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Abstract

Consider two-dimensional two-component periodic composite made
from a collection of non-overlapping, identical, circular disks, embed-
ded in a matrix. The effective conductivity tensor can be written in
the form of expansion on ”basic elements” which depend only on lo-
cations of the disks. These elements are expressed in terms of the
Eisenstein series. The representative cell of a composite is defined as
the minimal size periodicity cell corresponding to the set of basic el-
ements calculated for the composite. An algorithm to determine the
representative cell for a given composite is constructed.

Keywords: representative element; representative volume element; Eisen-
stein series; boundary value problem; effective conductivity

Mathematical Subject Classification 33E05; 74Q15

1 Introduction

One of the most important notation of composite materials is the represen-
tative volume element (RVE). One can give a vague physical definition of
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this term as follows. RVE is a part of material which is small enough from a
macroscopical point of view and can be thus treated as a typical element of
the heterogeneous medium. On the other hand, it is sufficiently large in the
microscopical scale, and it represents typical microstructure of the material
under consideration. In the present paper we first give a rigorous definition
of the representative element. Then, we determine its minimal size. The
geometrical interpretation of the problem is shown in Figures 1 and 2. The
large cell Q′

(0,0) presented in Figure 1 is replaced by a smaller one, Q(0,0) (see

Figure 2) with three inclusions per the periodicity cell.
Drugan and Willis [6] estimated the minimal RVE size of the composite

with uniformly distributed spherical inclusions considering the ensemble av-
erage of stress and strain ”at finite” and ”at infinite length”. The infinite
length corresponds to the overall elastic constants of the homogenized mate-
rials. RVE was introduced as a finite element the mean constants of which
are numerically closed to the mean constants at the infinite length. The
authors derived quantitative estimates for the minimal RVE size in the case
when matrix is reinforced by a random dispersion of non-overlapping iden-
tical spheres. Gusev [7] numerically calculated the overall elastic constants
of individual Monte Carlo realizations with 8, 27 and 64 spheres and estab-
lished that the scatter among the individual elastic constants is very small
for the same uniform distribution of spheres. Adler [1] discussed questions of
the reconstruction of porous media by statistical data and numerically con-
structed RVE. Kolodziej [10] systematically applied the collocation method
to compute effective conductivity of various two-dimensional composites.

In the present paper we consider two-dimensional two-component periodic
composite medium made from a collection of non-overlapping, identical, cir-
cular disks, embedded in an otherwise uniform matrix. We discuss fields gov-
erned by the Laplace equation, when the inclusions have scalar conductivity
λ and separated by a matrix of unit conductivity. Let ρ = (λ−1)/(λ+1) be
the contrast parameter introduced by Bergman [4]. Mityushev [13], Berlyand
and Mityushev [5] established that the effective conductivity tensor Λe of the
considered composites has the form of double series on the concentration of
inclusions and on ”basic elements” which depend only on locations of the
inclusions. These basic elements are written in terms of the Eisenstein se-
ries [16]. Coefficients in the double series depend on ρ. We say that two
composites are equivalent if expansions of their Λe have the same basic ele-
ments. Therefore, we divide the set of the composites with circular identical
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inclusions onto classes of equivalence determined only by geometrical struc-
ture of the composite. In particular, composites with the same locations of
inclusions but with different ρ belong to the same class of equivalence. Note
that composites belonging to a class of equivalence can have different Λe;
and composites from different classes can have the same Λe. Each compos-
ite material is represented by a periodicity cell. In each class of equivalence
we choose a composite having the minimal size cell. This cell is called the
representative cell of the considered class of equivalent composite materials.

We propose a constructive algorithm to determine the representative cell
for any distribution of inclusions using only pure geometrical parameters.
More precisely, at the beginning we calculate the generalized Eisenstein-
Rayleigh sums depending on the centers of circular inclusions for given large
cell. Then using these sums we construct the (minimal) representative cell,
i.e., we calculate its fundamental translation vectors and determine the po-
sitions of inclusions within this cell.

We use the elliptic (doubly periodic meromorphic) functions in the form
of the Eisenstein series introduced by Eisenstein in 1847 and developed by
Weil [16]. The classical lattice sums (the Eisenstein sums) were applied to
calculation of the effective conductivity tensor by Rayleigh [11] when a rep-
resentative cell contains one inclusion. In Section 2 we recall the classical
Eisenstein-Rayleigh sums, the Eisenstein series and introduce the generalized
Eisenstein-Rayleigh sums. The latter sums can be considered as a general-
ization of the classical sums to a cell with few inclusions. Section 3 is devoted
to the effective conductivity tensor represented by a cell with few identical
circular disks. In Section 4 we describe a method how to replace a periodic
composite by another one with the same effective properties but with smaller
size of the periodicity cell. Numerical examples illustrating the general theory
are presented in Subsections 4.2 and 4.3.

2 Generalized Eisenstein-Rayleigh sums

2.1 Classical Eisenstein-Rayleigh sums

In the present subsection we introduce the fundamental parameters of the
elliptic function theory following Weil [16] and Akhiezer [2]. Consider a
lattice Q which is defined by two fundamental translation vectors expressed
by complex numbers ω1 and ω2 on the complex plane C. For the definiteness
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we assume that Imτ > 0, where τ = ω2/ω1. Introduce the (0, 0) - cell
Q(0,0) := {z = t1ω1 + t2ω2 : −1/2 < tj < 1/2 (j = 1, 2)}. The lattice Q
consists of the cell Q(m1,m2) := {z ∈ C : z −m1ω1 −m2ω2 ∈ Q(0,0)}, where
m1 and m2 run over integer numbers.

The Eisenstein summation method is defined as follows

∑
m1,m2

= lim
N→∞

m2=N∑
m2=−N

(
lim
M→∞

m1=M∑
m1=−M

)
. (1)

Using this summation we introduce the conditionally convergent sum

S2(ω1, ω2) :=
∑
m1,m2

′(m1ω1 +m2ω2)
−2, (2)

where m1 and m2 run over all integer numbers except the pair m1 = m2 = 0.
The sum (2) is slowly convergent. An efficient in computations formula for
S2(ω1, ω2) was deduced in [12]

S2(ω1, ω2) =
2

ω1

ζ
(ω1

2

)
, (3)

where ζ(z) is the Weierstrass ζ - function. Rylko [15] deduced another effi-
cient formula

S2(ω1, ω2) =

(
π

ω1

)2
(

1

3
− 8

∞∑
m=1

mh2m

1 − h2m

)
, where h = exp (πiτ) . (4)

Following Eisenstein and Rayleigh we introduce the absolutely convergent
sums

Sn(ω1, ω2) :=
∑
m1,m2

′(m1ω1 +m2ω2)
−n, n = 3, 4, ... . (5)

It is known that Sn(ω1, ω2) = 0 for odd n. For even n the Eisenstein -
Rayleigh sums (5) can be easily calculated through the rapidly convergent
infinite sums

g2(ω1, ω2) : =

(
π

ω1

)4
(

4

3
+ 320

∞∑
m=1

m3h2m

1 − h2m

)
, (6)

g3(ω1, ω2) : =

(
π

ω1

)6
(

8

27
− 448

3

∞∑
m=1

m5h2m

1 − h2m

)
. (7)
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Then

S4(ω1, ω2) =
g2(ω1, ω2)

60
, S6(ω1, ω2) =

g3(ω1, ω2)

1400
. (8)

The sums S2n(ω1, ω2) (n ≥ 4) are calculated by the recurrence formula

S2n(ω1, ω2) =
3

(2n+ 1) (2n− 1) (n− 3)

n−2∑
m=2

(2m− 1) (2n− 2m− 1)S2mS2(n−m).

(9)

2.2 Eisenstein series

In the present subsection we summarize the main facts of the Eisenstein series
theory following Weil [16]. The Eisenstein series are defined as follows

En(z;ω1, ω2) :=
∑
m1,m2

(z −m1ω1 −m2ω2)
−n , n = 2, 3, ... . (10)

The Eisenstein summation method (1) is applied to E2(z;ω1, ω2). The series
En(z;ω1, ω2) for n = 3, 4, ... as a function in z converge absolutely and almost
uniformly in the domain C\ ∪m1,m2 (m1ω1 + m2ω2). Each of the functions
(10) is doubly periodic and has a pole of order n at z = 0. However, further
it will be convenient to define the value of En(z;ω1, ω2) at the point zero as
follows

En(0;ω1, ω2) := Sn(ω1, ω2). (11)

The Eisenstein series and the Weierstrass function P(z;ω1, ω2) are related by
the identities

E2(z;ω1, ω2) = P(z;ω1, ω2) + S2(ω1, ω2), (12)

En(z;ω1, ω2) =
(−1)n

(n− 1)!

dn−2

dzn−2
P(z;ω1, ω2). (13)

2.3 Generalized Eisenstein-Rayleigh sums

We now proceed to introduce one of the most important mathematical object
of the present paper, the generalized Eisenstein-Rayleigh sums. Consider
a set of points ak (k = 1, 2, ..., N) in the cell Q(0,0). Let p be a natural
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number; ks runs over 1 to N , nj = 2, 3, .... Let C be the operator of complex
conjugation. The value

en1...np(ω1, ω2) :=
1

Np+1

∑
k0k1...kp

En1(ak0−ak1)En2(ak1 − ak2)...C
pEnp(akp−1−akp)

(14)
is called the generalized Eisenstein-Rayleigh sum. The parameters ω1 and ω2

are omitted in En.
For instance, for p = 1 (14) implies

en(ω1, ω2) :=
1

N2

∑
k0,k1

En(ak0 − ak1). (15)

According to (11) en(ω1, ω2) becomes the classical Eisenstein-Rayleigh sum
Sn(ω1, ω2) in the case N = 1.

All sums and series introduced in this section are constructed basing on
the fixed fundamental translation vectors ω1 and ω2. We are also interested
in the normalized Eisenstein series

En(z; 1, τ) :=
∑
m1,m2

(z −m1 −m2τ)
−n , n = 2, 3, ... . (16)

We have the relations

En(z;ω1, ω2) = ω−n
1 En(

z

ω1

; 1, τ), (17)

en1...np(ω1, ω2) = ω−2k
1 en1...np(1, τ), (18)

where 2k := n1 + ...+np. Note that we shall need further only the even sums
n1 + ...+ np.

3 Structure of the effective conductivity ten-

sor

The results of the present section are based on the papers [13], [5]. Con-
sider the cell Q(0,0) with N non-overlapping circular disks Dk of the radius
r with the centers ak ∈ Q(0,0) (k = 1, 2, ..., N). Let D0 be the comple-
ment of the closure of all disks Dk to Q(0,0). We study the conductiv-
ity of the doubly periodic composite material, when the domains Dper :=
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∪(m1,m2)(D0 ∪ ∂Q(0,0) + m1ω1 + m2ω2) and Dk + m1ω1 + m2ω2 (m1, m2 are
integers) are occupied by materials of conductivities λ0 and λ, respectively.
The conductivity of the inclusions λ is expressed relative to λ0. Hence, the
conductivity of the matrix can be takes as unity (λ0 = 1). The local potential
potential u(z) in Q(0,0) satisfies the conjugation conditions

u+(t) = u−(t),
∂u+

∂n
(t) = λ

∂u−

∂n
(t) on ∂Dk = {t ∈ C : |t− ak| = r}, k = 1, 2, ..., N,

(19)
where ∂

∂n
is the outward normal derivative and, for instance,

u+(t) := lim
z→t,

z∈D0

u(z), u−(t) := lim
z→t,

z∈Dk

u(z). (20)

The potential u(z) satisfies the quasi-periodicity conditions

u(z + ω1) = u(z) + Ω1, u(z + ω2) = u(z) + Ω2. (21)

Here, the function u(z) is harmonic in Q(0,0) except ∂Dk (k = 1, 2, ..., N), the
circles ∂Dk are orientated in the clockwise direction. Equations (19) model
the perfect contact between matrix and inclusions. Equations (21) mean that
the external field has the gradient (Ω1,Ω2) in the coordinates based on the
vectors ω1 and ω2. In order to determine the effective conductivity tensor
Λe it is sufficiently to solve problem (19), (21) with two linear independent
vectors (Ω1,Ω2).

The effective conductivity tensor Λe of the considered composite has the
following structure

Λe = (1 + 2ρv)I + 2ρv
∞∑
k=1

Pkv
k, (22)

where v = Nπr2

|Q(0,0)| is the concentration of the disks in the cell Q(0,0),
∣∣Q(0,0)

∣∣
is the area of Q(0,0), I is the identity tensor,

Pk =

(
ReAk ImAk
ImAk Ck

)
,

Ak =
∣∣Q(0,0)

∣∣k ∑
n1...np

B(k)
n1...np

en1...np(ω1, ω2), (23)
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The constants B
(k)
n1...np depend only on k, ρ and n1, ..., np. Here, nj = 2, 3, ...;

k = 1, 2, .... The values Ck have an analogous form. Only the terms
en1...np(ω1, ω2) depend on the centers of inclusions ak in the representation
(22)-(23) of Λe. Few first coefficients Ak have the form

A1 =
ρ

π
e2, A2 =

ρ2

π2
e22, A3 =

1

π3

[−2ρ2e33 + ρ3e222
]
,

A4 =
1

π4
[3ρ2e44 − 2ρ3(e332 + e233) + ρ4e2222],

A5 =
1

π5
[−4ρ2e55 + ρ3(3e442 + 6e343 + 3e244) −

+2ρ4(e3322 + e2332 + e2233) + ρ5e22222], (24)

A6 =
1

π6
[5ρ2e66 − ρ3(4e255 + 12e354 + 12e453 + 4e552) + ρ4(3e2244 +

+6e2343 + 4e3333 + 3e2442 + 6e3432 + 3e4422) − 2ρ5(e22233 + e22332 +

+e23322 + e33222) + ρ6e222222)],

where the argument (ω1, ω2) is omitted. It follows from (23) that each coef-
ficient Ak involves a set of en1...np(ω1, ω2). The mapping k �→ (n1, ..., np) has
been precisely described in [13], [5]. In particular, the following conditions
are fulfilled:

i) n1 + ... + np = 2k;
ii) nj ≤ k − p (j = 1, 2, ..., p);
iii) nj ≥ 2 (j = 1, 2, ..., p).
Hence, in order to calculate the tensor Λe up to O(vL+1) we have to find

Ak (k = 1, 2, ..., L − 1). Therefore, we have to calculate a finite number of
the generalized Eisenstein-Rayleigh sums en1...np(ω1, ω2).

4 Representative cell

4.1 General equations

Consider a large fundamental region Q′
(0,0) constructed by the fundamental

translation vectors ω′
1 and ω′

2. Let Q′
(0,0) contains N ′ non-overlapping circular

disks D′
k of the radius r with the centers a′k ∈ Q(0,0) (k = 1, 2, ..., N ′). Let Λ′

e

be the effective conductivity tensor of the composite material represented by
the region Q′

(0,0) with inclusions D′
k. We are interested in the following ques-

tion. To replace Q′
(0,0) by another small cell Q(0,0) which contains inclusions
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Dk = {z ∈ C : |z − ak| < r} (k = 1, 2, ..., N) and which has an effective
conductivity tensor Λe closed to Λ′

e. We assume that the concentration v
of the inclusions in both materials is the same. Closeness is defined by the
accuracy O(vL+1) for the difference ∆Λe = Λe − Λ′

e with prescribed L. We
say that Q(0,0) is a representative cell for the region Q′

(0,0) with the accuracy

O(vL+1) if ∆Λe = O(vL+1). We say that Q(0,0) is the minimal representative
cell for the region Q′

(0,0) if Q(0,0) is a representative cell with minimal possible

area
∣∣Q(0,0)

∣∣. For brevity we further call the minimal representative cell by
the representative cell. The existence of the representative cell is evident,
since in the worst case one can take Q(0,0) = Q′

(0,0).

We adopt the designations (22), (23) for the representative cell. Consider
the corresponding formulas for Λ′

e

Λ′
e = (1 + 2ρv)I + 2ρv

∞∑
k=1

P′
kv

k, (25)

A′
k =

∣∣Q′
(0,0)

∣∣k ∑
n1...np

B(k)
n1...np

en1...np(ω
′
1, ω

′
2). (26)

Note that the coefficients B
(k)
n1...np has the same form in (23) and (26). ∆Λe

is of order O(vL+1) if A′
k = Ak for k = 1, 2, ..., L − 1. Therefore, ∆Λe is of

order O(vL+1) if and only if

∣∣Q(0,0)

∣∣k en1...np(ω1, ω2) =
∣∣Q′

(0,0)

∣∣k en1...np(ω
′
1, ω

′
2) (27)

for k = 1, 2, ..., L − 1 and corresponding sets of the numbers n1, ..., np. Ac-
cording to our definition Q(0,0) is a representative cell for the region Q′

(0,0)

with the accuracy O(vL+1) if and only if the relations (27) are fulfilled.
One can consider (27) as a system of equations with respect to ω1, ω2, a1, a2, ..., aN

including the unknown number N with the restriction |aj − am| ≤ 2r (j �=
m). One can assume that one of the centers, say aN , lies at the origin, since
geometrically any cell is determined up to translation. The fundamental re-
gion Q(0,0) as well as the translation vectors ω1, ω2 can be chosen by infinitely
many ways [2]. For any doubly periodic structure on the plane it is always
possible to construct such a pair ω1, ω2 that ω1 > 0 and Imτ > 0.

The area of Q(0,0) is calculated by ω1 and ω2∣∣Q(0,0)

∣∣ = ω2
1Imτ. (28)
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On the other hand we also have∣∣Q(0,0)

∣∣ = Nπr2

v
(29)

that yields the formula

ω1 =

√
Nπr2

vImτ
. (30)

In order to construct the representative cell with the prescribed accuracy
O(vL+1) we propose to solve the system (27) with fixed L increasing the
number of inclusions in the cell N from 1 to N ′. Then N is fixed in each
step of the study of (27).

Applying (18) and (28) we rewrite (27) in the form

(Imτ)k en1...np(1, τ) =
∣∣Q′

(0,0)

∣∣k en1...np(ω
′
1, ω

′
2), k = 1, 2, ..., L− 1. (31)

We can consider (31) as a system with respect to τ, a1, a2, ..., aN−1 (aN = 0)
with the restriction |aj − am| ≥ 2r (j �= m). The right-hand part of (31) is
known. If we know a solution of (31), we can calculate ω1 from (30).

It is also possible to state the problem of the representative cell with
prescribed form of the cell Q(0,0). Let us consider the case when Q(0,0) is a
rectangle. Then τ = iα, where α is positive and (30) implies

ω1 =

√
Nπr2

αv
. (32)

Equations (31) become

αken1...np(1, iα) =
∣∣Q′

(0,0)

∣∣k en1...np(ω
′
1, ω

′
2), k = 1, 2, ..., L− 1. (33)

It is hard to investigate analytically the systems (31), (33) in general
form, since it is difficult to extract independent equations from the sets (31),
(33). In the next subsection simple examples of (33) are considered.

4.2 Two inclusions in the representative cell

Consider two inclusion in a rectangular cell (N = 2). In this case the posi-
tions of the inclusions are determined by one complex parameter a = a2−a1.
By direct calculation one can check that

en(1, τ) =

{
1
2
(Sn(1, τ) + En(a; 1, τ)) if n is even,

0 if n is odd,
(34)
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emn(1, τ) = em(1, τ)en(1, τ), emnp(1, τ) = em(1, τ)en(1, τ)ep(1, τ), (35)

and so on. Therefore, instead of the general Eisenstein-Rayleigh sums in (33)
it is sufficient to consider equations with simple sums

αkek(1, iα) =
∣∣Q′

(0,0)

∣∣k ek(ω′
1, ω

′
2), k = 2, 4, ... (36)

Substitution of (34) into (36) in the case τ = iα yields

αk[Sk(1, iα) + Ek(a; 1, iα)] = pk, k = 2, 4, ... , (37)

where
pk = 2

∣∣Q′
(0,0)

∣∣k ek(ω′
1, ω

′
2)

are known constants. (37) with k = 2, 4 becomes

α2[S2(1, iα) + E2(a; 1, iα)] = p2, α
4[S4(1, iα) + E4(a; 1, iα)] = p4. (38)

Using the relations [16], [2]

E4(z; 1, iα) =
1

6

d2

dz2
E2(z; 1, iα),

d2

dz2
E2(z; 1, iα) = 6 (E2(a; 1, iα) − S2(1, iα))2 − 1

2
g2(1, iα)

and (8) we obtain

E4(z; 1, iα) = (E2(a; 1, iα) − S2(1, iα))2 − 5S4(1, iα). (39)

Then the second equation (38) is transformed to the following one

α4[(E2(a; 1, iα) − S2(1, iα))2 − 4S4(1, iα)] = p4. (40)

We express E2(a; 1, iα) from the first equation (38)

E2(a; 1, iα) =
p2

α2
− S2(1, iα) (41)

and substitute it in (40)

α4[
( p2

α2
− 2S2(1, iα)

)2

− 4(S4(1, iα)] = p4. (42)
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The latter equation is real, since S2 and S4 are real for rectangular arrays.
Hence, we have obtained the real number equation (42) with respect to real
unknown α.

Let us consider a numerical example with p2 = 10, p4 = 50, r = 0.15,
v = 0.3. Equation (42) has the solution α = 0.820. Substituting α in (41)
and solving the obtained equation with respect to a we get a = 0.331. Then
(32) implies ω1 = 0.758. Therefore, the representative cell is described by
the fundamental vectors ω1 = 0.934, ω2 = i0.820 with two inclusions with
the centers a1 = 0 and a2 = 0.331.

4.3 Three inclusions in the representative cell

Consider now three inclusion in the cell (N = 3). In this case the positions of
the inclusions are determined by two complex parameter a1 and a2 (a3 = 0).
It follows from equation (30) that

ω2
1 = c0(Imτ)

−1, (43)

where c0 = 3πr2/v. Consider the following equations (31)

(Imτ)k e2k(1, τ) = p2k, k = 1, 2, 3, (44)

where e2k are calculated by (15). For numerical computations it is conve-
nient to use formulas (12) involving the Weierstrass function P(z) and its
derivatives. Then e2k(1, τ) become

e2(1, τ) = S2(1, τ) +
2

9
(P(a1) + P(a2) + P(a1 − a2)) , (45)

e4(1, τ) = −3S4(1, τ) +
2

9

(P2(a1) + P2(a2) + P2(a1 − a2)
)
, (46)

e6(1, τ) =
1121

3
S6(1, τ) + 6S4(1, τ) (P(a1) + P(a2) + P(a1 − a2))

−22

45

(P3(a1) + P3(a2) + P3(a1 − a2)
)
.

(47)

Here we use the relations (12) and the following formulas from [2], [16]

E4(z) =
1

6
P ′′(z) = P2(z) − 5S4(1, τ), (48)
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E6(z) = −11

5
P3(z) + 27S4(1, τ)P(z) + 560S6(1, τ). (49)

Therefore, we arrive at three equations (44) where e2k have the form (45)–
(47) with respect to three unknowns a1, a2 and τ .

Consider a numerical example in which the large cell Q′
(0,0) (see Figure

1) with N ′ = 60 inclusions of the radius r = 0.12 and the concentration
v = 0.1 is determined by the translation vector ω′

1 = 4, ω′
2 = 4i. In this

case p2 = 0.78 − 0.66i, p4 = −2.15 + 2.27i, p6 = −6.28 − 51i. The cell Q′
(0,0)

is replaced by a smaller cell Q(0,0) with N = 3 inclusions. In order to find
parameters of Q(0,0) we solve the system (44). One of the solutions has the
form a1 = −0.92, a2 = −0.36 + 0.36i, τ = 0.06 + 0.39i. Then (30) yields
ω1 = 1.08. The cell Q(0,0) is presented in Figure 2.

5 Conclusion and discussion

In the present paper a rigorous theory of the representative cell in mechanics
of periodic composites is proposed. We restrict ourselves by conductivity of
two-dimensional two-component composite materials made from a collection
of non-overlapping, identical, circular disks, arbitrary embedded in a matrix.
The definition of the representative cell is based on the representation of
the effective conductivity tensor (22)–(23). We say that the cells Q(0,0) and
Q′

(0,0) are equivalent if they have the same basic elements in the representation

(22)–(23). Thus all composites are divided onto classes of equivalences. The
minimal size cell in each class is called the representative cell. The basic
elements of (22)–(23) are expressed in terms of the generalized Eisenstein-
Rayleigh sums (14).

The problem of determination of the representative cell is reduced to the
finite system of equation (31) with respect to parameters of the representative
cell. Partial cases of this system are considered.

We investigate here the problem of numerical solution to the system (31)
with N = 2 and N = 3. We can give some remarks about the general
system (31). First, it is evident that it has infinite number of solution,
since any doubly periodic structure is determined by infinite number of the
pairs of the fundamental translation vectors. Moreover, as it follows from
relations (34)–(35), the system (31) can contain redundant equations. Note
also, that for rectangular cell a symmetric map of the location of inclusions
could not change the effective conductivity tensor. Hence, if the fundamental
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translation vectors are fixed the system (31) with respect to a1, a2, ..., aN−1

can have non-unique solution.
In the present paper we discuss the conductivity two-dimensional problem

with circular inclusions. Now we briefly explain why the method can be
developed and applied to other problems of the theory of composites.

First, let us consider the same problem but with inclusions having another
shape S. Any plane domain S can be approximated by packing disks of the
radius r. This approximation can be expressed by appropriate conditions on
the centers of the packing disks b1, b2,..., bP . We write them in the form of
the constrains on bj

bj − b1 = Bje
iψ, j = 3, 4, ..., P, |B2| = |b2 − b1|. (50)

Here, the constants B2, B3,..., BP are given, ψ = arg B2

b2−b1 . The constrains
(50) mean that the points b1, b2,..., bP are tied and may only translate and
rotate as a stiff body. We can replace all inclusions (say M inclusions per
the cell) by a set of points a1, a2,..., aN divided onto M subsets each of
them contains P points. We assume that points of each subset satisfy the
constrains (50), i. e., each subset of the disks approximates an inclusion of the
form S. These constrains on a1, a2,..., aN should be added to equations (31)
in order to obtain a system of equations corresponding to the representative
cell with M inclusions of the shape S.

The proposed method could be also applied to elastic problems. In ad-
dition to the classical Eisenstein functions we should consider the following
series [8], [14]

Epq(z) =
∑
m1,m2

=
∑
m1,m2

(z −m1 − im2)
−p(z −m1 − im2)−q. (51)

The lattice sums (51) were presented in [14] in rapidly convergent forms by
Fourier transform methods.

Berdichevskij [3] constructed three-dimensional counterparts of the el-
liptic functions which could be used for three-dimensional conductivity and
elasticity problems. Huang [9] proposed exact integral formulas for three-
dimensional lattice sums. His examples show that simple quadrature rules
with modest numbers of nodes yield highly accurate results. One can find
a review of the various numerical methods to calculate three-dimensional
lattice sums in [9].
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Méthodes de l’homogénéisation: theorie et applications en physique,
Edition Eyrolles, Paris, (1985) 1-128.

[5] L. Berlyand, V. Mityushev (2001), Generalized Clausius-Mossotti for-
mula for random composite with circular fibers, J Statist. Phys. v.102,
N 1/2, 115-145.

[6] Drugan, W.J., Willis, J.R (1996) A micromechanics-based nonlocal con-
stitutive equation and estimates of representative volume element size
for elastic composites, Journal of the Mechanics and Physics of Solids,
v. 44, 497-524.

[7] Gusev A. A. 1997, Representative volume element size for elastic com-
posites: a numerical study, Journal of the Mechanics and Physics of
Solids, v. 45,1449-1459.

[8] J. Helsing (1994), Bounds on the shear modulus of suspensions by in-
terface method, J Mech. Phys. Solid, v. 42, 1123-1138.

[9] Huang J. 1999, Integral representations of harmonic lattice sums, J Math
Phys, v. 40, 5240-5246.

[10] J. A. Kolodziej (1987), Calculation of the effective thermal conductivity
of the unidirectional composites. Arch. Termodynamiki v.8, 101-107 [in
Polish]

[11] Lord Rayleigh (1892), On the influence of obstacles arranged in rectan-
gular order upon the properties of medium, Phil. Mag., 34, pp. 481–502.



16

[12] V. Mityushev (1997), Transport properties of regular arrays of cylinders,
ZAMM 77, pp. 115–120.

[13] V. Mityushev, Transport properties of doubly periodic array of circular
cylinder and optimal design problem, Appl.Math Optim 44 (2001) 17–31

[14] A. B. Movchan, N. A. Nicorovici, R. C. McPhedran (1997), Green’s
tensors and lattice sums for elastostatics and elastodynamics, Proc. Roy.
Soc. London Ser. A 453, no. 1958, 643–662.

[15] N. Rylko, Transport properties of the regular array of highly conducting
cylinders. J Engrg Math 38 (2000) 1-12.

[16] A. Weil (1976), Elliptic Functions According to Eisenstein and Kro-
necker, Springer-Verlag, Berlin etc.



17

Figures
1. Large cell Q′

(0,0) with 60 inclusions.
2. Small cell Q(0,0) with three inclusions centered at a1 = −0.92, a2 =

−0.36 + 0.36i, a3 = 0. It represents the large cell from the previous picture.
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