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We consider the transport properties of a two-dimensional, two-component
composite medium made from a collection of non-overlapping, identical cir-
cular disks, imbedded in an otherwise uniform host. Both components are
isotropic conductors, but the position of the inclusions is arbitrary. The
study is based on the analytic properties of such composite materials de-
scribed by Bergman (1978, 1982, 1985), Bergman & Dunn (1992), Milton
(1981) and the homogenization theory of random media advanced by Golden
& Papanicolaou (1983), Jikov et al. (1994). The crucial point of our study
is application of the method of functional equations.

1 Introduction

The transport properties of two-dimensional, two-component composite medium
made from a collection of non-overlapping, identical circular disks, imbedded
in an otherwise uniform host are considered. A number of workers have fol-
lowed by different approach, by assuming a specific regular geometry for the
composite material. In this way, they have been inspired by a classic paper
of Lord Rayleigh (1892). McPhedran (1986), McPhedran & Milton (1987),
McPhedran et al. (1988), Sangani & Yao (1988) obtained an infinite systems
of linear algebraic equations for the multipole coefficients. These systems had
been truncated to give various low-order formulae for the effective transport
properties. Mityushev (1995a, 1995b, 1996, 1997a, 1997b) obtained exact
analytic formulae for arbitrary regular arrays of circular disks by using the
method of functional equations.

Bergman (1978, 1982, 1985), Bergman & Dunn (1992) and Milton (1981)
discussed analytical properties of macroscopic moduli of general two-phase
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composite materials as a function of the conductivity ratio. They also for-
mulated bounds on the effective constant from available information. (For a
recent review of the theory of bounds see Clark & Milton (1995)). Golden &
Papanicolaou (1983) and Jikov et al. (1994) extended the Bergman-Milton
theory to random media. They proposed a rigorous mathematical theory of
the homogenization of elliptic operators with random coefficients. We shall
call this theory by the homogenization theory of random media. A presen-
tation of the problem of estimating the effective transport properties of two-
phase random media is given by Markov & Zvyatkov (1991) and Torquato
(1991).

In the present paper we consider a composite material containing infinite
parallel cylindrical inclusions (identical disks in the two-dimensional state-
ment) randomly embedded in a homogeneous matrix. We evaluate the effec-
tive conductivity tensor Λe in the framework of the homogenization theory
of random media. Applying the method of functional equations we deduce a
simple algorithm for approximate analytic formulae for Λe. These formulae
allow us to discuss some particular problems. For instance, a distribution of
disks on plane is given, and one asks the following natural question. Is this
isotropic or anisotropic material in macroscale? If the material is anisotropic
then it is interesting to determine the principal axes. This question is an-
swered in Sec.5 by using the concept of a generalized Rayleigh’s sum.

2 Formulation of the problem

We consider a random composite material in the framework of the homoge-
nization theory of random media by Golden&Papanicolaou (1983) and Jikov
et al. (1994). Let (Ω,F , P ) be a probability space and let λ (z, ω) be a
strictly stationary random field of the complex variable z = x + iy, ω ∈ Ω,
deriving a random two-dimensional composite material with identical circu-
lar inclusions of the radius r. The inclusions have the scalar conductivity
λ1 and are separated by matrix of unit conductivity. More specifically, each
event ω ∈ Ω corresponds to a realization of the composite material, i.e. to a
set of the non-overlapping disks on the complex plane C. For each fixed ω
the function λ (z, ω) takes only two values: λ1 in the inclusion and the unity
in the matrix. Let us consider the following boundary value problem. Find
stationary random potential u (z, ω) such that

∇ (λ (z, ω)∇u (z, ω)) = 0, z ∈ C, ω ∈ Ω,

∫

Ω

P (dω)∇u (z, ω) = e, (2.1)
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where ∇ := (∂/∂x, ∂/∂y) . The constant vector e = e1 + ie2 is given. The
function u (z, ω)−Reez is bounded at infinity. The effective properties tensor

Λe =

(
λxe λxye
λxye λye

)

is defined by the relation

Λee =

∫

Ω

P (dω)λ (z, ω)∇u (z, ω) . (2.2)

According to the homogenization theory of random media the problem (2.1)
has a unique solution up an additive constant. Moreover, for almost ω ∈ Ω
the strictly stationary random field λ (z, ω) admits homogenization, and the
homogenized tensor Λe is independent of ω. The last result allows us to
take an element ω ∈ Ω corresponding to a typical distribution of inclusions
and calculate Λe in this particular case. Since the effective properties tensor
Λe is independent of ω, hence we get the value Λe for whole class Ω of the
composite materials under consideration.

So let us take a typical distribution of the inclusions represented by a
set of mutually disjoint discs Dk := {z ∈ C : |z − ak| < r} (k = 0, 1, ...),
where 0 = |a0| < |a1| ≤ |a2| ≤ ... . Let D := C\ (H ∪ ∂H) , where
H := ∪∞k=1Dk, ∂H isthe boundary of H. We study conductivity of the com-
posite material, when the domains D and Dk (k = 0, 1, ...) are occupied by
materials of conductivity λ = 1 and λ1, respectively (see Fig.1). We find
the potentials u (z) and uk (z) harmonic in D and Dk (k = 0, 1, ...) with the
following boundary conditions:

u = uk,
∂u

∂n
= λ1

∂uk
∂n

on the circumferences |t− ak| = r, k = 0, 1, ... ,

(2.3)
where ∂/∂n is the outward normal derivative. Moreover, u (z, ω) − Re ez
satisfies the property P0. We say that a function f (z) satisfies the prop-
erty P0 if it is continuous in (D ∪ ∂D) ∩ UR for each R > 0, where UR :=
{z ∈ C : |z| < R} and bounded in D ∪ ∂D. The function f (z) satisfies the
property P1 if it is continuously differentiable in (D ∪ ∂D) ∩ UR for each
R > 0 and satisfies the property P0 with |∇f (z)| .

In accordance with the homogenization theory of random media the def-
inition of the effective properties tensor Λe (2.2) is consistent with the defi-
nition of the ensemble averaging

Λee = lim
n→∞

|Gn|−1

[∫ ∫

Fn

∇udxdy + λ1

n∑

k=0

∫ ∫

Dk

∇ukdxdy
]
. (2.4)
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HereGn is a simply connected bounded domain containingD0, D1, ..., Dn, |Gn|
is the area of Gn, Fn := Gn\ ∪nk=0 (Dk ∪ ∂Dk) , limn→∞ Fn = D. In order
to find Λe it is sufficiently to apply (2.4) for e = 1 and e = i. For the
definiteness we take only the external field applied in the x-direction. Then

λxe − iλxye = (2.5)

limn→∞ |Gn|−1
[∫ ∫

Fn
(ux − iuy) dxdy + λ1

∑n
k=0

∫ ∫
Dk

(
(uk)x − i (uk)y

)
dxdy

]
.

The problem (2.3) is equivalent to the following R-linear boundary value
problem (see, for instance Mityushev (1996, 1997b))

φ (t) = φk (t)− ρφk (t)− t, |t− ak| = r, k = 0, 1, ... , (2.6)

where ρ := (λ1 − 1) / (λ1 + 1) is a Bergman’s parameter. The unknown func-
tions φ (z) and φk (z) are analytic in D and Dk, respectively. Moreover, the
function φ (z) satisfies the property P1. The harmonic and analytic functions
are related by the identities

u (z) = Re (φ (z) + z) , uk (z) =
2

λ1 + 1
Re φk (z) .

Here and after we write z when we consider a relation in a domain, and t -
in a contour.

Let us transform the relation (2.5). Applying Green’s formula we arrive
at the relation

λxe − iλxye = lim
n→∞

|Gn|−1

[
i

∫

∂Gn

udz + 2ρ
n∑

k=0

∫ ∫

Dk

φ
/
k (z) dxdy

]
, (2.7)

where φ
/
k (z) = λ1+1

2

(
(uk)x − i (uk)y

)
. We have

lim
n→∞

|Gn|−1 i

∫

∂Gn

udz =

lim
n→∞

|Gn|−1

[∫

∂Gn

ixdx+ xdy +

∫

∂Gn

(bounded term) dz

]
= 1,

since u (z) = x + bounded term as z → ∞. By virtue of the mean value
theorem of harmonic functions we have

∫ ∫

Dk

φ
/
k (z) dxdy = πr2φ

/
k (ak) .
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Therefore, (2.7) implies

λxe − iλxye = 1 + 2ρv lim
n→∞

1

n+ 1

n∑

k=0

φ
/
k (ak) , (2.8)

where v := limn→∞ (n+ 1) πr2 |Gn|−1 is the area fraction of the inclusions.
Without loss of generality we assume that the average number of inclusions
per unit area limn→∞ (n+ 1) |Gn|−1 = 1. Then v = πr2.

3 Method of functional equations

Let us introduce the Banach space B consisting of functions analytic in all
discs Dk, continuous in Dk ∪ ∂Dk (k = 0, 1, ..., ) and bounded in H ∪ ∂H
with the norm ‖Ψ‖ := supk maxDk∪∂Dk |ψk (z)|, where Ψ (z) = ψk (z) in Dk ∪
∂Dk. Convergence in B means almost uniform convergence, i.e. uniform
convergence in each compact subset of H.

Lemma 3.1. Let the function ψm (z) is analytic in Dm and continuous
in Dm ∪ ∂Dm (m = 0, 1, ..., ) . Let z∗m := r2/(z − am) + am be the inversion
with respect to |t− am| = rm. Then the series

SΨ (z) :=
∞∑
m=0

(Amψm) (z) , (3.1)

where

(Amψm) (z) : = (z − am)−2 ψm (z∗m)−∆mψm (am) (m = 0, 1, ..., ) ,

∆0 : = 0, ∆m := a−2
m (m = 1, 2, ..., )

converges absolutely and almost uniformly in D. The function SΨ (z) is an-
alytic in D and satisfies the property P0.

P r o o f. Following Mityushev (1997b) we fix a compact subset K ⊂⊂ D
and consider the series ∞∑

m=N

(Amψm) (z) , (3.2)

where N is chosen in such a way that |z − am| ≥ h > r2/ (r − ε) for suffi-
ciently small ε > 0 and for all m ≥ N and z ∈ K. Let

ψm (z) =
∞∑

l=0

ψml (z − am)l
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be the Taylor expansion of ψm (z) . Then

∞∑
m=N

(Amψm) (z) = Σ1 + Σ2,

where

Σ1 :=
∞∑

m=N

ψm0

[
(z − am)−2 − a−2

m

]
, Σ2 :=

∞∑
m=N

∞∑

l=1

ψmlr
2l (z − am)−l−2 .

We have

|Σ1| ≤ T

∞∑
m=N

∣∣(z − am)−2 − a−2
m

∣∣ , (3.3)

where T := supm |ψm0| = supm |ψm (am)| . It follows from Lemma A.2 that
the series (3.3) converges uniformly in K. The inequality |z − am|−l+1 ≤
h−l+1 (l = 1, 2, ...) implies
∣∣∣∣∣
∞∑

m=N

∞∑

l=1

ψmlr
2l (z − am)−3 (z − am)−l+1

∣∣∣∣∣ ≤ h

∞∑
m=N

∞∑

l=1

|ψml| r2l |z − am|−3 h−l ≤

hMc

∞∑

l=1

[
r2 (r − ε)−1 h−1

]l
< +∞,

where M := maxz∈K
∑∞

m=N |z − am|−3 (see Lemma A.3). Here Cauchy’s in-

equality |ψml| ≤ c (r − ε)−l (l = 1, 2, ...) is used. Thus, we have proved that
the series (3.2) converges uniformly in K. Therefore, the series (3.1) con-
verges almost uniformly in D. The properties of the function SΨ (z) follow
from the properties of the uniformly convergent series of analytic functions.

The lemma is proved.
Differentiating (2.6) we arrive at the following boundary value problem

ψ (t) = ψk (t) + ρr2 (t− ak)−2 ψk (t)− 1, |t− ak| = r, k = 0, 1, ... , (3.4)

where ψ (z) := φ/ (z) and ψk (z) := φ
/
k (z). Here we apply the relation (see,

for instance Mityushev (1996))

(
φk (t)

)/
=
(
φk (t∗k)

)/
= −r2 (t− ak)−2 φ

/
k (t), |t− ak| = r.

Let us introduce the function

Φ (z) := ψk (z)−ρr2
∑

m6=k
(Amψm) (z)+ρr2∆kψk (ak)−1, |z − ak| ≤ r, k = 0, 1, ... ,
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Φ (z) := ψ (z)− ρr2

∞∑
m=0

(Amψm) (z) , z ∈ D,

where the sum
∑

m6=k contains the terms with m = 0, 1, ... , except m =
k. It follows from Lemma 3.1 that the function Φ (z) is analytic in D and
Dk (k = 0, 1, ...), continuous in all Dk ∪ ∂Dk (k = 0, 1, ...) and satisfies the
property P0. We now proceed to calculate the jump of Φ (z) along |t− ak| =
r :

Jk := lim
z→t,z∈D

Φ (z)− lim
z→t,z∈Dk

Φ (z) =

ψ (t)−ρr2
[
(t− ak)−2 ψk (t)−∆kψk (ak)

]
−ψk (t)−ρr2∆kψk (ak)+1, k = 0, 1, ... .

Taking into account (3.4) we obtain Jk = 0. Using the theorem of ana-
lytic continuation and the Liouville theorem we conclude that Φ (z) ≡ q =
constant. From the definition of Φ (z) we obtain the following system of
functional equations

ψk (z) = ρr2
∑

m6=k

[
(z − am)−2 ψm (z∗m)−∆mψm (am)

]
−ρr2∆kψk (ak) + 1 + q,

(3.5)
|z − ak| ≤ r, k = 0, 1, ...

with respect to the functions ψk (z) analytic in |z − ak| < r and continuous
in |z − ak| ≤ r. Moreover, there exist supk maxz |ψk (z)|, where |z − ak| ≤ r
in the maxz. The system (3.5) can be considered as the equation

Ψ = ρr2AΨ + 1 + q (3.6)

in the space B. Here Ψ (z) = ψk (z) in |z − ak| ≤ r, AΨ (z) :=
∑

m6=k (Amψm) (z)−
∆kψk (ak) in |z − ak| ≤ r.

Lemma 3.2. The operator A is compact in B.
P r o o f. The operators

N∑
m=0

(Amψm) (z) , N = 1, 2, ... (3.7)

are compact in B (see Mityushev (1997b)). The operator ∆kψk (ak) is com-
pact as a degenerated operator. Lemma 3.1 implies that A is a compact
operator as the limit of the compact operators (3.7) in the space B.

The lemma is proved.
Let us denote by Ak the k-th degree of the operator A.
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Theorem 3.1. Equation (3.6) has the unique solution

Ψ = (1 + q)
∞∑

k=0

(
ρr2
)k

Ak1

for each fixed q. The last series converges in B.
P r o o f. In order to prove the theorem we show that ρr2RA < 1, where

RA is the spectral radius of the operator A. It is sufficient to show the
inequality r2RA ≤ 1, since |ρ| < 1. The spectrum of the operator A consists
only of eigenvalues. The inequality r2RA ≤ 1 is valid if and only if there
exist a complex constant ν such that |ν| < 1 and the equation

Ψ = νr2AΨ (3.8)

has only the zero solution. If Ψ (z) = ψk (z) in |z − ak| ≤ r is a solution of
(3.8) then the function

ψ (z) = νr2

∞∑
m=0

(Amψm) (z)

is analytic in D and satisfies the property P0. Using (3.8) we arrive at the
R-linear problem

ψ (t) = ψk (t) + νr2 (t− ak)−2 ψk (t), |t− ak| = r, k = 0, 1, ... . (3.9)

The problem (3.9) has only the zero solution since |ν| < 1 (see Appendix B).
The theorem is proved.
We shall find ψk (z) from the functional equations (3.5) in the form

ψk (z, ρ) = ψ0
k (z) + ρψ1

k (z) + ρ2ψ2
k (z) + ... . (3.10)

Also, we consider the constant q as an analytic function on ρ :

q (ρ) = q0 + q1ρ+ q2ρ
2... . (3.11)

By substituting (3.10), (3.11) into (3.5) and collecting terms with ρm we
obtain the following recurrent formulae

ψ0
k (z) = 1 + q0, (3.12)

ψlk (z) = r2
∑

m6=k

[
(z − am)−2 ψl−1

m (z∗m)−∆mψl−1
m (am)

]
− r2∆kψ

l−1
k (ak) + ql,

|z − ak| ≤ r, k = 0, 1, 2, ...; l = 1, 2, ...
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4 Method of perturbation

In order to apply Theorem 3.1 and the scheme (3.12) to calculate the tensor
Λe we must determine the constant q appearing in the definition of Φ (z).
We shall do it by a method of perturbation. This method is concluded in
finding a solution of the problem (2.6) in the form of the expansions

φ (z, ρ) = φ0 (z) + ρφ1 (z) + ρ2φ2 (z) + ..., (4.1)

φk (z, ρ) = φ0
k (z) + ρφ1

k (z) + ρ2φ2
k (z) + ...

with respect to ρ. By substituting these expansions into the boundary condi-
tion (2.6) and collecting terms with ρm we obtain a cascade of the problems.
The zero one is

φ0 (t) = φ0
k (t)− t, |t− ak| = r, k = 0, 1, 2, ... .

The first problem is

φ1 (t) = φ1
k (t)− φ0

k (t), |t− ak| = r, k = 0, 1, 2, ... .

and so on. On the l-th step we have

φl (t) = φlk (t)− φl−1
k (t), |t− ak| = r, k = 0, 1, 2, ... , l = 1, 2, ... . (4.2)

Since φ0
k (z) = z is the solution of the zero problem, hence the first problem

becomes

φ1 (t) = φ1
k (t)− (r2/ (t− ak) + ak

)
, |t− ak| = r, k = 0, 1, 2, ... . (4.3)

The last equalities mean that φ1 (z) is analytically continued to all (Dk ∪ ∂Dk) \ {ak}
and has the principle part −r2/ (z − ak) at ak. It follows from the theory of
meromorphic functions (see Appendix A) that

φ1 (z) = −r2 (F1 (z)−G1 (z)) ,

where

F1 (z) =
1

z
+
∞∑
m=1

(
1

z − am +
1

am
+

z

a2
m

)
, (4.4)

G1 (z) is an entire function. The series (4.4) converges absolutely and almost
uniformly in C\ ∪∞m=0 {am}. From (4.3) and (4.4) we have

φ1
0 (z) = −r2

[ ∞∑
m=1

(
1

z − am +
1

am
+

z

a2
m

)
−G1 (z)

]
, k = 0,
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φ1
k (z) = −r2

[
1

z
+

∞∑

m=1 m6=k

(
1

z − am +
1

am
+

z

a2
m

)
+

1

ak
+

z

a2
k

−G1 (z)

]
+ak, k = 1, 2, ...,

(4.5)
Let us compare this result with the result obtained by the method of

functional equations . Let us note that the uniqueness theorem of the analytic
function theory implies the relation

(
φ1
k (z)

)/
= ψ1

k (z) ,

where ψ1
k (z) is taken from (3.10). Using (3.12) with l = 1 we calculate

ψ1
k (z) = r2 (1 + q0)

{∑

m6=k

[
(z − am)−2 −∆m

]−∆k

}
+ q1,

where the sum
∑

m6=k contains the terms with m = 0, 1, ...; m 6= k. Differen-
tiating (4.5) we obtain

(
φ1
k (z)

)/
= r2

{∑

m6=k

[
(z − am)−2 −∆m

]
+G

/
1 (z)−∆k

}
.

Comparing the last two equalities we have

q0 = 0, q1 = r2G
/
1 (z) .

Hence, the function G1 (z) has the form

G1 (z) = r−2q1z + c1, (4.6)

where c1 is a constant, which does not impact on the effective conductivity
tensor. So we have to determine only r−2q1.

The function F1 (z) at infinity has to be compensated by the linear func-
tion G1 (z), since the function φ1 (z) is bounded at infinity. Let us fix the
point w in D. Let γ be a smooth simple curve connected the points z = w
and z = ∞, γ ⊂ D ∪ ∂D (see Fig.1). Let us calculate the jump of F1 (z)
along γ from w to w + ∆z :

f (γ,∆z) := F1(w+∆z)−F1(w) = ∆z

[
− 1

w (w + ∆z)
−
∞∑

k=1

(
1

(w − ak) (w − ak + ∆z)
− 1

a2
k

)]
.

We have

q1 = r2 lim
∆z→∞

(∆z)−1 f (γ,∆z) = r2 lim
∆z→∞

∞∑

k=1

(
1

a2
k

− 1

(w − ak) (w − ak + ∆z)

)
,

(4.7)
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and

ψ1
k (z) = r2

∑

m6=k

[
(z − am)−2 −∆m

]− r2∆k + q1. (4.8)

We have determined ψ1
k (z) and q1. We now proceed to determine ψ2

k (z) and
q2 by the same method.

It follows from (3.12) with l = 2 that

ψ2
k (z) = r2

∑

m6=k

[
(z − am)−2 ψ1

m (z∗m)−∆mψ1
m (am)

]
−r2∆kψ1

k (ak)+q2, (4.9)

where ψ1
m (z) has the form (4.8), q2 is an undetermined constant. The relation

(4.2) with l = 2 implies

φ2 (t) = φ2
k (t)− φ1

k (t), |t− ak| = r, k = 0, 1, 2, ... . (4.10)

One can consider (4.10) as a boundary value problem with respect to φ2 (z)

and φ2
k (z) with the functions φ1

k (t) defined by (4.5) with G1 (z) = q1z + c1.

Let us note that the function φ1
k (z∗k) is meromorphic in |z − ak| < r. Hence,

the equality (4.10) implies

φ2 (z) = F2 (z) +G2 (z) ,

where F2 (z) is a meromorphic function, G2 (z) is an entire function. Then

(
φ2
k (z)

)/
= F

/
2 (z) +

[
φ1
k (z∗k)

]/
+G

/
2 (z) .

The constant q2 can be calculated by F2 (z) and G2 (z) .
By the same method we can find ψ3

k (z) and q3, ψ
4
k (z) and q4 and so on.

5 Effective conductivity tensor

In Sec.3 and 4 we determine the functions ψk (z) = φ
/
k (z) . Using (2.8) we

now proceed to calculate the value

λxe − iλxye = 1 + 2ρv lim
n→∞

1

n+ 1

n∑

k=0

ψk (ak) . (5.1)

It follows from (3.10) and the equality ψ0
k (z) = 1 that (5.1) can be written

in the form
λxe − iλxye = 1 + 2ρv + 2ρ2vQ1 + 2ρ3vQ2..., (5.2)
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where Ql := limn→∞ 1
n+1

∑n
k=0 ψ

l
k (ak) , l = 1, 2, ... . Each limit Ql exists

because the value λxe − iλxye is an analytic function with respect to ρ in the
unit disk |ρ| < 1 (see Bergman (1978, 1982, 1985), Bergman & Dunn (1992)).
It follows from (5.2) that

λxe − iλxye = 1 + 2ρv + 2ρ2vQ1 + o(ρ2), as ρ→ 0, (5.3)

We now proceed to calculate the limit

Q1 = lim
n→∞

1

n+ 1

n∑

k=0

ψ1
k (ak) .

Using (4.8), (4.7) we obtain Q1 = r2S2, where

S2 := lim
n→∞

1

n+ 1

n∑

k=0

∞∑

m=1 m6=k

[
(ak − am)−2 −∆m

]
+ lim

∆z→∞

∞∑

k=1

(
1

a2
k

− 1

(w − ak) (w − ak + ∆z)

)
.

(5.4)
We call S2 the generalized Rayleigh sum of second order. It depends only
on geometric parameters of the composite material. Using S2 one can write
(5.3) in the form

λxe − iλxye = 1 + 2ρv + 2ρ2v2S2/π + o(ρ2), as ρ→ 0, (5.5)

If the points ak generate a doubly periodic lattice, then

S2 = α−12ζ (α/2) . (5.6)

Here the values α > 0 and β ∈ C (Im β = α−1) are the fundamental vec-
tors on the complex plane C generating the lattice, ζ (z) is the Weierstrass
function (see Hurwitz (1964)). The value S2 from (5.6) is related to the condi-
tionally convergent sum

∑n
k=1 a

−2
k discussed by Rayleigh (1892), McPhedran

et al. (1978), Perrins et al. (1979), Mityushev (1995a, 1997c) and others.
It follows from the homogenization theory of random media that the limits

(4.7) and (5.4) exist and do not depend on w and γ. This notation can be
useful to discuss the homogenization of a composite material. If the limit
(4.7) depends on w then the material in question is not homogenized. This
situation is possible when the area fraction of inclusion v does not exist. If
the limit (4.7) depends on γ then we have different properties of the material
in different directions asymptotically defined by the curve γ (see Fig.1).

In order to determine λye we have to apply the external field along the y
axis. In this case we arrive at the R-linear problem

φ (t) = φk (t)− ρφk (t) + it, |t− ak| = r, k = 0, 1, ... , (5.7)
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instead of (2.6). This problem is solved by the same method as the problem
(2.6). In particular we have

λye = 1 + 2ρv + 2ρ2v2 (2−Re S2/π) + o(ρ2), as ρ→ 0. (5.8)

The relations (5.5) and (5.8) determine the effective conductivity tensor Λe

in the second order approximation with respect to ρ. Rather than presenting
Λe by (5.5) and (5.8), it is more useful to give the components of Λe along
its major and minor axes, λmaj and λmin, and the angle between one of the
principal axes and the x axis, θ. Thus the result of the computations are
presented as follow

λmaj = 1 + 2ρv + 2ρ2v2 + 2ρ2v2 |S2/π − 1| , (5.9)

λmin = 1 + 2ρv + 2ρ2v2 − 2ρ2v2 |S2/π − 1| , tan 2θ =
1

2
arg (S2/π − 1) ,

where arg (S2/π − 1) is the argument of the complex number S2/π − 1.
Using Keller’s theorem for random media (see Berdichevskij (1983)) one

can derive (5.8) and (5.9) directly from (5.5).

6 Conclusion

We have studied the transport properties of a two-dimensional, two-component
composite medium made from a collection of non-overlapping, identical circu-
lar disks, imbedded in an otherwise uniform host by the method of functional
equations. An algorithm to calculate the effective conductivity tensor in an-
alytic form has been proposed in Sec.3 and 4. This tensor has been evaluated
to within a second order approximation in Sec.5. We have also discussed a
generalized Rayleigh’s sum of second order and its both the applications to
homogenization and anisotropy of random media.
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The present section is based on the theories of the meromorphic and el-
liptic functions (see, for instance, Hurwitz (1964)).

Lemma A.1. Let the set A := {ak}∞k=0 ⊂ C satisfies the conditions of
Sec.2, i.e. the discs |z − ak| < r model inclusions of a homogenized composite
material. Then the series ∞∑

k=1

|ak|−m

converges for m = 3 and diverges for m = 2.

P r o o f. Let us construct the lattice Qs generated by the fundamental
vectors s and is with the zero cell {z = x+ iy ∈ C : |x| < s/2, |y| < s/2}.
Let ej be the center of the j-th cell of Qs. We assume that e0 = 0, |e1| ≤
|e2| ≤ |e3| ≤ ... .

If m = 3 then we take a lattice Qs where s is chosen in such a way that
each cell contains no more than one point of A. Let bj = ej if the j-th
cell does not contain points of A, and bj = ak in the opposite case. Here
the points bj and ak belong to the same cell. It is known that the series∑∞

j=1 |ej|−3 converges. Let us prove that the series
∑∞

j=1 |bj|−3 is convergent
too.

Using the inequality ||bj| − |ej|| ≤ s/
√

2 we have

∞∑
j=1

(|bj|−3 − |ej|−3) ≤ s√
2

∞∑
j=1

(|bj|−3 |ej|−1 + |bj|−2 |ej|−2 + |bj|−1 |ej|−3) .

Estimate the first term:

∞∑
j=1

(|bj|−3 |ej|−1 − |ej|−4) ≤ s√
2

∞∑
j=1

(|bj|−3 |ej|−2 + |bj|−2 |ej|−3 + |bj|−1 |ej|−4) .

The next step gives estimation for
∑∞

j=1 |bj|−3 |ej|−2 through
∑∞

j=1 |ej|−3.

Hence, the series
∑∞

j=1 |bj|−3 converges. Therefore, the series
∑∞

k=1 |ak|−3 is

convergent, since it is majorized by
∑∞

j=1 |bj|−3.

In order to prove divergence of
∑∞

k=1 |ak|−2 let us choose such s that each
cell of the lattice Qs contains points of A. It is always possible to do it
because the points ak are uniformly distributed in C. The rest proof is based
on divergence of

∑∞
j=1 |ej|−2.

The lemma is proved.
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Corollary. It follows from the theory of meromorphic functions and
Lemma A.1 that a meromorphic function f (z) having simple poles at ak
with the residuum 1 has the form f (z) = F1 (z) + G1 (z), where F1 (z) has
the form (4.4), G1 (z) is an entire function.

Lemma A.2. The series

σ2 (z) :=
∞∑

k=1

[
(z − ak)−2 − a−2

k

]
+ z−2

converges absolutely and almost uniformly in C\A. The function σ2 (z) sat-
isfies the property P0.

P r o o f. Following Lemma A.1 we introduce the series

∞∑
j=1

[
(z − bj)−2 − b−2

j

]
+ z−2 (A 1)

which majorizes |σ2 (z)| in C\B, where B := {bj}∞j=0. Despite of C\B ⊂ C\A
it is sufficiently to estimate |σ2 (z)| in C\B, since we can change by translation
the part of B not belonging to C\A. So let z belongs to a compact subset
K ⊂⊂ C\B. We have

∞∑
j=1

∣∣(z − bj)−2 − b−2
j

∣∣ ≤
∞∑
j=1

∣∣(z − bj)−2 − (z − ej)−2
∣∣+ (A 2)

∞∑
j=1

∣∣(z − ej)−2 − e−2
j

∣∣+
∞∑
j=1

∣∣b−2
j − e−2

j

∣∣ .

Similar to Lemma A.1 the third series is estimated by the convergent series∑∞
j=1 |ej|−3. It follows from the theory of elliptic functions that the second

series of (A 2) converges absolutely and uniformly in K.
Let us study the first series (A 2). Let z belongs to the k-th cell of the

lattice Qs. Estimate

sup
k

∞∑
j=1

∣∣(z − bj)−2 − (z − ej)−2
∣∣ =

sup
k

(
∣∣(z − bk)−2 − (z − ek)−2

∣∣+
∑

j 6=k

∣∣(z − bj)−2 − (z − ej)−2
∣∣
)
.
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We have
∑

j 6=k

∣∣(z − bj)−2 − (z − ej)−2
∣∣ ≤ s√

2

∑

j 6=k

(|z − ej|−2 |z − bj|−1 + |z − bj|−2 |z − ej|−1) .

(A 3)
The following equalities

|z − bj| ≤ |z − ej|+ s√
2

and |z − bj| ≥
∣∣∣∣|z − ej| −

s√
2

∣∣∣∣

hold. Hence, the series (A 3) is estimated by the following series

∑

j 6=k
|z − ej|−1

∣∣∣∣|z − ej| −
s√
2

∣∣∣∣
−2

+
∑

j 6=k
|z − ej|−2

∣∣∣∣|z − ej| −
s√
2

∣∣∣∣
−1

.

The last series is estimated by the series
∑

j 6=k |z − ej|−3 uniformly convergent
in K.

The lemma is proved.
Along similar lines we can prove the following

Lemma A.3. The series

σn (z) :=
∞∑

k=0

(z − ak)−n (n = 3, 4, ...)

converges absolutely and almost uniformly in C\A. The function σn (z) sat-
isfies the property P0.

Appendix B

In the present section we discuss the R-linear problem (3.9) for the in-
finitely connected domain D. Let us note that the R-linear problem for
finitely connected domains was studied by Bojarski (1958), Mikhajlov (1970),
Mityushev (1985, 1997d).

Let us introduce the functions

ω (z) :=

∫ z

w

ψ (z) dz, ωk (z) :=

∫ z

ak+r

ψk (z) dz, k = 0, 1, ... ,

where w is a fixed point of the domain D. Integrating (3.9) we arrive at the
relation

ω (t) = ωk (t)− νωk (t) + ck, |t− ak| = r, k = 0, 1, ..., (B 1)

16



where ck =
∫ ak+r

w
ψk (z) dz are constants.

Following Bojarski (1958) we introduce the function

U (z) := ω (z) , z ∈ D,
U (z) := ωk (z)− νωk (z) + ck, |z − ak| ≤ r, k = 0, 1, ... .

This function satisfies the following partial differential equation

Uz + µU z = 0, (B 2)

where µ = 0 in D, µ = ν in Dk, k = 0, 1, ... . Inequality |µ| < 1 implies that
equation (B 2) is of elliptic type. We have

lim
z→t z∈Dk

U (z) = lim
z→t z∈D

U (z) .

Therefore, one can consider (B 2) as an elliptic equation in a class of gen-
eralized functions on C. We now proceed to investigate U (z) at infinity. It
follows from the maximum principle that

|U (z)| ≤ |U (t)| for |z| ≤ R,

where R > 0, t is an appropriate point of ∂D depending on R. We have

|U (t)| ≤ (1 + |ν|) |ωk (t)|+ |ck| , |t− ak| = r,

|ωk (t)| ≤ 2Tr, |ck| ≤ |ak + r − w|M,

where T := supk |ψk (t)| , M := sup |ψ (t)| . Hence |U (z)| ≤ c |z| , as z →∞,
where c is a positive constant. The general Liouville theorem implies that
U (z) is a R-linear function αz+ βz+ γ. Therefore, ω (z) is a linear function
in D, and ψ (z) = ω/ (z) = constant in D. Substituting this constant into
(3.9) we obtain that ψk (z) ≡ 0 (k = 0, 1, ...).
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