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R-linear problem on torus and its
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We study the structure of the general solution of the R-linear conjugation problem with
constant coefficients in a class of doubly periodic functions, i.e., the R-linear problem on
torus. The results are applied to determine the effective conductivity tensor of composites.
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1. Introduction

Let Dk be mutually disjoint simply connected domains in the complex plane C

bounded by smooth curves @Dk (k ¼ 1, 2, . . . , n), D be the complement of all closures
of @Dk to the extended complex plane C [ f1g. Let @Dk be orientated in counter
clockwise direction. Let a(t), b(t) and c(t) be given Hölder continuous functions on
@D ¼ � [n

k¼1 @Dk; aðtÞ 6¼ 0.
The R-linear conjugation problem on C is stated as follows. To find a function ’(z)

analytic in D,D1, . . . ,Dn, continuous in the closures of the considered domains with the
following conjugation condition

’þðtÞ ¼ a ðtÞ’�ðtÞ þ bðtÞ’�ðtÞ þ cðtÞ, t 2 @D: ð1Þ
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In the case bðtÞ ¼ 0 we arrive at the C-linear conjugation problem [1]

’þðtÞ ¼ aðtÞ’�ðtÞ þ cðtÞ, t 2 @D: ð2Þ

Nöther’s theory for the problem (1) has been constructed by Mikhajlov [2] by its
reduction to a singular integral equation. In the case aðtÞ � bðtÞ the problem (1) is
reduced to the Riemann–Hilbert problem. One can find the solution of the latter
problem for simply connected domains in [1] and for multiply connected domains
in [3]. The qualitative theory of the Riemann–Hilbert problem for generalized analytic
functions is presented by Wen and Begehr [4]. Dzuraev [5] and Komyak [6,7] investi-
gated a relation between the R-linear problem and two-dimensional singular integral
equations. Litvinchuk and Spitkovsky [8] studied the R-linear problem for a circle by
reducing it to a two-dimensional C-linear problem.

The C-linear problem (2) in a class of doubly periodic functions, i.e., on torus has been
solved in [9] by Zverovich’s method. In the present article we consider the R-linear
problem for multiply connected domains on torus with constant coefficients normalized
as follows aðtÞ ¼ 1, bðtÞ ¼ �k on each @Dk. The elliptic case j�kj < 1 on terminology of [2]
is considered. This problem is equivalent to the main plane conductivity problem of the
theory of composites, the so-called cell periodicity problem [10–12]. In section 1 we state
three problems on torus: the cell periodicity problem, an R-linear problem with constant
coefficients, a problem which is obtained from the latter one by differentiation along
boundary. In section 2 we investigate the relations between these three problems.
On the plane C the question of equivalence of the problems is simple [3] since solutions
of these problems are distinguished by additive constants. On torus the operator of
integration transforms periodic functions to functions having constant jumps across
the periodicity cell. We describe these additional constants and explain their
physical meaning. In section 4 using the above results we deduce a formula to calculate
the effective conductivity tensor in terms of the complex potentials. The obtained results
justify the formulas of the articles [13,14] devoted to composites with circular inclusions,
where the above constants were a priori fixed on the base of the physical arguments.

2. Statement of the problems

Consider a square lattice Q which is defined by two fundamental translation
vectors expressed by complex numbers 1 and i on the complex plane C of variable
z ¼ xþ iy. Let m ¼ m1 þ im2 denote complex numbers with integer real and imaginary
parts m1 and m2. Introduce the m–cell Qm :¼ fz ¼ t1 þ it2 : �1=2 < tj < 1=2 ð j ¼ 1, 2Þg.
The lattice Q consists of the cell Qm :¼ fz 2 C : z�m 2 Q0g. Consider mutually
disjoint domains Dk ¼ fz 2 C : jz� akj < rkg with Lyapunov’s boundary @Dk

(k ¼ 1, 2, . . . , n) lying in the zero-th cell Q0. Let D be the complement of the closure
of all Dk to Q0. Let @=@n denote the outward normal derivative to the curves @Dk.
Then according to the direction of the normal vector the signs ‘‘þ’’ and ‘‘�’’ are
assigned to the domains Dk and D, respectively.

2.1. Conductivity problem

Let �k (k ¼ 1, 2, . . . , n) be given positive constants, c1 and c2 be given real
constants. To find a function u(z) harmonic in D and Dk (k ¼ 1, 2, . . . , n), continuously
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differentiable in the closure of the considered domains with the following conjugation
condition

u�ðtÞ ¼ uþðtÞ, ð3Þ

@u�

@n
ðtÞ ¼ �k

@uþ

@n
ðtÞ, t 2 @Dk, k ¼ 1, 2, . . . , n ð4Þ

and the quasi-periodicity relations with respect to the lattice Q

uðzþ 1Þ � uðzÞ ¼ c1, uðzþ iÞ � uðzÞ ¼ c2: ð5Þ

The latter problem is a cell periodicity problem in the theory of composites [10–12],
when the domains D called by matrix and Dk called by inclusion are occupied materials
with the conductivities �¼ 1 and �k, respectively.

THEOREM 1 [10–12] Conductivity Problem has a unique solution up to an arbitrary
additive real constant, say C.

The relations (3) and (4) have a simple physical interpretation. For instance, in the
heat conduction u(z) is the distribution of temperature and ��@u�=@n is the normal
flux from D� on the boundary of inclusion. Therefore, (3) implies that the interior
and exterior to the inclusion, boundary values of the temperature coincide; (4) implies
that the normal flux on @Dk is preserved. Hence, (3)–(4) model the perfect thermal
contact between inclusion and matrix. The vector (c1, c2) models the external gradient
applied to the composite.

Introduce the constant �k ¼ ð�k � 1Þð�k þ 1Þ�1 satisfying the inequality �1 < �k < 1,
since �k is positive.

2.2. Problem R

To find a function ’(z) analytic in D, Dk, continuously differentiable in the closure of
the considered domains with the following condition

’�ðtÞ ¼ ’þðtÞ � �k’þðtÞ, t 2 @Dk, k ¼ 1, 2, . . . , n, ð6Þ

’ðzþ 1Þ � ’ðzÞ ¼ c1 þ id1, ’ðzþ iÞ � ’ðzÞ ¼ c2 þ id2, ð7Þ

where c1 and c2 are given real constants, d1 and d2 are undetermined real constants
which should be found.

Problem R can be considered as an R-linear problem on the torus represented by the
cell Q0. It can also be considered as an R-linear problem for infinitely connected
domain bounded by @Dk þm (m ¼ m1 þ im2, m1 and m2 run over integers).

Consider another R-linear problem.
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2.3. Problem R0

To find a doubly periodic function  (z) analytic in D, Dk, continuous in the closure
of the considered domains with the following condition

 �ðtÞ ¼  þðtÞ þ �kðnðtÞÞ
2 þðtÞ, t 2 @Dk, k ¼ 1, 2, . . . , n: ð8Þ

Note, that the condition of double periodicity can be written in the form (compare
with (7))

 ðzþ 1Þ �  ðzÞ ¼ 0,  ðzþ iÞ �  ðzÞ ¼ 0: ð9Þ

The R-linear conjugation condition (8) is obtained from (6) by differentiation along
the curve @Dk,  ðzÞ ¼ ’0ðzÞ (for details see [3], p. 52).

3. Structure of the general solution

In the present section we investigate the structure of the general solutions of Problems
R and R0.

THEOREM 2 Problem R has a unique solution up to an arbitrary additive complex
constant, say C þ i�. This solution is related to the solution u(z) of Conductivity
Problem by the formulas

’ðzÞ ¼

�kþ1
2 uðzÞ þ ivðzÞð Þ, z 2 Dk, k ¼ 1, 2, . . . , n,

uðzÞ þ ivðzÞ z 2 D,

8<
: ð10Þ

where v(z) is a function harmonically conjugated to u(z). The constant C is the additive
arbitrary real constant from the general solution of Conductivity Problem.

Proof is similar to the proof of the corresponding assertion on the plane [3] (p. 52).
It is based on the following representations of the harmonic functions. Any function
harmonic in a simply connected domain is the real part of an analytic single-valued
function in this domain. Any function harmonic in a multiply connected domain is
the real part of an analytic single-valued function plus logarithmic terms (for details
and precise representations see [3] (p. 22) and [15]) which arise from eventual
increments of the imaginary part of the analytic function along @Dk.

It is known (see for instance [3]) that two real relations (3)–(4) are reduced to
one complex equality (6) on the plane. We give here this reduction in details on
torus specifying all arising constants.

First, we prove that if u(z) is any solution of Conductivity Problem, then ’(z)
introduced by (10) is a solution of Problem R. Next, we prove that if ’(z) is any solution
of Problem R, then

uðzÞ ¼

2
�kþ1

Re ’ðzÞ, z 2 Dk, k ¼ 1, 2, . . . , n,

Re ’ðzÞ, z 2 D

8<
: ð11Þ

is a solution of Conductivity Problem.
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Consider a solution u(z) of Conductivity Problem. Let v(z) be a function harmoni-
cally conjugated to u(z). It is defined up to an arbitrary additive real constant.
Introduce the function ’(z) by (10) sectionally analytic in the domains D and Dk. We
note that ’(z) is continuously differentiable in the closure of the considered domains
and it is single-valued in all Dk.

We now demonstrate that ’(z) satisfies (7). The first equality (5) yields

@u

@x
� i

@u

@y

� �
ðzþ 1Þ �

@u

@x
� i

@u

@y

� �
ðzÞ ¼ 0:

Therefore,

’0ðzþ 1Þ � ’0ðzÞ ¼ 0:

This implies the first equality (7) with an appropriate constant d1. Similar arguments
yield the second relation (7).

In order to prove (6) introduce

�k ¼ ’�ðtÞ � ½’þðtÞ � �k’þðtÞ�, t 2 @Dk, k ¼ 1, 2, . . . , n: ð12Þ

Using (10) we calculate

�k ¼ u�ðtÞ � uþðtÞ þ i½v�ðtÞ � �kv
þðtÞ�:

It follows from (3) that Re�k ¼ 0. The function v(z) is defined in D and Dk up to
arbitrary real constants, say � and �k. We now prove that for any � it is possible to
introduce such �k that

v�ðtÞ ¼ �kv
þðtÞ, t 2 @Dk: ð13Þ

Let s denote the natural parameter of the curve @Dk. Applying the Cauchy–Riemann
equation

@u

@n
¼
@v

@s
ð14Þ

to (4) we obtain

@v�

@s
ðtÞ ¼ �k

@vþ

@s
ðtÞ, t 2 @Dk: ð15Þ

Integrating (15) on s we arrive at the relation

v�ðtÞ ¼ �kv
þðtÞ þ ck, t 2 @Dk, ð16Þ

where ck is a constant of integration. One can take �k in such a way that (16)
becomes (13), since the right-hand side of (16) depends additively on �k�k þ ck.
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Therefore, Im�k ¼ 0 and hence �k ¼ 0. The relation (6) implies that ’(z) is single
valued in D, since the right-hand side of (6) has the zero increment along each curve
@Dk. This proves (6).

Let now ’(z) be a solution of Problem R. Introduce u(z) by (11). It is easily seen that
u(z) satisfies (5). Calculate the real part of (6)

Re ’�ðtÞ ¼
2

�k þ 1
Re ’þðtÞ, t 2 @Dk: ð17Þ

This is equivalent to (3). Calculate the imaginary part of (6)

Im ’�ðtÞ ¼
2�k
�k þ 1

Im ’þðtÞ, t 2 @Dk: ð18Þ

After differentiation on s and using the Cauchy–Riemann equation (14) we arrive at (4).
Thus, we prove that u(z) satisfies Conductivity Problem.

The equivalence of the problems has been established. It follows from the proof
that ’(z) depends additively on C þ i�, i.e., on one complex constant. The theorem
is proved.

If �1 ¼ �, then �¼ 0 and we arrive at the C–linear problem. In other extremal cases
�1 ¼ 0 (insulator inclusions) we have � ¼ �1 and �1 ¼ þ1 (perfect conductor) �¼ 1.
The cases j�j ¼ 1 correspond to the Riemann–Hilbert problem. It is worth noting
that in this case ’(z) in general is multi-valued function as it was shown in [3] for the
complex plane.

THEOREM 3 General solution of the homogeneous Problem R0 has the form

 ðzÞ ¼ c1 1ðzÞ þ c2 2ðzÞ, ð19Þ

where  1(z) and  2(z) are partial linearly independent solutions of Problem R0, c1 and c2
are arbitrary real constants.

Proof As it was already noted that differentiation of (6) and (7) implies (8) and (9),
where

’0ðzÞ ¼  ðzÞ: ð20Þ

The arbitrary additive constants disappear in  (z) after differentiation as well as the
constants c1 þ id1, c2 þ id2 in (7). Therefore, Problems R and R0 are equivalent up to
an additive constant. However, there is a difference in the treatment of the constants
c1 and c2 in these problems. According to the statement of Problem R it is assumed
that c1 and c2 are fixed. But in the statement of Problem R0 these constants are
absent. Hence, the general solution of Problem R0 linearly depends on two real
constants c1 and c2 which are considered now as arbitrary constants. The partial
solutions  1(z) and  2(z) correspond to solutions of Problem R with c1¼ 1, c2¼ 0
and c1¼ 0, c2¼ 1, respectively. The solutions  1(z) and  2(z) can be precisely
specified without reference to Problem R. For instance, the following conditions for
 1(z) can be added

Re

Z zþ1

z

 1ðzÞdz ¼ 1, Re

Z zþ1

z

 1ðzÞdz ¼ 0: ð21Þ

The theorem is proved.
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4. Effective conductivity tensor

The effective (macroscopic) conductivity tensor � is defined in the theory of homo-
genization [10,11] by averaging of the local laws of conductivity.

The local flux qðzÞ is defined as the vector

qðzÞ ¼ ��ðzÞ
@u

@x
ðzÞ,

@u

@y
ðzÞ

� �
, ð22Þ

where z ¼ xþ iy, �(z) is the local conductivity, i.e., �ðzÞ ¼ 1 in D and �ðzÞ ¼ �k in Dk.
It is convenient to represent qðzÞ as the complex value

qðzÞ ¼ ��ðzÞ
@u

@x
ðzÞ þ i

@u

@y
ðzÞ

� �
: ð23Þ

Then (20) and (10) yield

qðzÞ ¼
� 2�k
�kþ1

 ðzÞ, z 2 Dk,

� ðzÞ z 2 D:

8<
: ð24Þ

It follows from the proof of Theorem 3 that the partial solutions  1(z) and  2(z) of
Problem R0 correspond to the fluxes induced by the external gradients ð1, 0Þ ffi 1 and
ð0, 1Þ ffi i. Here, we identify vectors and corresponding complex numbers.

Let h�i denote the integral over the unit cell Q0. The tensor

� ¼
�x �xy

�xy �y

� �
ð25Þ

is introduced as a coefficient in the macroscopic law which relates the external gradient
with the averaged flux in the periodicity cell [10–12]

hqi ¼ ��ðc1, c2Þ
T , ð26Þ

where the vector ðc1, c2Þ
T denote the external gradient, q has the form (22). Let us write

(26) in expanded form

Z
D

ðux, uyÞdx dyþ
Xn
k¼1

�k

Z
Dk

ðux, uyÞdx dy ¼ ðc1�
x þ c2�

xy, c1�
xy þ c2�

yÞ: ð27Þ

Using the complex form of the vectors we rewrite (27) in terms of complex potentials.
At the beginning, consider the first component of (27). Applying Green’s formulaR
G ux dx dy ¼

R
@G u dy for G¼D and G¼Dk to the double integrals from the first

component of (27) and (3), we obtain

Z
@Q0

u dyþ
Xn
k¼1

ð�k � 1Þ

Z
@Dk

u dy ¼ c1�
x þ c2�

xy: ð28Þ
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Here, the equality @D ¼ @Q0 �
Pn

k¼1 @Dk is used. Taking into account (5) we calculate
the first integral from (28) and return to doubles integrals

c1 þ
Xn
k¼1

ð�k � 1Þ

Z
Dk

ux dx dy ¼ c1�
x þ c2�

xy: ð29Þ

Using (10) and (20) we replace ux by  in (29)

c1 þ 2
Xn
k¼1

�k

Z
Dk

Re ðzÞdx dy ¼ c1�
x þ c2�

xy: ð30Þ

Along similar lines we have from the second component of (27)

c2 � 2
Xn
k¼1

�k

Z
Dk

Im ðzÞdx dy ¼ c1�
xy þ c2�

y: ð31Þ

Multiplying (31) by i and subtracting the result from (30) we get

c1ð�
x � i�xyÞ � ic2ð�

y þ i�xyÞ ¼ c1 � ic2 þ 2
Xn
k¼1

�k

Z
Dk

 ðzÞ dx dy: ð32Þ

Substitution of c1¼ 1, c2¼ 0 and c1¼ 0, c2¼ 1 in (32) yields the formulas

�x � i�xy ¼ 1þ 2
Xn
k¼1

�k

Z
Dk

 1ðzÞ dx dy, ð33Þ

�y þ i�xy ¼ 1þ 2i
Xn
k¼1

�k

Z
Dk

 2ðzÞ dx dy: ð34Þ

The invariant I1 ¼ ð�x þ �yÞ=2 of the tensor � has the form

I1 ¼ 1þ
Xn
k¼1

�k

Z
Dk

ð 1ðzÞ þ i 2ðzÞÞ dx dy: ð35Þ

For macroscopically isotropic composites we have

�x ¼ �y ¼ 1þ 2
Xn
k¼1

�k

Z
Dk

 1ðzÞ dx dy, �
xy ¼ 0, ð36Þ

and the following equalities

Xn
k¼1

�k

Z
Dk

 2ðzÞdx dy ¼ �i
Xn
k¼1

�k

Z
Dk

 1ðzÞ dx dy, ð37Þ

Im
Xn
k¼1

�k

Z
Dk

 1ðzÞ dx dy ¼ 0: ð38Þ
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Equalities (37) have obvious physical interpretation

�
@u2
@x

�
¼ �

�
@u1
@y

�
,

�
@u2
@y

�
¼

�
@u1
@x

�
, ð39Þ

i.e., in macroscopically isotropic composites the macroscopic flux does not change
under rotation by about 900. The axis OY becomes �OX under rotation, hence the
sign ‘�’ (minus) arises in (39). Here the potentials u1 and u2 correspond to the functions
 1(z) and  2(z), respectively.

Consider the case when the inclusions Dk are disks jz� akj < rk. Then application of
the mean value theorem to (32) yields

c1ð�
x � i�xyÞ � ic2ð�

y þ i�xyÞ ¼ c1 � ic2 þ 2�
Xn
k¼1

�kr
2
k ðakÞ: ð40Þ

As one can see, to determine � we need only  ðakÞ.

5. Conclusion

In the present article the two-dimensional cell periodicity problem of the conductivity
of composites has been reduced to the R-linear problem on torus. The equivalence of
the problems is discussed in detail. The formulas (32)–(36) for the effective conductivity
tensor in terms of the complex potentials have been deduced. In particular, the formula
(40) has been proven. Earlier this formula with c1¼ 1 and c2¼ 0 were applied in [13,14]
to compute the tensor � without rigorous justifications.

It could be interesting to estimate
R
Dk
 1ðzÞdx dy without direct solution to

Problem R0. The general theory of bounds for � is presented by Milton [12] without
an address to the R-linear problem.
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