ( )ρρρρ λλλλ λλλλ λλλλ: / , : / .= − + = +1 1 1 11 1 1 2v x u x  The effective conductivity in the x1 −
direction is determined by the formula
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where c r= 4
3

3ππππ  is the volume fraction of inclusions. Here the Stokes formula and the mean value

theorem of the harmonic function theory are applied.
Berdichevskij [14] reduced the problem (10), (11) to an infinite system of linear algebraic

equations. This system has been truncated and approximate formulae has been deduced to calculate
the effective conductivity. A method of perturbations with respect to the parameter ρ has been
proposed in [15]. In the present paper we consider the limit case λλλλ ρρρρ1 1→ ∞ ⇔ → . In this case

the problem (12) becomes the Dirichlet problem u = 0 on t r= ,  where ( )u x  is harmonic in D and

quasiperiodic, i.e. (11) holds. Introduce the function ( ) ( )w x u x x:= − 1 harmonic in D It satisfies the

Dirichlet problem
( )w t t= − 1  on t r= ,                                                  (14)

and periodic . If we know ( )w x , then ( )v x  is easily constructed by the Neumann problem
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We apply the formula (5) for (14), when ( )f x x x= − −
1
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formal series
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Weierstrass function, γγγγ 1  is a Berdichevskij’s tensor [14]. The function ( )ΡΡΡΡ11 x  is periodic and

( )ΡΡΡΡ11 1
3x x x~ ,−  as x → 0.

The series (15) corresponds to the generalized method of Schwarz for the lattice Q. We can
prove convergence of (15) only for small r.
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