
Symmetry in Nonlinear Mathematical Physics 1997, V.1, 62–69.

Invariant Solutions of

the Multidimensional Boussinesq Equation

L.F. BARANNYK, B. KLOSKOWSKA and V.V. MITYUSHEV

Institute of Mathematics, Pedagogical University,
22b Arciszewskiego Str., 76-200 S1lupsk, Poland
E-mail: office@bicom.slupsk.pl

Abstract
The reduction of the n-dimensional Boussinesq equation with respect to all subalgebras
of rank n of the invariance algebra of this equation is carried out. Some exact solutions
of this equation are obtained.

1 Introduction

In this paper, we make research of the Boussinesq equation
∂u

∂x0
+ ∇ [(au+ b)∇u] + cu+ d = 0, (1)

where

u = u (x0, x1, . . . , xn) , ∇ =
(

∂

∂x1
, . . . ,

∂

∂xn

)
,

a, b, c, d are real numbers, a �= 0. This equation has applications in hydrology [1, 2]
and heat conduction [3]. Group properties of (1) were discussed in [4] for n = 1, in [5]
for n = 2, 3, and in [6, 7] for each n. In the case n ≤ 3, c = d = 0, some invariant
solutions of (1) have been obtained in [1, 6–9]. The aim of the present paper is to perform
the symmetry reduction of (1) for each n to ordinary differential equations. Using this
reduction we find invariant solutions of this equation.

2 Classif ication of subalgebras of the invariance algebra

The substitution (au+ b) = v
1
2 reduces equation (1) to

∂v

∂x0
+ v

1
2 ∆v + δv + γv

1
2 = 0, (2)

where δ = 2c, γ = 2ad − bc. If γ = δ = 0, then equation (2) is invariant under
the direct sum of the extended Euclidean algebras AẼ (1) = 〈P0, D1〉 and AẼ (n) =
〈P1, . . . , Pn〉 +⊃ (AO (n) ⊕ 〈D2〉), AO (n) = 〈Jab : a, b = 1, . . . , n〉 generated by the vector
fields [7]:

P0 =
∂

∂x0
, D1 = x0

∂

∂x0
− 2v

∂

∂v
, Pb =

∂

∂xb
,

Jbc = xb
∂

∂xc
− xc

∂

∂xb
, D2 = xb

∂

∂xb
+ 4v

∂

∂v
,

(3)

where b, c = 1, . . . , n.
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If γ = 0, δ �= 0, then equation (2) is invariant under AẼ (1)⊕ AẼ (n), where [5]

P0 = eδx0
∂

∂x0
− 2δ eδx0 v

∂

∂v
, D1 = −1

δ

∂

∂x0
,

whereas the remaining operators are of the form (3). For γ �= 0 equation (2) is invariant
under the direct sum of AE (1) = 〈P0〉 and AE (n) = 〈P1, . . . , Pn〉 +⊃AO (n) generated by
the vector fields (3). From here we assume that γ = 0.

Let v = v (x0, x1, . . . , xn) be a solution of equation (2) invariant under P0. In this case
if δ = 0, then v = v (x1, . . . , xn) is a solution of the Laplace equation ∆v = 0. If δ �= 0,
then

v = e−2δx0 ϕ (x1, . . . , xn) , (4)

where ∆ϕ = 0. Furthermore for each solution of the Laplace equation, function (4)
satisfies equation (2). In this connection, let us restrict ourselves to those subalgebras of
the algebra F = AẼ (1)⊕ AẼ (n) that do not contain P0. Among subalgebras possessing
the same invariants, there exists a subalgebra containing all the other subalgebras. We
call it by the I-maximal subalgebra. To carry out the symmetry reduction of equation (2),
it is sufficient to classify I-maximal subalgebras of the algebra F up to conjugacy under
the group of inner automorphisms of the algebra F .

Denote by AO [r, s], r ≤ s, a subalgebra of the algebra AO (n). It is generated by
operators Jab, where a, b = r, r + 1, . . . , s. If r > s, then we suppose that AO [r, s] = 0.
Let AE [r, s] = 〈Pr, . . . , Ps〉 +⊃AO [r, s] for r ≤ s and AE [r, s] = 0 for r > s.

Let us restrict ourselves to those subalgebras of the algebra F whose projections onto
AO (n) be subdirect sums of algebras of the form AO [r, s].

Theorem 1 Up to conjugacy under the group of inner automorphisms, the algebra F has
7 types of I-maximal subalgebras of rank n which do not contain P0 and satisfy the above
condition for projections:

L0 = AE(n);

L1 = (AO (m) ⊕AO [m+ 1, q] ⊕AE [q + 1, n]) +⊃〈D1, D2〉 ,
where 1 ≤ m ≤ n− 1, m+ 1 ≤ q ≤ n;

L2 = (AO (m) ⊕AE [m+ 1, n]) +⊃〈D1 + αD2〉 (α ∈ R, 1 ≤ m ≤ n) ;

L3 = AO (m− 1) ⊕ {(〈P0 + Pm〉 ⊕AE [m+ 1, n]) +⊃〈D1 +D2〉} (2 ≤ m ≤ n) ;

L4 = 〈P0 + P1〉 ⊕AE [2, n] ;

L5 = AO (m) ⊕ (AE [m+ 1, n] +⊃〈D2 + αP0〉) (α = 0,±1; 1 ≤ m ≤ n) ;

L6 = 〈J12 + P0, D2 + αP0〉⊂+AE [3, n] (α ∈ R) .

Proof. Let K be an I-maximal rank n subalgebra of the algebra F , π(F ) be a projection
of K onto AO(n) and W = 〈P0, P1, . . . , Pn〉∩K. If a projection of W onto 〈P0〉 is nonzero,
then W is conjugate to 〈P0+Pm, Pm+1, . . . , Pn〉. In this case π(K) = AO(m−1)⊕AO[m+
1, n] and a projection of K onto 〈D1, D2〉 is zero or it coincides with 〈D1 +D2〉. Therefore
K = L3 or K = L4.
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Let a projection of W onto 〈P0〉 be zero. If dimW = n − q, then up to conjugacy
W = 〈Pq+1, . . . , Pn〉 and AE[q+1, n] ⊂ K. In this case π(K) = Q⊕AO[q+1, n], where Q is
a subalgebra of the algebra AO(q). For q = 0 we have the algebra L0. LetQ �= 0. ThenQ is
the subdirect sum of the algebras AO[1,m1], AO[m1+1,m2], . . . , AO[ms−1+1,ms], where
ms ≤ q and in this case a projection of K onto 〈P1, . . . , Pn〉 is contained in 〈Pms+1, . . . , Pn〉.
Since the rank of Q doesn’t exceed ms − s, we have s ≤ 2. If s = 2, then K = L1.

Let s = 1. If a projection of K onto 〈P0〉 is zero, then K is conjugate to L2 or L5,
where α = 0. If the projection of K onto 〈P0〉 is nonzero, then K = L6 or K = L5, where
α = ±1. The theorem is proved.

3 Reduction of the Boussinesq equation without source

For each of the subalgebras L1–L6 obtained in Theorem 1, we point out the corresponding
ansatz ω′ = ϕ (ω) solved for v, the invariant ω, as well as the reduced equation which
is obtained by means of this ansatz. In those cases where the reduced equation can be
solved, we point out the corresponding invariant solutions of the Boussinesq equation:

3.1. v =

(
x2

1 + · · · + x2
m

x0

)2

ϕ (ω) , ω =
x2

1 + · · · + x2
m

x2
m+1 + · · · + x2

q

, then

2ω2 (1 + ω) ϕ̈+
[
(8 +m)ω − (q −m− 4)ω2

]
ϕ̇+ 2 (2 +m)ϕ− ϕ

1
2 = 0.

The reduced equation has the solution ϕ =
1

4 (2 +m)2
. The corresponding invariant

solution of equation (1) is of the form

u =
x2

1 + · · · + x2
m

2 (2 +m) axo
− b

a
. (5)

3.2. v = x4α−2
0 ϕ (ω) , ω =

x2
1 + · · · + x2

m

x2α
0

, then

2ωϕ̈+
(
m− αωϕ− 1

2

)
ϕ̇+ (2α− 1)ϕ

1
2 = 0. (6)

For α =
1
4

, the reduced equation is equivalent to the equation

4ωϕ̇+ (2m− 4)ϕ− ωϕ
1
2 = C̃,

where C̃ is an arbitrary constant. If C̃ =0, then

ϕ =
[

ω

2 (m+ 2)
+ Cω

2−m
4

]2

.

The corresponding invariant solution of the Boussinesq equation is of the form

u =
x2

1 + · · · + x2
m

2 (m+ 2) ax0
+ C

(
x2

1 + · · · + x2
m

) 2−m
4 x

m−6
8

0 − b

a
.
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The nonzero function ϕ = (Aω +B)2, where A and B are constants, satisfies equation (6)
if and only if one of the following conditions holds:

1. α =
1
2
, A = 0;

2. A =
1

4 + 2m
, B = 0;

3. α =
1

m+ 2
, A =

1
4 + 2m

.

By means of ϕ obtained above, we find the invariant solution (5) and solution

u =
x2

1 + · · · + x2
m

2 (2 +m) ax0
+Bx

− m
m+2

0 − b

a
. (7)

3.3. v = (x0 − xm)2 ϕ (ω) , ω =
x2

1 + · · · + x2
m−1

(x0 − xm)2
, then

2ω (ω + 1) ϕ̈+
(
m− 1 − ω − ωϕ− 1

2

)
ϕ̇+ ϕ+ ϕ

1
2 = 0.

3.4. v = ϕ (ω), ω = x0 − x1, then ϕ
1
2 ϕ̈ + ϕ̇ = 0. The general solution of the reduced

equation is of the form

ϕ
1
2 +

C

2
ln

∣∣∣C − 2ϕ
1
2

∣∣∣ = −ω + C ′.

The corresponding invariant solution of equation (1) is the function u = u (x0, x1) given
implicitly by

au+ b+
C

2
ln |C − 2au− 2b| = x1 − x0 + C ′,

where C and C ′ are arbitrary constants.

3.5. v =
(
x2

1 + · · · + x2
m

)2
ϕ (ω) , ω = 2x0 − α ln

(
x2

1 + · · · + x2
m

)
, then

2α2ϕ̈+
[
ϕ− 1

2 + (m+ 6)α
]
ϕ̇+ 2 (m+ 2)ϕ = 0.

3.6. v =
(
x2

1 + x2
2

)2
ϕ (ω) , ω =

(
x2

1 + x2
2

)−α
2 exp

(
x0 + arctan

x1

x2

)
, then

(
1 + α2

)
ω2ϕ̈+

[
ωϕ− 1

2 +
(
α2 − 8α+ 1

)
ω

]
ϕ̇+ 16ϕ = 0.

Notation. Case 3.1 corresponds to the subalgebra L1; 3.2 – to L2 and so on.
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4 Reduction of the Boussinesq equation with source

Case 4.1 corresponds to the subalgebra L1; 4.2 – to L2 and so on. Let 2ad− bc = 0.

4.1. v =
(
x2

1 + · · · + x2
m

)2
ϕ (ω) , ω =

(
x2

1 + · · · + x2
m

) (
x2

m+1 + · · · + x2
q

)−1
, then

2ω2 (1 + ω) ϕ̈+
[
(8 +m)ω − (q −m− 4)ω2

]
ϕ̇+ 2 (2 +m)ϕ+ δϕ

1
2 = 0.

4.2. v = exp (−4αδx0)ϕ (ω) , ω =
(
x2

1 + · · · + x2
m

)
exp (−4αδx0), then

2ωϕ̈+
[
m+ αδωϕ− 1

2

]
ϕ̇+ δ (1 − 2α)ϕ

1
2 = 0. (8)

Integrating this reduced equation for α =
1
4

, we obtain the following equation:

2ωϕ̇+ (m− 2)ϕ+
1
2
δωϕ

1
2 = C.

For C = 0 we have

ϕ
1
2 = C̃ω

2−m
4 − δ

2 (m+ 2)
ω.

The corresponding invariant solution of the Boussinesq equation is of the form

u = − c

(m+ 2) a

(
x2

1 + · · · + x2
m

)
+ C̃

(
x2

1 + · · · + x2
m

) 2−m
4 exp

(
−2 +m

4
cx0

)
− b

a
,

where C̃ is an arbitrary constant.

If α =
1

2 +m
, then ϕ

1
2 = − δ

2 (m+ 2)
ω+B is a solution of equation (7). Thus, we find

the exact solution

u = B′ exp
(
− 4

2 +m
cx0

)
− c

(m+ 2) a

(
x2

1 + · · · + x2
m

)
− b

a
.

4.3. v =
(
xm e−δx0 +

1
δ

e−2δx0

)2

ϕ (ω) , ω =
x2

1 + · · · + x2
m−1(

xm + 1
δ

e−δx0

)2 , then

2ω (1 + ω) ϕ̈+ (m− 1 − 6ω) ϕ̇ = 0.

Integrating this reduced equation we obtain

ϕ = C1

∫
ω

1−m
2 (1 + ω)

m+5
2 dω + C2.

For m = 3 we have the invariant solution of equation (1):

u =
1
a

(
x3 +

1
2c

e−2cx0

)
e−2cx0

{
C1

[
lnω + 4ω + 3ω2 +

4
3
ω3 +

ω4

4

]
+ C2

}
− b

a
,

with C1 �= 0, C2 being arbitrary constants and ω =
x2

1 + x2
2(

x3 + 1
2c

e−2cx0

)2 .
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4.4. v = e−2δx0 ϕ (ω) , ω = x1 +
1
δ

e−δx0 , then ϕ̈− ϕ2ϕ̇ = 0. This equation is equivalent
to the equation

ϕ̇− ϕ3

3
= C ′.

If C ′ = 0, then ϕ =
√

3

(C − 2ω)
1
2

. Thus, we find the exact solution

u =
3

1
6

a

e−2cx0(
C̃ − 2x1 − 1

c
e−2cx0

) 1
4

− b

a
.

4.5. v =
(
x2

1 + · · · + x2
m

)2

e2δx0
ϕ (ω) , ω = αδ ln

(
x2

1 + · · · + x2
m

)
+ 2 e−δx0 , then

4α2δ2ϕ̈+ 2αδ (m+ 6) ϕ̇− 2δϕ
1
2 ϕ̇+ 4 (m+ 2)ϕ = 0.

For α = 0 we find the exact solution of equation (1):

u =
(
x2

1 + · · · + x2
m

)
e−2cx0

[
C̃ +

m+ 2
ac

e−2cx0

]
− b

a
.

4.6. v =
(
x2

1 + x2
2

)2
e−2δx0 ϕ (ω) , ω =

(
x2

1 + x2
2

)α
2 exp

(
1
δ

e−δx0 − arctan
x1

x2

)
, then

(
1 + α2

)
ω2ϕ̈+

[(
α2 + 8α+ 1

)
ω − ωϕ− 1

2

]
ϕ̇+ 16ϕ = 0.

5 Application to heat conduction of non-linear materials

The exact solution of the Boussinesq equation obtained in the previous section can be
applied to calculate the temperature distribution in metals.

Heat conduction of platinum is described by the coefficient of heat conduction [3]

λPT (u) = 0, 0156u+ 68, 75

depending on the temperature u. Function (7) written for m = 3 and B = −1 as

u (t, r) = 64, 103r2t−1 − t−
3
5 − 4, 407 · 103

describes the temperature distribution in a platinum ball

r2 ≤ 1
(
x2

1 + x2
2 + x2

3 ≤ 1
)
,

when the external boundary temperature is of the form

u (t, 1) = 64, 103t−1 − t−
3
5 − 4, 407 · 103.
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0.5 r

0

0

5 · 105

u

a

t = 0.00001

t = 0.0001

t = 0.001

0.0015 t

5 · 104

u(t, 1)

b

0 0.001

Fig.1. Temperature distribution u(t, r) of a platinum ball: a) temperatures u(t, r) at the times t; b) bound-

ary temperature u(t, r) at the time [0; 0, 002].
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−200

0

u

a

0.0015 t

2000

u(t, 1)

b

0 0.001

0

200

4000

t = 0.00001

t = 0.0001

t = 0.001

Fig.2. Temperature distribution u(t, r) of a beryllium ball: a) temperatures u(t, r) at the times t; b)

boundary temperature u(t, r) at the time [0; 0, 002].

Heat conduction of beryllium is described by the heat conduction coefficient [3]

λB (u) =
1
3
u+ 158

depending on the temperature u. Function (7) written for m = 3 and B = −2 as

u (t, r) =
3r2

10t
− 2t−

3
5 − 474
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describes the temperature distribution in a beryllium ball

r2 ≤ 1
(
r2 = x2

1 + x2
2 + x2

3

)
,

when the external boundary temperature is of the form

u (t, 1) =
3
10
t−1 − 2t−

3
5 − 474.
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