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1 Introduction

Transport properties of two-dimensional doubly periodic composite materials
made from a collection of non-overlapping circular disks imbedded in an
otherwise uniform host are considered. There have been many theoretical
approaches to this problem. One of them is to consider specific periodic
structure, and to solve approximately or analytically the transport problem.
Grigiluk & Filshtinskij [4] applied a method of singular integral equations to
boundary value problems for doubly periodic functions. McPhedran et al.
[9] (see also papers cited therein) studied the square and triangle arrays of
disks. Having based on the classical paper of Lord Rayleigh [14] they reduced
the problem to an infinite set of linear algebraic equations. Similar results
are also represented in [4] and works cited therein. Kolodziej [6] applied the
method of collocations to study a wide class of doubly periodic composite
materials. Sangani & Yao [16] developed the method of singular solutions and
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reduced the problem to an infinite set of equations. In the works [4, 9, 16, 14]
and others the infinite sets had been truncated to give various low-ordered
formulae for the effective transport properties.

A method of functional equations has been applied in [10, 11, 12]. The ef-
fective conductivity tensor has been written in analytic form for an arbitrary
doubly periodic array of disks. In the present paper we proceed to use the
method of functional equations. This method is applied to a doubly periodic
array with each unit cell containing N circular inclusions whose size, location
and the properties are completely arbitrary. The crucial point is based on
solution to an R-linear problem. The effective conductivity tensor is written
in analytic form. The method of functional equation is closely related to a
method of perturbation. See Sec.3. One can find advanced applications of
the perturbation theory in [17].

A typical problem of shape optimization is to minimize an energy function
over the set of the characteristic inclusion functions which take unity in
their corresponding domain and zero elswhere. Let us note that shape and
number of inclusions are not fixed in this statement. Such optimal design
problems are successfully solved by homogenezation methods (see [1, 7, 2]
and ‘references cited therein.) In Sec.6 we discuss another class of optimal
design problems, when it is necessary to locate N circular disks with given
sizes and properties in the unit cell representing a composite material. Our
goal is to determine such a location of the inclusions that anisotropy of the
homogenized material reaches the maximum value.

In Sec.6 we determine the principal axes and the angle between one of
them and the x axis. We introduce the anisotropy coefficient involving only
geometrical parameters. As to our knowing such quantitative values were
not used earlier. This study is useful in technical applications, because the
major and minor axes are the most effective directions of conductivity and
isolation, respectively. So using our formulae a designer can project complex
fibre composite materials to reach optimal properties in given directions.

2 Formulation of the boundary value prob-

lem

We consider a lattice Q which is defined by the two-fundamental translation
vectors α and iα−1 (α > 0, i2 = −1) in the complex plane C ∼= R2. The zero-
th cellQ(0,0), the basis ofQ, is the rectangle {z = t1α + t2iα

−1 ∈ C : −1/2 < tp < 1/2, p = 1, 2},
where z = x + iy is a complex variable. For the area holds

∣∣Q(0,0)

∣∣ = 1. Let
E := ∪j {ej} be a doubly ordered set of the numbers ej := (m1α +m2iα

−1),
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where j = ( m1,m2), m1 and m2 are integer, e(0,0) = 0. The lattice Q consists
of the cells Qj = Q(0,0) + ej :=

{
z ∈ C : z − ej ∈ Q(0,0)

}
.

Let us consider mutually disjoint disks Bk := {z ∈ C : |z − ak| < rk} (k =
1, 2, ..., N) in the zero-th cell Q(0,0). Let D := Q(0,0)\

(∪Nk=1Bk ∪ Tk
)
, where

Tk := {t ∈ C : |t− ak| = rk}. Here and after we use the letter z for a variable
in a domain, t - on the boundary of a domain. We study the conductivity
of the doubly periodic composite material, when the domains D + ej and
Bk + ej are occupied by materials of conductivities λ = 1 and λk > 0, respec-
tively. We find the potentials u (z) and uk (z) to be harmonic in D + ej and
Bk + ej (k = 1, 2, ..., N ; ej ∈ E) with the conjugation conditions:

u = uk,
∂u

∂n
= λk

∂uk
∂n

on |t− ak| = rk, k = 1, 2, ..., N, (1)

where ∂
∂n

is a normal derivative. The function u (z) is quasiperiodic in C:

u (z + α) = u (z) + α, u
(
z + iα−1

)
= u (z) . (2)

The equalities (2) mean that we fix the x-direction of the external current.
The problem (1), (2) is equivalent to the following R-linear problem [13]

ϕ (t) = ϕk (t)− ρkϕk (t)− t, |t− ak| = rk, k = 1, 2, ..., N, (3)

where ρk := (λk − 1) / (λk + 1), the unknown functions ϕ (z) and ϕk (z) are
analytic in D and Bk, respectively, and continuously differentiable in the
closures of these domains. The function ϕ (z) is quasiperiodic in C:

ϕ (z + α)− iγ1 = ϕ (z) = ϕ
(
z + iα−1

)− iγ2,

where γ1 and γ2 are real constants. The harmonic and analytic functions are
related by the identities

u (z) = Re (ϕ (z) + z) , uk (z) =
2

1 + λk
Re ϕk (z) . (4)

We have to prove only that ϕ (z) is single-valued in the multiply connected
domain D. Using (3) we have

∫

Tk
ϕ (t) dt =

∫

Tk
ϕk (t) dt− ρk

∫

Tk
ϕk (t∗k)dt−

∫

Tk
tdt = 0,

where t∗k := r2
k/ (t− ak) + ak is the inversion with respect to Tk. Let us

note that the functions ϕk (t) and ϕk (t∗k) are analytically continued into
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|z − ak| < rk and |z − ak| > rk, respectively. In order to determine the
current ∇u(x, y), ∇uk(x, y) we need only the derivatives

ψ (z) := ϕ
′
(z) =

∂u

∂x
− i∂u

∂y
, ψk (z) := ϕ

′
k (z) =

∂uk
∂x
− i∂uk

∂y
.

Differentiating (3) we arrive at the following R-linear problem

ψ (t) = ψk (t) +

(
rk

t− ak

)2

ρkψk (t)− 1, |t− ak| = rk, k = 1, 2, ..., N, (5)

where the function ψ (z) is doubly periodic.

3 The perturbation method

The perturbation method with respect to the parameters ρk (k = 1, 2, ..., N)
consists in finding a solution of the problem (3) in the form of the following
expansions

ϕ (z) = ϕ0 (z) +
N∑
m=1

ρmϕ
1
m (z) + ..., ϕk (z) = ϕ0

k (z) +
N∑
m=1

ρmϕ
1
mk (z) + ...

By substituting these expansions into (3) and collecting terms with respect
to ρjρl...ρm we obtain a cascade of the jump problems. The zero-th one is

ϕ0 (t) = ϕ0
k (t)− t, |t− ak| = rk, k = 1, 2, ..., N,

where ϕ0 (z) is quasiperiodic. It is easily seen that

ϕ0 (z) = 0, ϕ0
k (z) = z

is a unique solution to the zero-th problem up to an arbitrary additive con-
stant. The first-order problems are

ϕ1
m (t) = ϕ1

mk (t) , |t− ak| = rk, for k = 1, 2, ..., N ; k 6= m, (6)

ϕ1
m (t) = ϕ1

mm (t)−
(

r2
m

t− am + am

)
, |t− am| = rm,

m = 1, 2, ..., N . The first equality (6) means that the function ϕ1
m (z) is

analytically continued into |z − ak| < rk for k 6= m. The second relation (6)
implies that ϕ1

m (z) is analytically continued into 0 < |z − am| < rm and has
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a pole at z = am of first order. It follows from the theory of elliptic functions
[3] and [10] that

ϕ1
m (z) = ϕ1

mk (z) = r2
m

[
α−1η1z − ζ(z − am)

]
, for k 6= m,

where η1 = 2ζ (α/2) , ζ(z) is a Weierstrass’ function. Hence,

ϕ1
mm (z) = r2

m

[
α−1η1z − ζ(z − am) + (z − am)−1 + am

]
,

ϕk (z) = z +
N∑

m6=k
ρmr

2
m

[
α−1η1z − ζ(z − am)

]
+ (7)

ρkr
2
k [α−1η1z − ζ(z − ak) + (z − ak)−1 + ak] + o(ρ), as ρ→ 0,

ψk (z) = 1 +
∑N

m6=k ρmr
2
m [α−1η1 + P(z − am)] +

ρkr
2
k

[
α−1η1 + P(z − ak)− (z − ak)−2

]
+ o(ρ), as ρ→ 0.

Here ρ := maxk |ρk| , P(z) = −ζ ′(z) is the next Weierstrass’ function, m runs
from 1 to N , except k, in the sum

∑N
m6=k. The second and third formulae (7)

represent the complex potential and the current in |z − ak| < rk up to o(ρ).

4 The method of functional equations

In Sec.3 a perturbation method has been applied to the R-linear problem (3).
The zero-th and first approximations have been calculated. It is possible to
continue this procedure and to find higher terms. Actually we shall do it by
means of functional equations. This method leads to exact solution of the
problem.

We are going to use the conditionally convergent sum S2 :=
∑

j
/e−2

j and

absolutely convergent sums Sl :=
∑

j
/e−lj (l = 3, 4, ...) corresponding to the

lattice Q. The sum
∑

j
/ contains all cell centres ej, apart from the origin,

when j = (0, 0). If l is odd then Sl = 0 and S2l are real numbers [14]. We
shall use Einstein’s summation [18], then

S2 := α−1η1 = α−12ζ (α/2) . (8)

A rigorous explanation of the definition (8) will be given later. Note that if
α = 1 then S2 = π [14]. We are going to use also the Eisenstein functions
[18]:

El (z) :=
∑

j

(z − ej)
−l , l = 3, 4, ..., (9)
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where the series (9) converges absolutely and uniformly in each compact
subset of C\E ,

E2 (z) := P (z) + S2. (10)

Let us consider the Banach spaces Ck consisting of the functions contin-
uous on |t− ak| = rk with the norm ‖ψk‖ := maxTk |ψk (t)| , k = 1, 2, ..., N .
And let us consider the closed subspaces C+

k ⊂ Ck for which the functions ψk
have analytic continuation to |z − ak| < rk. We also introduce the Banach
spaces C+ consisting of the functions ψ (t) := ψk (t) ∈ C+

k for all k = 1, 2, ..., N
with the norm ‖ψ‖ := maxk ‖ψk‖. We shall use the following

Theorem 4.1. [11]Introduce the operators

Tjkψk (z) :=

(
rk

z − ak − ej

)2
[
ψk

(
r2
k

z − ak − ej

+ ak

)
− ψk(ak)

]
, (11)

ψk ∈ C+
k , k = 1, 2, ..., N, j = (m1,m2).

i) The series
∑

j
/Tjkψk (z) converges absolutely and uniformly in Q(0,0)∪

∂Q(0,0) for each ψk ∈ C+
k .

ii) The function
∑

j Tjkψk (z) is analytic in D, continuous in D∪∂D and
doubly periodic in C.

iii) The linear operator
∑

j
/Tjkψk (z) is compact in C+

k .

Using this theorem we introduce the function

Φ (z) :=





ψm (z)−∑N
k=1 ρk

∑∗
j Tjkψk (z) + ρm

(
rm

z−am

)2

ψm (am)− 1, |z − am| < rm,

m = 1, 2, ..., N,

ψ (z)−∑N
k=1 ρk

∑
j Tjkψk (z) , z ∈ D,

where the term with k = m, j = (0, 0) is missed in the sum
∑N

k=1 ρk
∑∗

j . It
follows from Theorem 4.1 Φ (z) is analytic in D, all Bk and doubly periodic
in C. Let us calculate the jump

∆ : = lim
t→z z∈D

Φ (z)− lim
t→z z∈Bk

Φ (z) = ψ (t)−
(

rm
t− am

)2

ρm

[
ψm (t)− ψm (am)

]
− ρm

(
rm

t− am

)2

ψm (am) + 1,

|t− am| = rm.

Taking into account (5) we obtain ∆ = 0. Using Principle of analytic con-
tinuation and the general Liouville theorem for doubly periodic functions [3]
we conclude that

Φ (z) =
N∑
m=1

ρmr
2
mψm (am)E2 (z − am) + C,
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where C is a constant. In order to be consistent with (7) we put C = 0. Here
the relation (10) is used. From the definition of Φ (z) for |z − am| ≤ rm we
have the following set of functional equations

ψm (z) = (12)

∑N
k=1 ρk

{∑∗
j Tjkψk (z) + r2

kψk (ak)
[
E2 (z − ak)− δkm (z − ak)−2]}+ 1,

|z − am| ≤ rm, m = 1, 2, ..., N,

with respect to ψm ∈ C+
m. Here δkm is the Kronecker symbol. Let us rewrite

(12) as an equation in the space C+

ψ = Aψ + 1, (13)

where Aψ (z) :=
∑N

k=1 ρk

{∑ ∗
j Tjkψk (z) + r2

kψk (ak)
[
E2 (z − ak)− δkm (z − ak)−2]} ,

ψ (z) := ψm (z) for |z − am| ≤ rm. It follows from Theorem 1 that A is a
linear compact operator in C+.

Theorem 4.2. Equation (13) has the unique solution ψ =
∑∞

n=0 An1. The
last series converges in C+.

Proof It is sufficient to show that r (A) < 1, where r (A) is the spec-
tral radius of the operator A. The operator A as a compact operator in
the Banach space C+ has the spectrum consisting only of eigenvalues. The
inequality r (A) < 1 is valid if and only if there exist a complex number ν
such that |ν| ≤ 1 and the homogeneous equation ψ = νAψ has a nontrivial
solution. This equation can be written in the form

ψm (z) = ν

N∑

k=1

ρk

{∑

j

∗Tjkψk (z) + r2
kψk (ak)

[
E2 (z − ak)− δkm

(z − ak)2

]}
,

If ψm (z) is a solution of (14) then the function

|z − am| ≤ rm, m = 1, 2, ..., N. (14)

Ψ (z) = ν

N∑

k=1

ρk

{∑

j

Tjkψk (z) + r2
kψk (ak)E2 (z − ak)

}
(15)

is doubly periodic and analytic in D ∪ ∂D. It is easily seen that Ψ (z) and
ψk (z) satisfy the R-linear problem

Ψ (t) = ψm (t)+ν

(
rm

t− am

)2

ρmψm (t), |t− am| = rm, m = 1, 2, ..., N. (16)
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It was shown in [11] that the R-linear problem (16) for N = 1 has only zero
solution. The same arguments [11] for the general case N ≥ 1 yield the same
result. i.e. ψm (z) ≡ 0, m = 1, 2, ..., N.

The theorem is proved.

Let us introduce the operator

Wjkψk (z) :=

(
rk

z − ak − ej

)2

ψk

(
r2
k

z − ak − ej

+ ak

)
,

and the series∑

j

Wjkψk (z) :=
∑

j

Tjkψk (z) + r2
kψk (ak)E2 (z − ak) (17)

for ψk ∈ C+
k , k = 1, 2, ..., N. Then (12) becomes

ψm (z) =
N∑

k=1

ρk
∑

j

/Wjkψk (z) + 1, |z − am| ≤ rm, m = 1, 2, ..., N. (18)

It follows from Theorem 2 that we can apply the method of successive ap-
proximations to (12) or (18), which gives the following exact formula

ψm (z) = 1 +
N∑

k1=1

ρk1

∑

j1

/Wj1k11 (z) + (19)

N∑

k1=1

N∑

k2=1

ρk1ρk2

∑

j1

/Wj1k1

∑

j2

/Wj2k21 (z) +, |z − am| ≤ rm, m = 1, 2, ..., N.

The series (19) corresponds to the method of perturbations derived in Sec.3.
It is worth to note that the compositions of the operators Wjk are simple
in calculations, since they do not contain integral terms. The series (19)
involves infinite sums of the elliptic functions. For instance, the function
ψm (z) up to O(ρ3) has the form

ψm (z) = 1 +
N∑

k1=1

ρk1r
2
k1
E2(z − ak1)− ρmr2

m(z − am)−2 (20)

+
N∑

k1=1

N∑

k2 6=k1

ρk1r
2
k1
ρk2r

2
k2

∑

j

∗ (z − ak1 − ej)
−2E2

(
r2
k1

z − ak1 − ej

+ ak1 − ak2

)

+
N∑

k1=1

ρ2
k1
r4
k1

∑

j

∗ (z − ak1 − ej)
−2 σ2

(
r2
k1

z − ak1 − ej

)
+O(ρ3),

as ρ → 0,
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where the term k1 = m, j = (0, 0) is missed in
∑N

k1=1

∑∗
j . The function [18]

σ2(z) := E2(z)− z−2 =
∞∑
n=1

(2n− 1)S2nz
2(n−1)

is analytic in Q(0,0). Moreover, in accordance with the definition (17) we
assume that

∑

j

(z − ej)
−2 Ψ

(
r2
k

z − ej

)
:=
∑

j

(z − ej)
−2

[
Ψ

(
r2
k

z − ej

)
−Ψ (0)

]
+Ψ (0)E2 (z)

in (20). Comparing (20) and (7) and using (10) we conclude that the value
S2 is correctly defined by (8).

Another method to solve the set of functional equations (18) is to use the
expansions on r2

k1
r2
k2
...r2

kn
. We find ψm (z) as the following expansion

ψm (z) = ψ0
m (z) +

N∑

k1=1

r2
k1
ψk1m (z) +

N∑

k1=1

N∑

k2=1

r2
k1
r2
k2
ψk1k2m (z) + ...

Let us represent the operator
∑

j Wjkψk (z) in the form

∑

j

Wjkψk (z) =
∑

j

αlkr
2(l+1)
k El+2(z − ak),

where ψk (z) =
∑∞

l=0 αlk(z − ak)
l is the Taylor expansion of the function

ψk (z). Substituting these expansions into (18) we obtain

ψ0
m (z) +

N∑

k1=1

r2
k1
ψk1m (z) +

N∑

k1=1

N∑

k2=1

r2
k1
r2
k2
ψk1k2m (z) + ... =

N∑

k 6=m
ρk

∞∑

l=0

αlkr
2(l+1)
k El+2(z − ak) (21)

+ρm

∞∑

l=0

αlmr
2(l+1)
m

[
El+2(z − am)− (z − am)−2

]
+ 1,

|z − am| ≤ rm, m = 1, 2, ..., N,

where

αlk = α0
lk +

N∑

k1=1

r2
k1
αk1m +

N∑

k1=1

N∑

k2=1

r2
k1
r2
k2
αk1k2m + ... .
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Collecting terms with respect to r2
k1
r2
k2
...r2

kn
we arrive at the following recur-

rent formulae
ψ0
m (z) = 1,

ψk1m (z) = ρk1E2(z − ak1) for k1 6= m,

ψmm (z) = ρm
[
E2(z − am)− (z − am)−2

]
,

...

5 Effective conductivity

Let us find the effective properties tensor

Λe =

(
λxe λxye
λxye λye

)

of the composite material represented by the zero cell Q(0,0). We consider λxe
and λxye . The coefficient λye will be considered below. Following [10] we have

λxe = Jx +
N∑
m=1

λmJ
x
m, λ

xy
e = Jy +

N∑
m=1

λmJ
y
m

where

Jx =

∫ ∫

D

∂u

∂x
dxdy, Jxm =

∫ ∫

Bm

∂um
∂x

dxdy, Jy =

∫ ∫

D

∂u

∂y
dxdy, Jym =

∫ ∫

Bm

∂um
∂y

dxdy.

The functions u and uk satisfy the problem (1), (2). Using the complex
potentials we obtain

Jxm =
2

1 + λm

∫ ∫

Bm
[Re ϕm (z)]x dxdy and Jym =

2

1 + λm

∫ ∫

Bm
[Re ϕm (z)]y dxdy.

Since ψm (z) = ϕ
′
m (z) = [Re ϕm (z)]x − i [Re ϕm (z)]y, hence we have

λxe − iλxye = 1 + 2
N∑
m=1

ρm

∫ ∫

Bm
ψm (z) dxdy.

By virture of the mean value theorem of harmonic functions we obtain

λxe − iλxye = 1 + 2
N∑
m=1

ρmvmψm (am) , (22)
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where vm = πr2
m is the area fraction of the inclusions of conductivity λm.

Basing on (19) we have the exact formula (22) for λxe − iλxye . In particular,
using the approximate formula (20) we have

λxe− iλxye = 1+2
N∑
m=1

ρmvm+
S2

π

N∑

m,k=1

ρmvmρkvk+
1

π

N∑

m6=k
ρmvmρkvkP(ak−am)

(23)

+
2

π2

N∑
m=1

N∑

k1=1

N∑

k2 6=k1

ρmvmρk1vk1ρk2vk2

∑

j

/ (z − ak1 − ej)
−2E2

(
r2
k1

z − ak1 − ej

+ ak1 − ak2

)

+ 2
π2

∑N
k1=1 ρ

2
k1
v2
k1

∑∗
j (z − ak1 − ej)

−2 σ2

(
r2
k1

z−ak1
−ej

)
+O(ρ4), as ρ→ 0.

We now proceed to calculate the value λye . It is sufficient to change α by
α−1 and apply the formula (22). Let us consider the lattice Q∗ defined by
the fundamental translation vectors α−1 and iα. By virture of (23) we have

λxe+iλ
xy
e = 1+2

N∑
m=1

ρmvm+
S∗2
π

N∑

m,k=1

ρmvmρkvk+
1

π

N∑

m6=k
ρmvmρkvkP∗(ak−am)+

2

π2

N∑
m=1

N∑

k1=1

N∑

k2 6=k1

ρmvmρk1vk1ρk2vk2

∑

j

∗ (z − ak1 − ej)
−2E∗2

(
r2
k1

z − ak1 − ej

+ ak1 − ak2

)

(24)

+
2

π2

N∑

k1=1

ρ2
k1
v2
k1

∑

j

∗ (z − ak1 − ej)
−2 σ∗2

(
r2
k1

z − ak1 − ej

)
+O(ρ4), as ρ→ 0,

where S∗2 , P∗, E∗2 and σ∗2 correspond to the lattice Q∗. We try to calculate
the parameters of Q∗ by the parameters of Q changing ej by iej. It is easily
seen that P∗ (z) = P (iz) , E∗2 (z) = E2 (iz) , σ∗2 (z) = σ2 (iz) . So we need
only to calculate S∗2 by S2. It is known that [14, 15]

S2(p) =
π2

p

(
1

3
− 2

∞∑
n=1

sinh−2(πp−1m)

)
=
π2

p

(
1

3
− 8

∞∑
n=1

mh2m

1− h2m

)
, (25)

where p is the ratio of the sides of Q(0,0), h := exp(πp−1). Hence, we have
S2 = S2(α2) and S∗2 = S2(α−2). We also prove the following relation

S2(p) + S2(p−1) = 2π. (26)
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The direct proof of (26) by (25) is not known. Our proof is based on the
following fundamental identity [5]

λxe(ρ)λye(−ρ) = 1. (27)

This formula relates the effective conductivity λxe(ρ) of the simple rectangular
array of cylinders (N = 1) of conductivity λ1 = (1+ρ)/(1−ρ) to the effective
conductivity λye(−ρ) for the same array but with cylinders of conductivity
λ−1

1 . The conductivity of the matrix is equal to unit in the both cases. We
may take the simple rectangular array and prove (26) in this case, since S2(p)
depends only on the ratio p. First we note that S2(p) is real number [14]. By
(24) we have

λxe(ρ) = 1 + 2ρv + 2ρ2v2S2(p)/π +O(ρ3), (28)

λye(−ρ) = 1− 2ρv + 2ρ2v2S2(p−1)/π +O(ρ3), as ρ→ 0,

where v = πr2
1. Substituting (28) into (27) and preserving terms up to O(ρ3)

we obtain the relation (26).

6 Second order approximation and optimal

design problems

In Sec.5 we obtain the exact formulae (22), (19) for the components of Λe.
The third-order approximation (23) is deduced from (22). In the present
section we use only second-order approximation. So (23), (24) take the form

λxe − iλxye = 1 + 2
N∑
m=1

ρmvm +
S2

π

N∑

m,k=1

ρmvmρkvk

+
1

π

N∑

m6=k
ρmvmρkvkP(ak − am) +O(ρ3), as ρ→ 0, (29)

λye + iλxye = 1 + 2
N∑
m=1

ρmvm +

(
2− S2

π

) N∑

m,k=1

ρmvmρkvk

+
1

π

N∑

m6=k
ρmvmρkvkP(i(ak − am)) +O(ρ3), as ρ→ 0.

Rather than presenting Λe by (29), it is more useful to give the components
of Λe along its major and minor axes (λmaj and λmin) and the angle θ between

12



one of the principal axes and the x axis. The values λmaj and λmin satisfy
the square equation

(λxe − λ)(λye − λ)− (λxye )2 = 0. (30)

The angle θ has to satisfy the relation

λxye (exp (iθ) a1, exp (iθ) a2, ..., exp (iθ) aN) = 0, (31)

where λxye = λxye (a1, a2, ..., aN) is calculated by (23). Let us discuss the
equalities (30) and (31) in the second-order approximation. Using (29) we
obtain from (31) the follwing equation

N∑

m6=k
ρmvmρkvkIm P (exp (iθ) (ak − am)) = 0 (32)

with respect to θ.
Let us consider the case of the same inclusions, i.e. ρk = ρ, vk = v/N for

each k = 1, 2, ..., N . Then (29) becomes

λxe − iλxye = 1 + 2ρv + 2ρ2v2 + ρ2v2κ+O(ρ3), (33)

λye + iλxye = 1− 2ρv + 2ρ2v2 − ρ2v2κ+O(ρ3), as ρ→ 0,

where

κ := 2

(
S2

π
− 1

)
+

1

πN2

N∑

m6=k
P(ak − am).

We shall call the value κ by the anisotropy coefficient. In this case equation
(32) becomes

Im

N∑

m6=k
P (exp (iθ) (ak − am)) = 0. (34)

Solving equation (30) in this case we obtain

λmaj = 1 + 2ρv + 2ρ2v2 + ρ2v2 |κ|+O(ρ3), (35)

λmin = 1− 2ρv + 2ρ2v2 − ρ2v2 |κ|+O(ρ3), as ρ→ 0.

One can see that for the fixed ρ and v the value λmaj attaches the maximum
up to O(ρ3) (λmin attaches the minimum) simultaneously with |κ|. We now
prove this up to O(ρ4).

We consider the coefficient λxye in the third-order approximation:

λxye = ρ2v2

(
−Im κ+ ρv

2

π2
Im (X + Y )

)
+ o(ρ3), as ρ→ 0,

13



where

X :=
N∑
m=1

N∑

k=1

N∑

l 6=k
Xmkl, Xmkl :=

∑

j

/(am−ak−ej)
−2E2

(
r2

am − ak − ej

+ ak − al
)
,

Y :=
N∑
m=1

N∑

k=1

Ymk, Ymk :=
∑

j

/(am − ak − ej)
−2σ2

(
r2

am − ak − ej

)

in accordance with (23). We have [18]

E2(z0 + ∆z) =
∞∑
n=0

E
(n)
2 (z0)

1

n!
(∆z)n =

∞∑
n=0

(−1)n (n+ 1)En−2(z0)(∆z)n.

Then

Xmkl =
∑

j

∞∑
n=0

(−1)n r2n (n+ 1) (am − ak − ej)
−n−2En+2 (am − ak) =

∞∑
n=0

(−1)n r2n (n+ 1)En+2 (am − ak)En+2 (ak − al) for k 6= m,

and

Xmml =
∞∑
n=0

(−1)n r2n (n+ 1)Sn+2En+2 (am − al).

Similar

Ymk =
∞∑
n=0

r4(n−1) (2n− 1)S2nE2n (am − ak) for k 6= m,

Ymm =
∞∑
n=0

r4(n−1) (2n− 1)S2
2n.

Using the properties of Sn wee have

X + Y =
N∑
m=1

N∑

k 6=m

N∑

l 6=k

∞∑
n=0

(−1)n r2n (n+ 1)En+2 (am − ak)En+2 (ak − al)

N∑
m=1

N∑

k 6=m

∞∑
n=1

r4(n−1) (2n− 1)S2n

[
E2n (am − ak) + E2n (am − ak)

]
+

14



N∑
m=1

∞∑
n=0

r4(n−1) (2n− 1)S2
2n.

Calculating X + Y one can see that X + Y = X + Y , hence X + Y is real.
Thus we have completely derived two-component composite material up to
O(ρ4). In particular we have proved that (34), (35) are valid up O(ρ4). To
take into account higher-order terms on ρ we need to study more complicated
formulae (23). In particular formulae (34), (35) are corrected by higher-order
terms on ρ.

In Fig. 1 - 4 we present numerical examples for the square array of
cylinders, when S2 = π in the case N = 3.

7 Conclusions

The R-linear problem (3) for a multiply connected circular domain in a class
of doubly periodic functions has been solved in analytic form by a method
of functional equations. Using this solution we have obtained the effective
conductivity tensor of two-dimensional doubly periodic composite materials
made from a collection of disks imbedded in an otherwise uniform host. The
anisotropy coefficient has been introduced. This coefficient involves only
geometrical parameters of the cell in consideration and derives anisotropic
properties of the material in macroscale up to O(ρ4).
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Fig.1. The coordinates of the centers, a1 = 0, a2 = 0.3, a3 = 0.5 + 0.2i.
The calculated angle, θ = 0.76π

2
= 1.114; the modulus of the coefficient of

anisotropy, |κ| = 0.884.
Fig.2. The coordinates of the centers, a1 = 0, a2 = 0.5, a3 = 0.3 + 0.6i.

The angle, θ = 0.3π
2

= 0.471. The modulus of the coefficient of anisotropy,
|κ| = 1.031.

Fig.3. The coordinates of the centers, a1 = 0, a2 = 0.5, a3 = x + 0.6i.
The maximum modulus of the coefficient of anisotropy, |κ| = 0.731 (circle);
the minimum, |κ| = 0.584 (dots).

Fig.4. The graphic of the function |κ (x)|, when a1 = 0, a2 = 0.5, a3 =
x+ 0.6i.
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