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Summary. Stokes flow is solved through a channel with three-dimensional wavy walls enclosed by two

wavy walls whose amplitude is proportional to the mean clearance of the channel multiplied by the small

dimensionless parameter e. The application of an analytical-numerical algorithm yields efficient formulas

for the velocities and permeability. These formulas include e in symbolic form. When e increases, the

Poiseuille flow (e=0) is disturbed and eddies can arise above a critical value e =ee. These results are also
successfully compared to the ones derived by a fully numerical solution.

1 Introduction

The present paper is devoted to the flow of a viscous fluid through a channel (see Figs. 1 and 2)

under the assumption that the Reynolds number is small enough for a Stokes flow approxi-

mation to be made. The classical Poiseuille flow in the channel bounded by two parallel planes

arises when a pressure gradient rp is applied. The flow profile obeys the well-known parabolic

law. The influence of curvilinear edges on flow is of fundamental interest since it illustrates the

mechanism of viscous flow under different geometrical conditions. Apart from its theoretical

importance, the flow through curvilinear channels has application in porous media [1]–[5].

Many studies addressed two-dimensional channels with sinusoidal walls. Burns and Parkes

[6] considered two-dimensional flow through a symmetrical channel bounded by the surfaces

z ¼ �bð1þ e cos xÞ: ð1Þ

The notations are explained in Fig. 2. The problem was solved by expanding the stream

function in a Fourier series involving an infinite set of unknown coefficients. Burns and Parkes

obtained a perturbation solution in which these Fourier coefficients were calculated up to Oðe6Þ.
Wang [7] obtained a similar result for channels bounded by z ¼ �1� e sin ax sin by, but he

limited his expansion to OðeÞ for the velocity and to Oðe2Þ for the averaged velocity which is

somewhat trivial.

The case of a curvilinear tube with a radius which varies sinusoidally in the axial direction,

was studied by Deiber and Schowalter [8] by the method of separated variables. The cor-

responding ordinary differential equations were solved by a finite difference method.

Hasegawa and Izuchi [9], [10] studied the Navier-Stokes equations and they assumed that the

walls of the channel were sufficiently close. They constructed an iterative scheme based on

linear differential equations. An analytical formula for the flow rate was obtained for sinu-

soidal channels up to Oðe6Þ. Recently, Floryan [11] solved the Navier-Stokes equations in a
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two-dimensional symmetric sinusoidal channel; expanding the stream function into Fourier

series, he reduced the problem to an infinite nonlinear system of differential equations and

solved this system numerically. The linear stability of flow was analyzed for large Reynolds

numbers.

Mourzenko et al. [3], [4] studied the permeability of self-affine fractures by direct

three-dimensional simulations. They also addressed the case where the aperture of the channel

vanishes on a significant part of the whole channel. A relation between the permeability, the

fractional open area and the percolation probability was derived.

The structure of the flow in curvilinear channels essentially depends on the wave amplitude

of the walls. The flow in some channels is separated into a series of flow cells. In the middle

part of the channel, the velocity profiles look like a disturbed Poiseuille parabolic profile. The

flow near the walls can be similar to the flow in a cavity where developed viscous eddies arise.

These eddies are characterized by a change of the vorticity sign. Systematical studies of eddies

were performed by Moffatt in his seminal paper [12] where he proved that any flow at the

corner between two planes consists of a sequence of self-similar eddies, when the angle

between the planes is less than a critical value. One can find recent results devoted to this

topic in [13] and [14]. The boundary-integral method was applied by Pozrikidis [15] to

two-dimensional channels; a general numerical procedure was described and applied to a

channel constricted by plane and sinusoidal walls where the onset of reversed-flow regions

was observed when the wave amplitude of the boundary exceeds a critical value; onset of

eddies was explained in terms of [12].

Scholle et al. [16], [17] studied gravity-driven flows on an inclined sinusoidal bottom. This

study is based on the series representation of the stream function
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wðx; zÞ ¼ Az2 þ Bz3 þ
Xþ1

n¼�1
e�nz½ðRn þ zQnÞe�inx þ c:c:�: ð2Þ

Using the no-slip condition, Scholle et al. [16], [17] deduced an infinite set of linear algebraic

equations for the coefficients Rn and Qn. The set is solved by the truncation method. The results

were used to investigate the generation and evolution of eddies as a function of waviness,

dimensionless film thickness, inclination angle and capillary number. The number and size of

eddies were shown to increase with wall waviness and film thickness. The theoretical results of

Scholle et al. [16], [17] are in excellent agreement with the experiments performed by Wierschem

et al. [18] and Gaskell [19], who demonstrated that the validity of the lubrication approximation

is restricted to weakly undulated walls.

Recently, Zhou et al. [20] considered a flow governed by the stationary Navier-Stokes

equations inside two-dimensional channels using perturbations on e up to Oðe2Þ. The flow was

examined for sinusoidal, arched and triangular profiles of the walls. The authors have also

derived the critical Reynolds number at which eddies first occur. Bontozoglou [21] numerically

studied by a spectral discretization method the gravity–driven flow as a function of the film

Reynolds number and of the wall amplitude.

Other theoretical and experimental investigations close to the present topic are reported in

the references of the literature cited above (for instance, flow in a pipe of circular cross-section

[6], Couette flow [15], gravity-driven flow [16], [17], [19], [21] and theoretical and experimental

investigations of the critical Reynolds number [18], [20].

Our main objective in the present work is to study the dependence of flow in channels on e: (i)
to study the permeability as a function of e; (ii) to determine the critical value ee when eddies

arise. Application of the method of perturbation on e is an efficient way to establish these

dependences. Numerical computations performed in the previous works give us only limited

views of the complex dependence of the flow on e.
In this paper, we develop a general asymptotic analysis and apply it to curvilinear three-

dimensional channels bounded by walls of the form (cf. Figs. 1 and 2)

z ¼ Sþðx; yÞ � bð1þ eTðx; yÞÞ; ð3Þ

z ¼ S�ðx; yÞ � �bð1þ eBðx; yÞÞ: ð4Þ

We consider arbitrary profiles S�ðx; yÞ satisfying some natural conditions. For definiteness, we

assume that

jTðx; yÞjO1 and jBðx; yÞjO1: ð5Þ

For infinitely differentiable functions Tðx; yÞ and Bðx; yÞ, we have deduced in Subsect. 3.1 a

cascade of boundary value problems for the Stokes equations for a straight channel to calculate

velocities and permeability in the form of an e-expansion. In Subsect. 3.2, we have constructed

an analytical solver which is applied to each step of the cascade. The convergence of the

proposed algorithm is justified in Appendix A. We have established that the e-expansion of the

velocities converges if e does not exceed the critical value ec ¼ ðb,Þ�1 where , is the maximal

wave number of the trigonometric polynomials Tðx; yÞ and Bðx; yÞ. The refinement formula

(A.1) for ec is deduced for general functions Tðx; yÞ and Bðx; yÞ.
In Subsect. 3.3, we have deduced the efficient formula (55) for the channel permeability K .

More precisely, this formula determines the coefficients of a Taylor expansion

KðeÞ ¼
P1

m¼0 Kmem (normalization (17) is used for K). In practical computations KðeÞ is

approximated by the Taylor polynomial KNðeÞ ¼
PN

m¼0 Kmem. However, the domain of appli-

cation of this formula is restricted, since the corresponding Taylor series can be divergent for

Stokes flow through a channel



e � ec. Then, using Padé approximations [24] which transform a polynomial to a rational

function, we obtain KðeÞ � PmðeÞ=QnðeÞ, where PmðeÞ and QnðeÞ are polynomials (mþ n ¼ NÞ.
In this representation complex poles of KðeÞ, blocking the convergence, are placed into zeros of

QnðeÞ. Padé approximations are also applied to calculation of velocity. It is worth noting that

eddies can arise only if e > ec for Poiseuille flow. Hence, it was impossible to note eddies in the

previous works based on the e-expansion.
A few examples of two- and three-dimensional channels are gathered in Sect. 4 and they

illustrate various aspects of our methodology and its specific advantages. The two first

cases are two-dimensional with either symmetric or antisymmetric walls. The third example is

three-dimensional and it illustrates the power of our methodology since an expansion up to

Oðe14Þ is readily derived. The last two subsections address the onset of eddies in two-dimen-

sional channels.

In Sect. 5, we have obtained an analytical formula for the permeability up to Oðe4Þ for
two-dimensional channels with arbitrary boundaries including fractal surfaces; the precise

mathematical justification is given in Appendix B. In Sect. 6, the classical lubrication

approximation is revisited.

In Sect. 7, some concluding remarks are given. They summarize the advantages of the present

methodology and the various applications that we envision.

2 Statement of the problem

Let the profiles S� be determined respectively by Eqs. (3) and (4) where the functions Tðx; yÞ
and Bðx; yÞ are defined in the square ½�L;L� � ½�L;L� of the plane XOY . We assume that T and

B can be periodically continued onto the whole plane XOY , and that the functions T and B are

infinitely differentiable everywhere on XOY . In Sect. 5, the latter condition will be weakened. In

Eqs. (3) and (4), e is formally defined as a small parameter because we use expansions in e
around the point e ¼ 0. For definiteness, we take e > 0.

Without any loss of generality, we assume that

ZL

�L

ZL

�L

Tðx; yÞdx dy ¼
ZL

�L

ZL

�L

Bðx; yÞdx dy ¼ 0; ð6Þ

i.e., the mean amplitudes of T with respect to the plane z ¼ b, and of B with respect to z ¼ �b,

are equal to zero. The channel has a spatially periodic structure and is made of unit cells

defined as

Q :¼ ðx; y; zÞ 2 R3 : �L � x � L; �L � y � L; S�ðx; yÞ < z < Sþðx; yÞ
� �

:

Let u ¼ uðx; y; zÞ be the velocity vector, and p ¼ pðx; y; zÞ the pressure. The fluid is governed

by the Stokes equations

lr2u ¼ rp;

r 	 u ¼ 0
ð7Þ

with the boundary conditions

u ¼ 0 on S�: ð8Þ

A. E. Malevich et al.



The solution u of Eqs. (7)–(8) belongs to the class of periodic functions with period 2L in x and

y. We apply an overall external gradient pressure rp along the x-direction. It can be described

by a constant jump 2Lrp along the x-axis of the periodic cell

pðxþ L; y; zÞ � pðx� L; y; zÞ ¼ 2Lrp: ð9Þ

Let u be a solution of the problem (7)–(9), and let u be the x-component of u. The per-

meability of the channel in the x-direction is defined as

KxðeÞ ¼ �
l

rp jsj

ZL

�L

ZL

�L

dx dy

ZSþðx;yÞ

S�ðx;yÞ

uðx; y; zÞdz; ð10Þ

where jsj is the volume of the unit cell Q of the channel,

jsj ¼
ZL

�L

ZL

�L

dx dy

ZSþðx;yÞ

S�ðx;yÞ

dz ¼ 8bL2: ð11Þ

The integral (11) is calculated with the help of Eq. (6). KxðeÞ in Eq. (10) is considered as a

function in e. The case e ¼ 0 corresponds to the Poiseuille flow for which Eq. (10) yields the

permeability

Kxð0Þ ¼
b2

3
: ð12Þ

For convenience, we introduce dimensionless quantities that are indicated by primes:

ðx; y; zÞ ¼ L

p
ðx0; y0; z0Þ; u ¼ L2rp

2lp2
u0; p ¼ Lrp

2p
p0; KxðeÞ ¼

L2

2p2
K 0xðeÞ: ð13Þ

Equations (7)–(9) take the following dimensionless form:

r02u0 ¼ r0p0;

r0 	 u0 ¼ 0;
ð14Þ

and

p0ðx0 þ p; y0; z0Þ � p0ðx0 � p; y0; z0Þ ¼ �4p: ð15Þ

Then, the velocity u0 for Poiseuille flow (e ¼ 0) becomes

u00ðx0; y0; z0Þ ¼ b02 � z02; 0; 0
� �

; ð16Þ

where b0 ¼ pb
L
. Further, we define the ratio K ¼ KðeÞ between the dimensional permeabilities of

the curvilinear channel and of the Poiseuille flow,

KðeÞ ¼ K 0xðeÞ
K 0xð0Þ

¼ KxðeÞ
Kxð0Þ

: ð17Þ

In the present paper, we use the dimensionless variables u0, p0 and the normalized permeability

KðeÞ. Below the primes in the dimensionless coordinates, b0, velocity and pressure are omitted.

We also use the notations (3) and (4) for the dimensionless geometric parameters.

Stokes flow through a channel



3 General solution

3.1 General algorithm

The following treatment is very close to the determination of the resistance of a slightly de-

formed sphere by Happel and Brenner [22] by a method of perturbation on e. It was applied for

instance to steady diffusion in a plane channel [1] (see also [23]). Let us express the velocity and

the pressure as the expansions

pðx; y; zÞ ¼
X1

m¼0

pmðx; y; zÞem;

uðx; y; zÞ ¼
X1

m¼0

umðx; y; zÞem:

ð18Þ

The representations (18) are justified in Appendix A where it is proved that Eq. (18) holds when

e does not exceed a critical value ðb,Þ�1; , denotes the maximal oscillation frequency of Tðx; yÞ
and Bðx; yÞ.

We use the Taylor expansion for any function gðx; y; zÞ infinitely differentiable with respect

to z on the boundary surfaces S� of the channel

g x; y;�b 1þ eSðx; yÞð Þð Þ ¼
X1

m¼0

ð�bÞm

m!
Smðx; yÞem @

mg

@zm

���
z¼�b

: ð19Þ

Use of Eq. (19) for each um in Eq. (18) yields

u x; y; b 1þ eTðx; yÞð Þð Þ ¼
X1

m¼0

em
Xm

n¼0

bn

n!
Tnðx; yÞ @

num�n

@zn

���
z¼b

: ð20Þ

An analogous formula holds for u on S
�

u x; y;�b 1þ eBðx; yÞð Þð Þ ¼
X1

m¼0

em
Xm

n¼0

ð�bÞn

n!
Bnðx; yÞ @

num�n

@zn

���
z¼�b

: ð21Þ

Substituting Eqs. (18), (20) and (21) into (14)–(15), we obtain the following cascade of

boundary value problems for the Stokes equations in the straight channel �b < z < b:

r2um ¼ rpm;

r 	 um ¼ 0
ð22Þ

with the boundary conditions

umðx; y; bÞ ¼ �
Xm

n¼1

ðbTÞn

n!

@num�n

@zn

���
z¼b

;

umðx; y;�bÞ ¼ �
Xm

n¼1

ð�bBÞn

n!

@num�n

@zn

���
z¼�b

:

ð23Þ

The zeroth approximation of the velocity has the form (16). One can see that in each step m we

have to solve the Stokes equations (22) with the boundary conditions (23) in which u0 has the

form (16) and that u1, u2, . . ., um�1 are constructed in the previous steps. It should be noticed

that in each step we solve a problem with infinitely differentiable data. Therefore, we obtain a

solution preserving this property in �bOzOb.

A. E. Malevich et al.



3.2 Solver for the straight channel

In the previous subsection, we reduced the problem (14)–(15) for the curvilinear channel to a

cascade of problems for the straight channel �b < z < b. Thus, we need an efficient solver for

the latter problem which we rewrite as the Stokes equations

r2v ¼ rq;

r 	 v ¼ 0; �b<z<b;
ð24Þ

with the boundary conditions

vðx; y; bÞ ¼ fðx; yÞ;

vðx; y;�bÞ ¼ gðx; yÞ:
ð25Þ

In the following two subsections we give an introductory example in details and construct a

solver of the general problem (24)–(25) which is based on the method of separated variables and

on double Fourier series.

a. An introductory example

In order to present the main ideas and the reduction of the problem (24)–(25) for partial

differential equations to a problem of ordinary differential equations, we consider in this

subsection a simple two-dimensional situation. First, we assume the following forms for the

given boundary functions f ¼ ðf1; f2Þ and g ¼ ðg1; g2Þ:

f1ðxÞ ¼
X1

s¼1

f ð1Þs ðsin sxÞx; f2ðxÞ ¼
X1

s¼1

f ð2Þs sin sx;

g1ðxÞ ¼
X1

s¼1

gð1Þs ðsin sxÞx; g2ðxÞ ¼
X1

s¼1

gð2Þs sin sx;

ð26Þ

where ðsin sxÞx ¼ @
@x
ðsin sxÞ. In such a case, the solutions v ¼ ðv1; v2Þ and q of the problem

(24)–(25) can be found in the form

v1ðx; zÞ ¼
X1

s¼1

asðzÞðsin sxÞx; v2ðx; zÞ ¼
X1

s¼1

csðzÞ sin sx; qðx; zÞ ¼
X1

s¼1

dsðzÞ sin sx: ð27Þ

Substitution of Eqs. (26) and (27) into the first component of Eq. (24) yields

X1

s¼1

ð�s2asðzÞ þ a00s ðzÞÞðsin sxÞx ¼
X1

s¼1

dsðzÞðsin sxÞx: ð28Þ

Therefore,

a00s � s2as � ds ¼ 0; s ¼ 1; 2; . . . : ð29Þ

The two other components of Eq. (24) yield in a similar way

c00s � s2cs � d0s ¼ 0; ð30Þ

c0s � s2as ¼ 0: ð31Þ

Equations (29)–(31) form the required system of ordinary differential equations with constant

coefficients.

Substitute now Eqs. (26) and (27) into the boundary conditions (25). The first component of

Eq. (25) becomes

Stokes flow through a channel



X1

s¼1

asðbÞðsin sxÞx ¼
X1

s¼1

f ð1Þs ðsin sxÞx; ð32Þ

or equivalently,

asðbÞ ¼ f ð1Þs ; s ¼ 1; 2; . . . : ð33Þ

Along similar lines, we obtain

csðbÞ ¼ f ð2Þs ; asð�bÞ ¼ gð1Þs ; csð�bÞ ¼ gð2Þs : ð34Þ

To summarize, the ordinary differential equations (29)–(31) must satisfy the boundary condi-

tions (33)–(34).

In order to solve the latter problem, we differentiate Eq. (29) and subtract Eq. (30) from the

result:

a000s � c00s � s2a0s þ s2cs ¼ 0: ð35Þ

Next, we find from Eq. (31)

as ¼ s�2c0s ð36Þ

and substitute it into Eq. (35):

s�2cðIVÞs � 2c00s þ s2cs ¼ 0: ð37Þ

The general solution of Eq. (37) has the well-known form

csðzÞ ¼ ðC1zþ C2Þ cosh szþ ðC3zþ C4Þ sinh sz: ð38Þ

The constants C1; . . . ;C4 can be found from the boundary conditions (33)–(34) and the relation

(36). The final formulas are given in the next subsection for the general three-dimensional case.

Along similar lines, one can solve the problem (24)–(25), when the first components of the

boundary functions f and g are sines and the second components are cosines. The general two-

dimensional case is considered by a linear combination of these two elementary cases.

b. General case

The same techniques can be used to solve the general three-dimensional problem (24)–(25), but

we have to perform significantly more calculations, since we have to deal with double Fourier

series when the number of the basic terms is four. In order to unify computations for all terms,

it is convenient to introduce the functions

trigstðR;S;T1;T2; x; yÞ :¼ R cosðsxþ tyÞ þ S sinðsxþ tyÞ þ T1 cosðsx� tyÞ þ T2 sinðsx� tyÞ:
ð39Þ

The function trig replaces all combinations of sin and cos in the double Fourier series; of

course, trig is an abbreviation of trigonometric. It is more convenient in the following algo-

rithm because it is invariant under some differential operators; it unifies all calculations and

shortens the expressions.

Let us write the known vector-function f from the boundary condition (25) in the form

fðx; yÞ ¼
X1

s;t¼0

aþst

@trigst Rst;Sst;T1st;T2st; x; yð Þ
@x

;

�

bþst

@trigst Rst;Sst;T1st;T2st; x; yð Þ
@y

; cþsttrigst Rst;Sst;T1st;T2st; x; yð Þ
�
;

ð40Þ
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where aþst, bþst, cþst are constants. Note the notational shortcut; the summation applies to each of

the components of the parenthesis. This is a usual double Fourier series. This particular form

was chosen since it will simplify as much as possible the representation (46).

Let us explain how one obtains the representation (40) from a Fourier series in standard

form. For instance, let us take the term

cst cosðsxþ tyÞ ¼ trigstðcst; 0; 0; 0; x; yÞ: ð41Þ

Applying the operators @
@x

and @
@y

to Eq. (41), we generate a triplet

�csts sinðsxþ tyÞ;�cstt sinðsxþ tyÞ; cst cosðsxþ tyÞð Þ: ð42Þ

If we put aþst ¼ �s, bþst ¼ �t, cþst ¼ 1, we obtain a term from Eq. (40). The representation (40) is

not unique for a given f , since instead of the Fourier coefficients fst of the first coordinate of f

we use the product fst ¼ aþstRst. The same rule is used for the other coordinates. The latter is

convenient for symbolic computations, because we do not care about normalization of the

coefficients R, S, T1, T2 in each trig (39). Of course, application of the double Fourier series in

its traditional form leads to the same result, but it is much more cumbersome. The vector

function g is expressed in a similar way

gðx; yÞ ¼
X1

s;t¼0

a�st

@trigst Rst;Sst;T1st;T2st; x; yð Þ
@x

;

�

b�st

@trigst Rst;Sst;T1st;T2st; x; yð Þ
@y

; c�sttrigst Rst;Sst;T1st;T2st; x; yð Þ
�
:

ð43Þ

Let us note that Eqs. (40) and (43) contain the same trigs (with the same parameters Rst, Sst, T1st

and T2st) with different coefficients a�st, b�st, c�st. There is no contradiction in the representations

(40) and (43), because one can gather all trigs from f and g, and generate the series for f and g

with zeros at the appropriate locations.

After these preliminaries, we can construct a solution of the Stokes equation with the

boundary conditions corresponding to each trigonometrical term of Eqs. (40) and (43). Let us

fix a term

trigst � trigst Rst;Sst;T1st;T2st; x; yð Þ:

We consider the Stokes equations

r2Ust ¼ rQst;

r 	 Ust ¼ 0
ð44Þ

with the boundary conditions at z ¼ �b

Ustðx; y; bÞ ¼ aþst

@trigst

@x
; bþst

@trigst

@y
; cþsttrigst

� �
;

Ustðx; y;�bÞ ¼ a�st

@trigst

@x
; b�st

@trigst

@y
; c�sttrigst

� �
:

ð45Þ

For definiteness, we take s 6¼ 0 and t 6¼ 0. We look for Ust and Qst in the form

Ustðx; y; zÞ ¼ astðzÞ
@trigstðx; yÞ

@x
; bstðzÞ

@trigstðx; yÞ
@y

; cstðzÞtrigstðx; yÞ
� �

;

Qstðx; y; zÞ ¼ dstðzÞtrigstðx; yÞ;
ð46Þ

where astðzÞ, bstðzÞ, cstðzÞ and dstðzÞ are unknown functions of z. Substituting Eqs. (46) into

Eqs. (44), we obtain the system of ordinary differential equations analogous to Eqs. (29)–(31):
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a00stðzÞ � ðs2 þ t2ÞastðzÞ � dstðzÞ ¼ 0;

b00stðzÞ � ðs2 þ t2ÞbstðzÞ � dstðzÞ ¼ 0;

c00stðzÞ � ðs2 þ t2ÞcstðzÞ � d0stðzÞ ¼ 0;

c0stðzÞ � s2astðzÞ � t2bstðzÞ:

ð47Þ

Substitution of Eqs. (46) into Eqs. (45) yields the boundary conditions for Eqs. (47):

astð�bÞ ¼ a�st; bstð�bÞ ¼ b�st; cstð�bÞ ¼ c�st: ð48Þ

The following calculations, which are quite tedious, could be performed in a symbolic way.

Mathematica was used systematically, but in a semiautomatic way. We obtain the solution of

Eqs. (47)–(48) in closed form (compare with Eq. (38)):

astðzÞ ¼
1

,2
st

c0stðzÞ þ t2MðzÞ
� �

;

bstðzÞ ¼
1

,2
st

c0stðzÞ � s2MðzÞ
� �

;

cstðzÞ ¼ ðC1zþ C2Þ cosh zþ ðC3zþ C4Þ sinh z;

dstðzÞ ¼ 2ðC1 cosh zþ C3 sinh zÞ;

ð49Þ

where

C1 ¼
ðcþst � c�stÞ cosh b� ðdþst þ d�stÞ sinh b

2b� sinh 2b
;

C2 ¼
bðcþst þ c�stÞ cosh bþ cþst þ c�st � bðdþst � d�stÞ

� �
sinh b

2bþ sinh 2b
;

C3 ¼
ðdþst � d�stÞ cosh b� ðcþst þ c�stÞ sinh b

2bþ sinh 2b
;

C4 ¼
�cþst þ c�st þ bðdþst þ d�stÞ
� �

cosh b� bðcþst � c�stÞ sinh b

2b� sinh 2b
;

MðzÞ ¼ Mþst þM�st

cosh ,stb
cosh ,stz�

Mþst �M�st

sinh ,stb
sinh ,stz;

and

,st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p
;

Mþst ¼ aþst � bþst; M�st ¼ a�st � b�st;

dþst ¼ s2aþst þ t2bþst; d�st ¼ s2a�st þ t2b�st:

Here, the constants C1; . . . ;C4 correspond to undetermined constant in the two-dimensional

case (see Eq. (38)). The functions Ust have the form (46) and are the solution of the problem

(24)–(25)

vðx; y; zÞ ¼
X1

s;t¼0

Ustðx; y; zÞ: ð50Þ
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Finally, we should note that we have constructed Ustðx; y; zÞ for non-zero s and t. The

cases s ¼ 0 or (and) t ¼ 0 can be studied by the same method. We do not explicit the

derivation and the results here. However, we use these results in the computations

below.

The interested reader can look at Appendix A where the e–expansion of the velocities is

shown to converge for e � ec ¼ ðb,Þ�1, where , is the maximal wave number of Tðx; yÞ and
Bðx; yÞ.

3.3 Permeability

In Subsect. 3.2, we have proposed an algorithm to construct vðx; y; zÞ, satisfying Eqs. (24)–(25).
Hence, it is possible to calculate umðx; y; zÞ satisfying Eqs. (22)–(23). In the present subsection,

we calculate the permeability K expressed by Eq. (10) by using umðx; y; zÞ. The main goal is to

avoid direct calculations of the integrals in Eq. (10).

It follows from Sect. 3.2 that the x-component of um is represented as follows:

umðx; y; zÞ ¼
X1

s;t¼0

am;skðzÞtrigm;stðx; yÞ; ð51Þ

where trigm;stðx; yÞ is an abbreviation which stands for

trigm;stðx; yÞ ¼ trigst am;st; bm;st; cm;st; dm;st; x; y
� �

:

Let us substitute Eq. (51) into Eq. (10):

Kx ¼ �
l

rp jsj
X1

m¼0

em
X1

s;t¼0

Zp

�p

Zp

�p

trigm;stðx; yÞdxdy

Zbð1þeTÞ

�bð1þeBÞ

am;stðzÞdz: ð52Þ

First, we consider the integral

J ¼
Zbð1þeTÞ

�bð1þeBÞ

aðzÞdz ¼ Aðbþ ebTÞ � Að�b� ebBÞ; ð53Þ

where AðzÞ is a primitive function of aðzÞ. Let us expand AðzÞ as a Taylor series

Aðbþ ebTÞ ¼
X1

m¼0

AðmÞðbÞ
m!

ðbeTÞm ¼ AðbÞ þ
X1

m¼1

aðm�1ÞðbÞ
m!

bmTmem;

Að�b� ebBÞ ¼ Að�bÞ þ
X1

m¼1

aðm�1Þð�bÞ
m!

ð�bÞmBmem;

where aðm�1Þ is the derivative of order ðm� 1Þ of aðzÞ. Then, Eq. (53) becomes

J ¼
Zb

�b

aðzÞdzþ
X1

m¼1

bmem

m!
Tmðx; yÞaðm�1ÞðbÞ � ð�1ÞmBmðx; yÞaðm�1Þð�bÞ
	 


: ð54Þ

Let us substitute Eq. (54) into Eq. (52):

Kx ¼ �
l

rp jsj
X1

m¼0

em
Xm

n¼0

bn

n!
Jm�n;n; ð55Þ

where
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Jm;n :¼
X1

s;t¼0

 
a
ðn�1Þ
m;st ðbÞJm;n;st � ð�1Þna

ðn�1Þ
m;st ð�bÞJm;�n;st

	 
!
;

Jm;0;00 :¼ trigm;00

Zb

�b

am;00ðzÞdz;

Jm;0;st :¼ 0 for s2 þ t2 6¼ 0;

Jm;n;st :¼
Zp

�p

Zp

�p

Tnðx; yÞtrigm;stðx; yÞdxdy for n > 0;

Jm;�n;st :¼
Zp

�p

Zp

�p

Bnðx; yÞtrigm;stðx; yÞdxdy for n > 0:

ð56Þ

Here, trigm;00 is a constant:

trigm;00 ¼ trig00 am;00; bm;00; cm;00; dm;00; x; y
� �

¼ ðam;00 cosðsxþ tyÞ þ bm;00 sinðsxþ tyÞ

þ cm;00 cosðsx� tyÞ þ dm;00 sinðsx� tyÞÞ
��
s¼t¼0

¼ am;00 þ cm;00:

The formula (55) will be applied in the following computations. Let us note that we have to

calculate only one ordinary integral Jm;0;00. The integrals Jm;n;st are equal to the zeroth coef-

ficients of the Fourier series of integrands, because of the orthogonality of the trigonometric

functions involved. A symbolical-numerical algorithm has been constructed to extract the

zeroth Fourier terms from Tnðx; yÞtrigm;stðx; yÞ.

4 Examples

This section intends to provide various applications of the general technique; it will also

illustrate its major advantages.

4.1 Symmetric sinusoidal two-dimensional channel

Let us consider the two-dimensional channel bounded by the surfaces

z ¼ bð1þ e cos xÞ; z ¼ �bð1þ e cos xÞ: ð57Þ

This example is the most studied in the references cited in Sect. 1. We perform calculations for

b ¼ 0:5 preserving the parameter e in symbolic form. The permeability is calculated up to Oðe32Þ:

KðeÞ ¼ 1�
X1

n¼1

c2ne2n ¼ K30ðeÞ þ Oðe32Þ ¼ 1� 3:14963e2 þ 4:08109e4

� 3:48479e6 þ 2:93797e8 � 2:56771e10 þ 2:21983e12 � 1:93018e14

þ 1:67294e16 � 1:45302e18 þ 1:26017e20 � 1:09411e22 þ 0:949113e24

� 0:823912e26 þ 0:714804e28 � 0:620463e30 þ Oðe32Þ:

ð58Þ
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The general advantages of this expansion are clear. First, this analytical expression is valid

for a wide range of values of e; if one wishes to obtain permeability with a precision equal to

10�3, the previous expression is valid up to e ¼ 0:8. Second, the flow field is itself obtained

analytically with the same precision; we shall use this important feature in Sect. 4.4.

Let us briefly compare the present results with what can obtain a finite difference code such as

the one described by [1] which can be summarized as follow. In order to cope with the con-

tinuity equation, the so-called artificial compressibility method was applied with a staggered

maker and cell (MAC) mesh. In essence, the problem is replaced by an unsteady compressible

one which is assumed to converge towards the steady incompressible situation of interest. It is

obvious that to derive Eq. (58) with the same precision with this code would require a very large

computational effort; moreover, for small values of e, an equivalent precision could not be

obtained by a finite difference code.

A specific bonus of having an analytical formula such as Eq. (58) can be discussed. One can

note that the coefficients c2n in Eq. (58) for nP4 satisfy the law

c2n ¼ C0ð�qÞ�n ð59Þ

with C0 ¼ 5:19679 and q ¼ 1:15220 (see Fig. 3) calculated by the least square method. Using

this rule and the condition Kð1Þ ¼ 0, we can extend Eq. (58) by adding terms of the form (59).

Then, the full expansion for the permeability can be summed and we obtain

KðeÞ ¼ K30ðeÞ þ
ae32

bþ e2
; ð60Þ

where a ¼ 0:604220 and b ¼ 1:09880 are calculated again by the least square method. The

functions KðeÞ and K30ðeÞ are displayed in Fig. 4 where they are seen to superpose exactly; these

results are also in perfect agreement with numerical calculations (cf. [4]).

A lubrication approximation in the case of two cylinders of different radii that are almost in

contact with one another along a line was recalled in [1]. For equal radii a, the flow rate q per

unit length is proportional to the pressure variation Dp:

q ¼ �Kl

l
Dp; ð61Þ

where Kl is given by

Kl ¼
2

9p

ffiffiffiffiffi
d5

a

s

ð62Þ

and d is the gap between the cylinders.

0 8 16 24 32 40
n

0.1
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1
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C

Fig. 3. The coefficients jc2nj (cf. Eq.
(58)) as functions of n. The solid line

is the expression (59)
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For the channel (57), if e is close to unity, the aperture at x ¼ �p is close to zero. Hence, one

can apply Eq. (62) to this local channel with d ¼ 2bð1� eÞ and a ¼ be. The functions KlðeÞ and
KðeÞ are compared in Fig. 5 near e ¼ 1; the lubrication approximation (62) is seen to be good

for e close to 0:99, while for smaller e it is too large.

Let us consider now the channel bounded by the surfaces (57) with b ¼ 0:25. KðeÞ is readily
obtained as

KðeÞ ¼ 1� 3:03748e2 þ 3:54570e4 � 2:33505e6 þ 1:35447e8

� 0:83303e10 þ 0:49762e12 � 0:30350e14 þ 0:18185e16

� 0:11083e18 þ 0:06636e20 � 0:04051e22 þ 0:02419e24

� 0:01483e26 þ 0:00880e28 � 0:00544e30 þ Oðe32Þ:

ð63Þ

Burns and Parkes [6] have derived the same values for the coefficients of KðeÞ up to Oðe6Þ. A
comparison of Eq. (63) with the results of [6] is presented in Fig. 6.

4.2 Parallel sinusoidal two-dimensional channel

The present channel is bounded by the surfaces

z ¼ bð1þ e cos xÞ; z ¼ �bð1� e cos xÞ ð64Þ

with b ¼ 0:5. The permeability is calculated up to Oðe32Þ:
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Fig. 5. The permeability K as a func-

tion of e near e ¼ 1 in logarithmic scale
for the channel defined by Eq. (57)

with b ¼ 0:5. Data are for: solid line:
Eq. (60); broken line lubrication solu-

tion, Eq. (62).
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Fig. 4. The normalized permeability K

as a function of e for the channel
defined by Eq. (57) with b ¼ 0:5. Data

are for: solid line: Eq. (60); broken
line: Eq. (58); dots: numerical solution.
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K30ðeÞ ¼ 1� 2:53686� 10�1e2 þ 4:28907� 10�2e4 � 5:46188� 10�3e6

þ 4:54695� 10�4e8 þ 9:0656� 10�6e10 � 1:41572� 10�5e12

þ 3:76584� 10�6e14 � 6:72021� 10�7e16 þ 7:58331� 10�8e18

þ 2:34495� 10�9e20 � 4:59993� 10�9e22 þ 1:88446� 10�9e24

� 8:6005� 10�11e26 þ 3:34156� 10�9e28 þ 1:63748� 10�9e30:

ð65Þ

The velocity is analytic in e in the disk jej < ec. Therefore, Eq. (65) is valid for e < ec. In order to

calculate KðeÞ for ePec, one can apply a Padé approximation [24] to the polynomial (65) which

agrees up to Oðe32Þ. We take the Padé approximation of the order ð10; 20Þ

KðeÞ ¼ P10ðeÞ
Q20ðeÞ

; ð66Þ

where

P10ðeÞ ¼ 1� 3:14215e2 þ 6:59346e4 þ 34:7591e6 þ 13:3065e8 þ 1:53446e10;

Q20ðeÞ ¼ 1� 2:88846e2 þ 5:81781e4 þ 36:3643e6 þ 22:2659e8 þ 5:65641e10

þ 0:675967e12 þ 0:033858e14 þ 0:000131e16 � 0:000010e18 þ 0:000001e20:

ð67Þ

KðeÞ is displayed in Fig. 7.

We have also performed pure numerical computations of the permeability for the same

channel. It turned out that to obtain a precise result a fine discretization mesh is neccessary; NC

denotes the number of mesh points along the z-axis; Fig. 7 shows that the discrepancy between

the numerical and analytical results decreases with NC and that the agreement becomes

acceptable for NCP230.

It is possible to check that Eq. (66) and Padé approximations of other orders provide

similar results for eO8. Let us note that in this case the amplitude of the oscillatory part of

the channel exceeds its width by a factor 8, i.e., e is certainly not a small parameter

anymore.

These last two remarks further illustrate the advantages of the present technique as they were

discussed in Sect. 4.1.
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Fig. 6. The permeability K as a func-
tion of e for the channel defined by

Eq. (57) with b ¼ 0:25. Data are for:
solid line: Eq. (63); broken line: the

second-order approximation K2ðeÞ of
[6]; dotted-broken line: the fourth-

order approximation K4ðeÞ of [6].
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4.3 Symmetric sinusoidal three-dimensional channel

Let us consider the channel restricted by the surfaces

z ¼ �b 1þ 1

2
e cosðxþ yÞ þ cosðx� yÞð Þ

� �
ð68Þ

with b ¼ 0:3. The permeability is calculated up to Oðe14Þ as

K14ðeÞ ¼ 1� 0:465674e2 þ 0:329218e4 � 0:261666e6

� 0:004467e8 � 0:0386987e10 � 0:0177808e12 � 0:0239319e14:
ð69Þ

For e ¼ 1, the surfaces (68) start touching though the permeability is not yet zero (see Fig. 8). In

this case, the order Oðe16Þ provides a sufficient precision since the lower-order formulas give

close results.

Therefore, permeability is obtained with a precision of 10�3 for values of e up to 0:61. Again,

for low values of e, the corresponding precision can be hardly obtained with a standard

numerical code since the velocity field is three-dimensional.

4.4 Eddies in a channel

This section illustrates the obvious fact that the velocity field is derived with the same precision as the

permeability. Again this field is given by an expression valid up to large values of e as we repeatedly
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Fig. 7. The permeability KðeÞ for the channel

defined by Eq. (64) with b ¼ 0:5. Data are for:
solid line: Eq. (66); dots: numerical solution with

NC ¼ 50; crosses: numerical solution with
NC ¼ 230. The second graph presents an enlarged

view close to e ¼ 0.
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stressed. This is a very interesting feature since these fields can be used to study a long list of

phenomena such as the onset of eddies, a topicwhich is closely related to the generationof turbulence.

The present section is devoted to this phenomenon in the two-dimensional channel bounded

by the surfaces

z ¼ b; z ¼ �bð1þ e cos xÞ: ð70Þ

with b ¼ p
2
. According to (A.7), the critical value ec for this channel is equal to 2

p. Using the

algorithm presented in Subsect. 3.1 and 3.2, the x–component of the velocity is given by

uðx; zÞ ¼
X26

m¼0

umðx; zÞem þ Oðe27Þ; ð71Þ

where the successive umðx; zÞ can be detailed as

u0ðx; zÞ ¼ 2:46740� z2;

u1ðx; zÞ ¼ �ð0:962707 cosh zþ 0:842888z cosh z

� 0:37143 sinh z� 1:35081z sinh zÞ cos x;

u2ðx; zÞ ¼ �3:48573þ 2:21909zþ ð0:12526 cosh 2zþ 0:263130z cosh 2z

� 0:11304 sinh 2z� 0:27219z sinh 2zÞ cos 2x;

u3ðx; zÞ ¼ ð2:37210 cosh zþ 0:37807z cosh z� 1:70666 sinh z

� 0:97226z sinh zÞ cos xþ ð�0:04006 cosh 3z� 0:08828z cosh 3z

þ 0:03980 sinh 3zþ 0:08847z sinh 3zÞ cos 3x;

. . .

ð72Þ

We write here only three terms, but all the 26 terms are used to calculate the Padé approxi-

mations applied to Eq. (71) on e. The results are presented in Fig. 9. In order to investigate

uðx; zÞ near the bottom wall, we consider the point Pfx ¼ 0; z ¼ �bð1þ eÞ þ b
10
g for which

Eq. (71) is reduced to
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Fig. 8. The approximation K14ðeÞ
calculated with Eq. (69) for the per-
meability of the channel defined by

Eq. (68)
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uPðeÞ ¼ u½0;�bð1þ eÞ þ b

10
; e� ¼ 0:46881� 0:96803e� 0:52896e2 þ 1:75422e3

þ 1:73336e4 � 3:17184e5 � 4:75907e6 þ 5:86634e7 þ 11:30828e8

� 11:30390e9 � 25:34523e10 þ 22:85543e11 þ 55:78013e12 � 47:95656e13

� 122:65423e14 þ 103:07507e15 þ 271:14318e16 � 224:97244e17

� 603:49792e18 þ 496:32144e19 þ 1352:20577e20 � 1104:20681e21

� 3048:22737e22 þ 2474:27540e23 þ 6909:26971e24

� 5579:58252e25 � 15738:87145e26:

ð73Þ

Further, we apply the Padé approximations of the orders ðk; 26� kÞ ðk ¼ 8; 9; 10; 11; 12Þ in e to
Eq. (73). For instance, the Padé approximation ð10; 16Þ has the form P10ðeÞ=Q16ðeÞ, where

P10ðeÞ ¼ 0:4688� 0:6732eþ 2:4885e2 � 3:7506e3 þ 5:1133e4 � 6:8634e5 þ 5:4600e6

� 4:3419e7 þ 2:6469e8 � 0:4522e9 � 0:0996e10;

Q16ðeÞ ¼ 1þ 0:6289eþ 7:7352e2 þ 4:9397e3 þ 23:784e4 þ 15:5412e5 þ 37:8959e6

þ 25:4686e7 þ 34:8549e8 þ 23:6913e9 þ 20:0401e10 þ 12:6700e11

þ 7:7389e12 þ 3:8726e13 þ 1:899e14 þ 0:7117e15 þ 0:1887e16:

ð74Þ
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Fig. 9. The x-component of velocity

on the profile x ¼ 0, �3:4558Oz

O1:5708 for the channel defined by

Eq. (70) with b ¼ p=2. Data are for:
solid line: the Padé approximation of

order ð13; 13Þ applied to Eq. (71); dots:
numerical solution. A fragment of the

profile near z ¼ �3 is presented in the
second picture.
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The Padé approximations are presented in Fig. 10. One can see that various Padé approxi-

mations of Eq. (73) give the same result near e ¼ 1. In particular, one can see that uPðeÞ > 0 for

e < 1 and that uPðeÞ is negative from e ¼ 1 to a point e 
 1:5. These negative values of uPðeÞ
imply that eddies will be generated for e greater than 1. Therefore, for this channel, we have

ee ¼ 1 while the critical value of convergence ec is equal to
2
p as an application of Eq. (A.7). The

streamlines of the velocity field for e ¼ 1:2 are displayed in Fig. 11. Numerical calculations of

velocity performed for the same channel gave very close results (see Fig. 9).

We have performed the same analysis for the channel defined by Eq. (70) with b ¼ 1. In this

case, we have ec ¼ 1 and ee ¼ p
2
. Hence, we can conjecture that for this type of channel

ee ¼ p
2
ec ¼ p

2b
. This implies that the onset of eddies depends only on the shape of the bottom

wall and does not depend on the width of the channel. The critical bottom surface is determined

by the relation z ¼ �bð1þ ee cos xÞ ¼ �b� p
2

cos x.

One can go a little further in these qualitative observations. It seems that for the Poiseuille

flow, ee is always larger than ec. However, the opposite seems to be true for the disturbed

Couette flow (see [25] and [15]).

4.5 Eddies in a parallel sinusoidal channel with large amplitudes

Let us apply the previous analysis to the two-dimensional channel bounded by the surfaces (64),

but now with b ¼ 2. It follows from Eq. (A.7) that the critical value ec for this channel is equal

to 0:5.
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Fig. 10. Various Padé approxima-

tions applied to the x-component of
the velocity (73) at the point

Pfx ¼ 0; z ¼ �bð1þ eÞ þ b
10g for the

channel defined by Eq. (70) with

b ¼ p=2
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Using the algorithm presented in Sects 3.1 and 3.2, we calculate the x-component of the

velocity,

uðx; zÞ ¼
X30

m¼0

umðx; zÞem þ Oðe31Þ; ð75Þ

where umðx; zÞ can be written in explicit form. As in Subsect. 4.4, we apply Padé approxi-

mations to Eq. (75). Velocity profiles uð0; zÞ for �bð1þ eÞOzObð1þ eÞ are presented in

Fig. 12 for various e. One can see that in the channel defined by (64) there is no eddy. Actually,

the calculations were performed up to e ¼ 1000 with an unknown precision; even in such an

extreme case, no eddy could be obtained.

The physical meaning of these results is quite clear. For sufficiently small values of b, the

velocity profile becomes progressively parabolic for large values of e as it is seen in Fig. 12.

However, one may expect eddies when b is large; this possibility was not further explored in

this paper.
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Fig. 12. The x-component of veloci-
ties in the points x ¼ 0, �bð1þ eÞ
OzObð1þ eÞ for e ¼ 0; 0:5; . . . ; 5 for
the channel defined by Eq. (64) with
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smaller values of e.
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5 Analytical formulas up to Oðe4Þ

In Subsect. 3.1–3.3, we have constructed a general algorithm to calculate the permeabilityK up to a

given accuracy Oðemþ1Þ. When Eq. (A.1) is fulfilled, Eq. (23) implies that the application of the

algorithm up toOðemþ1Þ is possible if the functions unðx; y; zÞ are differentiable ðm� nÞ times in z

(n ¼ 1; 2; . . . ;m� 1), i.e., un 2 Cm�n (n ¼ 1; 2; . . . ;m� 1). Let us note that the zeroth approxi-

mation u0 (16) is infinitely differentiable in z. However, the smoothness of the next approximations

depends on the smoothness of Tðx; yÞ and Bðx; yÞ. Let us demonstrate this property for the two-

dimensional channel defined by Eqs. (3) and (4) in the form of pointwise convergent Fourier series

TðxÞ ¼
X1

m¼1

am cos mxþ bm sin mx;

BðxÞ ¼
X1

m¼1

cm cos mxþ dm sin mx: ð76Þ

Let us apply the general formula (55) to calculate K up to Oðe4Þ. We have

K � 1� 3e2

2b2
I2;0 þ bI1;1 þ

1

2
b2I0;2

� �
; ð77Þ

where after some symbolic computations we obtain

I0;2 ¼ S; I1;1 ¼ �bS; I2;0 ¼
1

2b

Zb

�b

a20ðzÞdz;

S :¼ 1

2

X1

m¼1

a2
m þ b2

m þ c2
m þ d2

m

� �
:

ð78Þ

Calculation of a20 in accordance with the algorithm and substitution of Eqs. (78) into Eq. (77)

yield the following analytical formula valid up to Oðe4Þ:

K � 1� 3

4
e2
X1

m¼1

F1ðmbÞ a2
m þ b2

m þ c2
m þ d2

m

� �
þ F2ðmbÞ amcm þ bmdmð Þ

� �
; ð79Þ

where

F1ðzÞ :¼ �1þ cosh 4z� 2z sinh 4z

1þ 8z2 � cosh 4z
;

F2ðzÞ :¼ 8zð2z cosh 2z� sinh 2zÞ
1þ 8z2 � cosh 4z

:

In order to investigate the convergence of Eq. (79), let us note that F1ðzÞ 
 2z and that F2ðzÞ
tends to zero as z!1. Hence, the series (79) converges iff the following series converges:

X1

m¼1

m a2
m þ b2

m þ c2
m þ d2

m

� �
: ð80Þ

The formula (79) is written for the length of the channel L ¼ p. By a scale change, it is easy to
rewrite Eq. (79) for arbitrary L:

K ¼ 1� 3

4
e2
X1

m¼1

F1
mbp
2L

� �
a2

m þ b2
m þ c2

m þ d2
m

� �
þ F2

mbp
2L

� �
amcm þ bmdmð Þ

� �
þ Oðe4Þ:

ð81Þ
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Note that for a symmetric channel, i.e., BðxÞ ¼ TðxÞ, Eq. (79) becomes

K � 1þ 3

2
e2
X1

m¼1

2mb cosh 2mb� sinh 2mb

2mb� sinh 2mb
a2

m þ b2
m

� �
: ð82Þ

It is important to note that in principle higher orders of e can be obtained. However, the

resulting formulae with all parameters in symbolic form are extremely long and the present

limitations of the computers and of the software are almost reached.

5.1 Comparison with previous works

Let us first compare special cases of Eq. (81) with previous works obtained by others. At the

end of Sect. 4.1, we have already compared our results with [6] for the symmetric sinusoidal

channel.

Hasegawa and Izuchi [9] obtained a formula for the sinusoidal-flat channel

Sþ ¼ 1

2
� e cos x; S� ¼ � 1

2
; ð83Þ

which in our designations reads as

K ¼ 1� 33þ 13

2695
Re2

� �
e2

40
þ Oðe4Þ; ð84Þ

where Re is the Reynolds number. Equation (84) with Re ¼ 0 becomes

K ¼ 1� 0:825e2 þ Oðe4Þ; ð85Þ

which corresponds to Eq. (81) with b ¼ 0:5, L ¼ 0:5 and a1 ¼ �2 (all other coefficients

am; bm; cm; dm in Eq. (81) are zero):

K ¼ 1� 3e2F1ð0:5Þ � 1� 0:851e2 þ Oðe4Þ: ð86Þ

The difference between Eqs. (85) and (86) is explained by the assumption in [9] that e� L. In

the limit L!1, we derive from [9] and Eq. (81) the same result K ¼ 1� 3e2 þ Oðe4Þ.

5.2 The Weierstrass function

This function is defined as [26]

WHðxÞ :¼
X1

n¼1

A�nH cos Anx; ð87Þ

where A > 1. We assume that 1
2
< H < 1. The function WHðxÞ has the following properties:

(i) the series (87) converges absolutely and uniformly to WHðxÞ on R,

(ii) WHðxÞ is continuous, but nowhere differentiable.

Let us discuss some aspects of Eq. (82). We take a symmetric channel to simplify calculations.

The property ii) implies that the channel bounded by the walls (87) has an irregular geometry

which implies complex flows near the walls. Let us check the condition (A.1). For this two–

dimensional channel, we have Kn ¼ A�nH and ,n ¼ An, hence

sup
n

jKnj,n ¼ sup
n

Anð1�HÞ ¼ þ1; ð88Þ

since A > 1 and H < 1. This implies that the series (18) are divergent for any e > 0.
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However, it is proved in Appendix B that the approximations up to Oðe2Þ of the velocity are

correctly defined even for this complicated fractal channel and therefore the permeability can be

calculated by the general formula (82) which for the walls Tðx; yÞ ¼ Bðx; yÞ ¼ WHðxÞ reads as
follows:

K � 1þ 3

2
e2
X1

n¼1

2bAn cosh 2bAn � sinh 2bAn

2bAn � sinh 2bAn
A�2nH : ð89Þ

6 Lubrication approximation

Many estimates of channel permeability based on the assumption that the lubrication

approximation is valid locally, have been proposed. One can find an extensive review in [2].

This approximation is characterized by the fact that the amplitude of the wall oscillations is

smaller than the channel width. It turns out that the channel width is small when compared to a

characteristic length of the channel, i.e., e� b� 2p in our notations. The main assumption is

that the velocity has a parabolic profile.

The lubrication approximation of the flow between two cylindrical surfaces that are almost in

contact, has been discussed in Sect. 4.1. The present section is devoted to a comparison between

the parabolic profiles of the velocity and the permeability obtained in the framework of the

lubrication approximation for plane channels and the rigorous method based on the Stokes

equation presented in Sects. 3.1–3.3. Following [2], let us recall the main formulas for the

lubrication approximation; the pressure p ¼ pðx; yÞ satisfies the Reynolds equation

r 	 h3rp
� �

¼ 0; ð90Þ

where the aperture of the channel hðx; yÞ :¼ Sþðx; yÞ � S�ðx; yÞ is calculated as

hðx; yÞ ¼ 2b 1þ eSðx; yÞð Þ; Sðx; yÞ ¼ 1

2
Tðx; yÞ þ Bðx; yÞð Þ: ð91Þ

Equation (90) is considered for a class of functions periodic in x and y with periods 2p. The
velocity has a parabolic profile in z:

u � 1

2
z� Sþðx; yÞð Þ z� S�ðx; yÞð Þrp; ð92Þ

where rp is the applied pressure gradient.

The real velocity profiles u obtained by the rigorous method presented in Subsects. 3.1–3.3

for the channel bounded by Eq. (57) are presented in Fig. 13. Disturbances are observed

when e increases. For e 
 0:8, regions where convergence is not reached appear. The Padé

approximation is not applied in order to improve the validity of the results in this example.

Let us find the best parabolas approximating u; for each fixed x (y is absent since a two-

dimensional channel is considered), it is chosen as the parabola which minimizes the relative

error

r ¼
XN

i¼1

ui � vi

umax

� �2
 !1=2

; ð93Þ

where ui are the values of the x-component of u at the points along the vertical section of the

channel; vi are the values of the best parabola. The error (93) as a function of e is presented in

Fig. 14 for the channel defined by Eq. (57).
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Using the approximation (92), we obtain the Reynolds permeability in the x-direction

KR ¼ �
1

12 	 8p2b

Zp

�p

Zp

�p

h3ðx; yÞ @p

@x
dxdy: ð94Þ

Here, we use Eq. (10) and Eq. (3.120) from [2]. In order to determine KR, we have to find p from

the Reynolds equation (90). It is possible to solve Eq. (90) by a method presented in [27]. For

simplicity, we now consider the one-dimensional Reynolds equation

d

dx
h3ðxÞdp

dx

� �
¼ 0: ð95Þ
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Fig. 13. Velocity profiles for the channel defined

by Eq. (57) for e ¼ 0; 0:2; 0:4; 0:6; 0:8. e ¼ 0 cor-
responds to the straight channel with parabolic

profiles.
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This ordinary differential equation (95) is solved with the boundary condition

rp ¼
Zp

�p

dp

dx
dx: ð96Þ

To calculate KR, we need only h3ðxÞ dp

dx
. Standard manipulations yield

h3ðxÞdp

dx
¼ 8b3rp

Zp

�p

dx
�
1þ eSðxÞ

�3

0
@

1
A
�1

: ð97Þ

Then, Eq. (94) becomes

KRðeÞ ¼ �
b2rp

3

Zp

�p

dx
�
1þ eSðxÞ

�3

0
@

1
A
�1

: ð98Þ

In order to be consistent with the normalized permeability (17), we calculate KRðeÞ=KRð0Þ.
One can see in Fig. 15 that Eq. (98) is in agreement with Eq. (63) for the symmetric sinusoidal

channel (57). For parallel channels, we have Sðx; yÞ ¼ 0; hence, Eq. (98) does not depend on e
and it is not in agreement with formula (65) for the channel (63) (see Fig. 16).

Therefore, the lubrication approximation (98) gives correct results only for channels in which

the mean surface Sðx; yÞ ¼ bþ e
2

Tðx; yÞ � Bðx; yÞð Þ is sufficiently close to a plane and for small

value of e. This conclusion is in agreement with [17] and [19].

7 Conclusion

The main result of this paper is to provide analytical expressions for the velocities u and the

permeability K of curvilinear channels. We use a method based on the e–expansions of u and K

which was applied up to OðeNÞ for small N in previous papers for particular two-dimensional

channels. Symbolic computations enable us to construct an analytical-numerical algorithm for

solving boundary value problems for the straight channel. This algorithm can be applied to an

arbitrary three-dimensional channel with practically arbitrary precision. In some examples,

calculations were performed up to Oðe32Þ.
As results, one obtains analytical expressions for the velocity and the pressure fields, as well

as for integral quantities such as permeabilities. These expressions possess several advantages
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s [%]

Fig. 14. The error r ¼ rðeÞ calculated
with Eq. (93) for the channel defined

by Eq. (57)
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over numerical calculations performed by standard techniques which are discussed in the text.

Often a similar precision cannot be obtained by these codes.

These fields can then be used in further studies. The stability of these analytical velocity fields

in wavy channels and their dependence on the Reynolds number can be studied in a

straightforward way using similar expansions on e.
Other important phenomena require the knowledge of the velocity field such as dispersion

and electro-osmosis. We are presently extending our work in all these directions.

Appendix A: Convergence of the algorithm

In the present appendix, we investigate the convergence of the algorithm described in Sect. 3.1.

We now wish to know up to which e we may use the expansion (18).

First, we note that the solution of the problem (24)–(25) is infinitely differentiable for the

infinitely differentiable functions Tðx; yÞ and Bðx; yÞ. In particular, the derivatives in z are

correctly defined in Eqs. (20)–(21) and consequently in Eq. (23). Existence and uniqueness of

um and pm follow from the cascade (22)–(23). However, this does not address the convergence

of Eq. (18) in e. Therefore, we have to study the right-hand side of Eq. (23) in order to estimate

um and then the convergence of Eq. (18). At the beginning we consider the case where Tðx; yÞ
and Bðx; yÞ are trigonometric polynomials. We shall prove in Subsect. A.1 that e must be less

than a value of order ðb,Þ�1 where , is the maximal wave number of Tðx; yÞ and Bðx; yÞ. The
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Fig. 15. The permeability as a function
of e for the channel defined by Eq. (57).

Data are for: solid line: Eq. (60);
broken line: Eq. (98).
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Fig. 16. The permeability as a function
of e for the channel defined by Eq.

(64). Data are for: solid line: Eq. (65);
broken line: Eq. (98).
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estimation of the domain of convergence in the general case is given in Subsect. A.2. We shall

establish that the algorithm converges if

e < ec ¼ b sup
st

Kst

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p� ��1

; ðA:1Þ

where Kst is the maximal number of modulus of eight coefficients of Tðx; yÞ and Bðx; yÞ in
expansion in the double Fourier series on four basic functions cosðsxþ tyÞ; . . . ; sinðsx� tyÞ.

A.1 Convergence of the algorithm for polynomials

Let us establish the following auxiliary result concerning the solution v of the problem (24)–(25):

Let ,max be themaximal wave number of f and gwith the corresponding amplitudeA. Then, @pv=@zp

is of order A,p:

@pv

@zp

 A,p: ðA:2Þ

To prove this property, we use the series (40) and (43), as well as the explicit forms (46) and

(49) of the solver. Let us fix a triplet from Eqs. (40) and (43)
 

a�st

@trigst Rst;Sst;T1st;T2st; x; yð Þ
@x

; b�st

@trigst Rst;Sst;T1st;T2st; x; yð Þ
@y

;

c�sttrigst Rst;Sst;T1st;T2st; x; yð Þ
! ðA:3Þ

with the amplitudes

a�st; b
�
st; c

�
st

� �
: ðA:4Þ

The triplet (A.3) yields the solution Ust of Eq. (45) with the amplitudes

astðzÞ; bstðzÞ; cstðzÞð Þ ðA:5Þ

written in the form (49). One can see from Eq. (49) that all the amplitudes astðzÞ, bstðzÞ, cstðzÞ
depend linearly on the constants C1; . . . ;C4 which are also linearly dependent on a�st, b�st, c�st.

Hence, astðzÞ, bstðzÞ, cstðzÞ are linearly dependent on a�st, b�st, c�st. Therefore, the amplitudes

(A.5) are of the same order as the amplitudes (A.4). The amplitudes of the derivatives

aðpÞst ðzÞ; b
ðpÞ
st ðzÞ; c

ðpÞ
st ðzÞ

	 

; p ¼ 1; 2; . . . ðA:6Þ

are of order ,p
st where ,st ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2
p

. This follows from the calculation of the derivatives of

the amplitudes (A.5) via MðzÞ (see Eq. (49)), since the terms cosh ,stz and sinh ,stz in MðzÞ
yield the multiplier ,st after each differentiation. The determination of the maximum on s and t

yields the desired asymptotic equation (A.2).

An important consequence of Eq. (A.2) can be stated as follows: If e verifies

e<ec ¼ ðb,Þ�1; ðA:7Þ

where , :¼ max
s;t

,st is the maximal wave number of Tðx; yÞ and Bðx; yÞ, the e-expansion (18)

converges absolutely and uniformly in Sþðx; yÞOzOS�ðx; yÞ.
This can be proved by the application of Eq. (A.2) to each step of the cascade (22)–(23). Let

us consider Eq. (23) with m ¼ 1:

u1ðx; y; bÞ ¼ 2b2Tðx; yÞ; u1ðx; y;�bÞ ¼ �2b2Bðx; yÞ: ðA:8Þ
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Then, @pu1=@zp is of order b2,p. The next um are investigated by induction on m separately by

the variables z (by the parameter ,) and ðx; yÞ (by the parameter b).

First, we fix b. Let @pun=@zp be of order ,nþp�1 (n ¼ 1; 2; . . . ;m� 1). Then, Eq. (5) and the

boundary condition (23) imply that

jumðx; y;�bÞjO
Xm�1

n¼1

bn

n!

@num�n

@zn

����

����
z¼�b


 eb,m�1:

It follows from Eq. (A.2) for p ¼ 0 that the velocity umðx; y; zÞ in the channel has the same

order as on the boundary umðx; y;�bÞ. Therefore,
um 
 ,m: ðA:9Þ

Let us now fix , and estimate the order of um on b. As it follows from Eqs. (44) and (45),

Ustðx; y; zÞ is linearly dependent on the boundary amplitudes a�st, b�st, c�st. Moreover, Eqs. (46)

and (49) imply that @
pUst

@zp ðx; y; zÞ preserves the order on b. Hence, all the functions @
pum

@zp ðx; y; zÞ
(p ¼ 0; 1; . . .) have the same order. Equation (A.8) implies that u1 
 b2. Let us assume that

un 
 bnþ1 for n ¼ 1; 2; . . . ;m� 1. Then, Eq. (23) yields

um 

Xm�1

n¼1

bn

n!
bm�nþ1Obmþ1e:

This relation together with Eq. (A.9) implies that um is of order ðb,Þm. Then, the rate of con-

vergence of Eq. (18) is bounded by eb, and Eq. (18) converges for eb, < 1. This proves Eq. (A.7).

A.2 Convergence of the general algorithm

We now consider the general case, when Tðx; yÞ and Bðx; yÞ are expanded in double Fourier

series. Let trig1ðx; yÞ, trig2ðx; yÞ; . . . be a linearly ordered sequence of the basic functions

cosðsxþ tyÞ; . . . ; sinðsx� tyÞ (see Eq. (39)). Then Tðx; yÞ and Bðx; yÞ can be represented in the

form

T�ðx; yÞ ¼ ebTðx; yÞ ¼
X1

s¼1

e2strigsðx; yÞ;

B�ðx; yÞ ¼ ebBðx; yÞ ¼
X1

s¼1

e2s�1trigsðx; yÞ;
ðA:10Þ

where for convenience the Fourier coefficients of the both boundary profiles Tðx; yÞ and Bðx; yÞ
are also linearly ordered, e1, e2; . . ..

Instead of the expansion (18), we use the series

pðx; y; zÞ ¼
X1

N¼0

X

m1;...;mN

pm1;...;mN
em1

1 . . . emN

N ;

uðx; y; zÞ ¼
X1

N¼0

X

m1;...;mN

um1;...;mN
em1

1 . . . emN

N :

ðA:11Þ

This means that instead of the parameter e in Eq. (18) we consider all the ej (j ¼ 1; 2; . . .) as

perturbation parameters. We use the formula (compare with Eq. (19))

g x; y; bþ T�ðx; yÞð Þ ¼
X1

m¼0

1

m!

X1

s¼0

e2strigsðx; yÞ
 !m

@mg

@zm

���
z¼b

: ðA:12Þ
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Application of Eq. (A.12) to (A.11) yields

0 ¼ u x; y; bþ T�ðx; yÞð Þ ¼
X1

N¼0

X1

m¼0

X

m1;...;mN

1

m!

X1

s¼0

e2strigsðx; yÞ
 !m

@mu

@zm

���
z¼b

em1

1 . . . emN

N ;

ðA:13Þ

Selecting in Eq. (A.13) the coefficients on the terms em1

1 em2

2 . . ., where mj ¼ 0; 1; . . ., we obtain a

boundary condition of the type

um1;...;mN
ðx; y; bÞ ¼

X

m;n1 ;...;nN

cm;n1;...;nN

@mun1;...;nN

@zm

���
z¼b

; ðA:14Þ

where cm;n1;...;nN
are some coefficients. One can obtain a similar boundary condition for z ¼ �b.

Thus, we obtain a tree–cascade of the boundary value problems for the Stokes equations. To

each problem from cascade a sequence ðm1;m2; . . .Þ is assigned. In order to solve a problem

corresponding to a fixed sequence ðm1;m2; . . .Þ, we have to solve problems ðn1;n2; . . .Þ for
n1 ¼ 0; 1; . . . ;m1; n2 ¼ 0; 1; . . . ;m2; . . ..

First, consider a sub-cascade with a nonzero element at place j ð0; . . . ; 0;m; 0; . . .Þ with
m ¼ 0; 1; 2; . . . . In each step of the sub–cascade, we follow the e-algorithm from Sect. 3 with

e ¼ b�1ej. Subsection A.1 implies that the sub-cascade yields a convergent series if the

inequality

jejj,j<1 ðA:15Þ

is fulfilled. Here, the number j corresponds to the linearly ordered set of the basic trigonometric

functions. Hence, coming back to the double ordering, one can rewrite Eq. (A.15) in the form

(A.1).

Let a sub-cascade contain nonzero elements j1; j2; . . .. Then, the sub-cascade yields a con-

vergent series if

jej1
j,j1
jej2
j,j2

. . . <1: ðA:16Þ

The latter condition is valid if Eq. (A.15) holds for each j. Therefore, we have proved that the

e-algorithm from Sect. 3 converges if Eq. (A.1) is fulfilled.

The algorithm proposed in this subsection formally generalizes the e-algorithm from Sect. 3.

Actually, the algorithms give the same result. We have presented the general algorithm here

only to obtain the estimation (A.1). The e-algorithm is always applied in computations.

Appendix B: Irregular walls

In the present appendix, we justify the formula (89) in Sect. 5.2.

We are looking for the velocity uðx; zÞ in the form

u ¼ u0 þ eu1 þ e2u2 þ Oðe4Þ; ðB:1Þ

since we need only the terms up to Oðe4Þ. According to the general algorithm, u1 is solution of

the equations

r2u1 ¼ rp1; r 	 u1 ¼ 0 ðB:2Þ

with the boundary conditions

u1ðx; bÞ ¼ �bTðxÞ @u0

@z

��
z¼b

; u1ðx;�bÞ ¼ bTðxÞ @u0

@z

��
z¼�b

: ðB:3Þ
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Derive @u0=@z from Eq. (16) and substitute it into Eq. (B.3):

u1ðx;�bÞ ¼ 2b2TðxÞ; 0
� �

: ðB:4Þ

Following the algorithm, tedious calculations provide the solution of the problem (B.2)–(B.3);

for instance, the x-component is written as

u1ðx; zÞ ¼ 2b2
X1

m¼1

PmðzÞ am cos mxþ bm sin mxð Þ; ðB:5Þ

where

PmðzÞ ¼ 2
bm coshðbmÞ � sinhðbmÞð Þ coshðmzÞ �mz sinhðbmÞ sinhðmzÞ

2bm� sinhð2bmÞ :

Let us formally calculate the derivative

@u1ðx; zÞ
@z

¼ 2b2
X1

m¼1

P0mðzÞ am cos mxþ bm sin mxð Þ: ðB:6Þ

Substitute z ¼ �b into Eq. (B.6). After simplification, we obtain

@u1

@z

���
z¼b
¼ 8b2

X1

m¼1

m sinh2 mb

2mb� sinh 2mb
am cos mxþ bm sin mxð Þ;

@u1

@z

���
z¼�b

¼ � @u1

@z

���
z¼b

:

ðB:7Þ

One can see that P0mðbÞ for fixed b and large m has the following limit

P0mðbÞ ¼
m sinh2 mb

2mb� sinh 2mb

 m

2
:

Hence, the series (B.7) converges iff the following series converges:

X1

m¼1

m am cos mxþ bm sin mxð Þ: ðB:8Þ

Here, we mean the absolute and uniform convergence. The convergence of Eq. (B.8) is stronger

than the convergence of Eq. (80). However, we can avoid this additional condition by

considering @u1=@z
��
z¼b

as a generalized function. The same convergence problem can be ad-

dressed for the velocity inside the channel; the same arguments are valid for @u1ðx;zÞ
@z

.

According to the general algorithm, the next approximation u2 satisfies the equations

r2u2 ¼ rp2; r 	 u2 ¼ 0 ðB:9Þ

with the boundary conditions

u2

��
z¼�b

¼ bT
@u1

@z

���
z¼�b

� b2

2
T2 @

2u0

@z2

���
z¼�b

: ðB:10Þ

Calculation of the right-hand part of Eq. (B.10) yields for the x-component

u2ðx;�bÞ ¼ b2T2 � 8b2T
X1

m¼1

mb sinh2 mb

2mb� sinh 2mb
am cos mxþ bm sin mxð Þ: ðB.11Þ

The calculation of K requires only the zeroth term in the Fourier series of u2ðx;�bÞ. Therefore,
instead of Eq. (B.11), we can consider the conditions

u�2ðx;�bÞ ¼ a;

A. E. Malevich et al.



where a is the zeroth term of Eq. (B.11). This constant a yields the coefficient of e2 in Eq. (82).

The constant a can be considered as a functional which is correctly defined by the assumption

that Eq. (80) converges.

In the general case of irregular walls, we have to assume that the functionsTðxÞ and BðxÞ belong
to the Sobolev space W

1
2

2 (cf. [28]). For instance, all Hölder-continuous functions belong to W
1
2

2 [29]

and the condition of the convergence of the series (80) (T;B 2 W
1
2

2) is sufficient to justify the formula

(79). Therefore, we have checked thatEq. (79) can be applied to channelswith irregular boundaries.
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which he acknowledges gratefully.

References

[1] Adler, P. M.: Porous media. Geometry and transport. Oxford: Butterworth-Heinemann 1992.
[2] Adler, P. M., Thovert, J.-F.: Fractures and fracture networks. Oxford: Butterworth-Heinemann

1999.
[3] Mourzenko, V. V., Thovert, J. F., Adler, P. M.: Percolation and conductivity of self-affine

fractures. Phys. Rev. E 59, 4265–4284 (1999).
[4] Mourzenko, V. V., Thovert, J. F., Adler, P. M.: Permeability of self-affine fractures. Transport in

Porous Media 45, 89–103 (2001).
[5] Neira, M. A., Payatakes, A. C.: Collocation solution of creeping Newtonian flow through

sinusoidal tubes. AIChE 25, 725–730 (1979).
[6] Burns, J. C., Parkes, T.: Peristaltic motion. J. Fluid Mech. 29, 731–743 (1967).

[7] Wang, C. Y.: Stokes flow through a channel with three-dimensional bumpy walls. Phys. Fluids 16,
2136–2139 (2004).

[8] Deiber, J. A., Schowalter, W. R.: Flow through tubes with sinusoidal axial variations in diameter.
AIChE 25, 638–644 (1979).

[9] Hasegawa, E., Izuchi, H.: On steady flow through a channel consisting of an uneven wall and plane
wall. Part 1: Case of no relative motion in two walls. Bull. JSME 26, 514–520 (1983).

[10] Hasegawa, E., Izuchi, H.: On steady flow through a channel consisting of an uneven wall and plane
wall. Part 2: Case of wall with relative velocity. Bull. JSME 27, 1631–1636 (1984).

[11] Floryan, J. M.: Vortex instability in a diverging-converging channel. J. Fluid Mech. 482, 17–50
(2003).

[12] Moffatt, H. K.: Viscous and resistive eddies near a sharp corner. J. Fluid Mech 18, 1–18 (1964).
[13] Moffatt, H. K.: G. K. Batchelor and the homogenization of turbulence. Ann. Rev. Fluid Mech. 34,

19–35 (2002).
[14] Perspectives in fluid dynamics. In: A collective introduction to current research (Batchelor, G. K.,

Moffatt, H. K., Worster, M. G., eds.). Cambridge: Cambridge University Press 2000.
[15] Pozrikidis, C.: Creeping flow in two-dimensional channel. J. Fluid Mech. 180, 495–514 (1987).

[16] Scholle, M., Wierschem, A., Aksel, N.: Creeping films with vortices over strongly undulated
channel. Acta Mech. 168, 167–193 (2004).

[17] Scholle, M.: Creeping Couette flow over an undulated plate. Arch. Appl. Mech. 73, 823–840
(2004).

[18] Wierschem, A., Scholle, M., Aksel, N.: Vortices in film flow over strongly undulated bottom
profiles at low Reynolds numbers. Phys. Fluids 15, 426–435 (2003).

[19] Gaskell, P. H., Jimack, P. K., Sellier, M., Thompson, H. M., Wilson, M. C. T.: Gravity–driven
flow of continuous thin liquid films on non–porous substrates with topography. J. Fluid Mech.

509, 253–280 (2004).

Stokes flow through a channel



[20] Zhou, H., Martinuzzi, J. C. , Khayat, R. E. , Straatman, A. G. , Abu-Ramadan, E.: Influence of

wall shape on vortex formation in modulated channel flow. Phys Fluids 15, 3114–3133 (2003).
[21] Bontozoglou, V.: Laminar film flow along a periodic wall. Comp. Model. Eng. Sci. 1, 133–142

(2000).
[22] Happel, J., Brenner, H.: Low Reynolds number hydrodynamics. New York: Prentice-Hall 1965.

[23] Hinch, E. J.: Perturbation methods. Cambridge: Cambridge University Press 1991.
[24] Baker, G. A.: Padé approximants. Cambridge: Cambridge University Press 1996.

[25] Munson, B. R., Rangwalla, A. A., Mann III, J. A.: Low Reynolds number circular Couette flow
past a wavy wall. Phys. Fluids 28, 2679–2686 (1985).

[26] Gelbaum, B. R., Olmsted, J. M. H.: Theorems and counterexamples in mathematics. New York:
Springer 1990.

[27] Adler, P. M., Malevich, A. E., Mityushev, V. V.: Macroscopic diffusion on rough surfaces. Phys.
Rev. E. 69, 011607 (2004).

[28] Zygmund, A. G.: Trigonometric series, vols. I and II combined, 2nd ed. Cambridge: Cambridge
University Press 1988.

[29] Kufner, A., Kadles, J.: Fourier series. Prague: Academia 1971.

Authors’ addresses: A. E. Malevich, Dept. Mech.-Math., Belarusian State University, pr.F.Skoriny 4,
220050 Minsk, Belarus; V. V. Mityushev, Dept. Math., Pedagogical University, ul. Podchorazych 2,

30-084, Krakow, Poland; P. M. Adler, IPGP, tour 24, 4, place Jussieu, 75252 - Paris Cedex 05, France
(E-mail: adler@ipgp.jussieu.fr)

A. E. Malevich et al.: Stokes flow through a channel


