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ABSTRACT: Consider a channel with two-dimensional wavy walls whose amplitude is propor-
tional to the mean clearance of the channel multiplied by a small dimensionless parameterε. Using
the method of perturbations we explicitly write the effective conductivity of the channel up toε3

for arbitrary shapes of the walls.

Introduction

Determination of the effective conductivityλ of curvilinear channels is an important applied prob-
lem. Though this problem can be solved by application of various numerical methods, it is in-
teresting to obtain analytical formulae for the effective conductivity in order to find explicitly
dependence on geometrical parameters. In the present paper, we consider a channel with two-
dimensional wavy walls whose amplitude is proportional to the mean clearance of the channel
multiplied by the small dimensionless parameterε. Using the method described in [1], [2] we
explicitly write λ up toO(ε3).
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Figure 1:Bounded periodical channel domainD.



Let a periodical channel domainD is bounded by the top and bottom walls

S+(x) ≡ b(1 + εT (x)), S−(x) ≡ b(−1 + εB(x)), (0.1)

(Fig. 1) whereb > 0 andε is a non-negative dimensionless small parameter. It is assumed that the
functionsT andB are continuously differentiable and periodic in[−π, π]. The potentialu satisfies
the following problem







∇2u(x, y) = 0, (x, y) ∈ D,

u(π, y) − u(−π, y) = 2π,
∂u
∂n

(x, S±(x)) = 0.
(0.2)

The second equation means that the potential has a constant jump along thex–axis. The third
condition means that the normal flux on the surfaces vanishes. The solution of (0.2) can be found
in the form [2]

u(x, y) = u0(x, y) + εu1(x, y) + ε2u2(x, y) + ε3u3(x, y) + . . . (0.3)

In the simple case of the plane channel (ε = 0) the potential has the formu0(x, y) = x.
All the following computations are performed with the accuracyO(ε2) which is noted by the

asymptotic equality⊜, in particular,

u(x, y) ⊜ x + εu1(x, y) + ε2u2(x, y). (0.4)

The normal vectors to the surfaces (0.1) have the form

n
+ = (−εbT ′, 1), n

− = (εbB′,−1), (0.5)

where primes denote the derivative. The normal derivativesof the potential with the required
accuracy become

∂u

∂n
+

⊜ ε

(

− bT ′ +
∂u1

∂y

)

+ ε2

(

− bT ′
∂u1

∂x
+

∂u2

∂y

)

= 0 (0.6)

∂u

∂n
−

⊜ ε

(

bB′ −
∂u1

∂y

)

+ ε2

(

bB′
∂u1

∂x
−

∂u2

∂y

)

= 0 (0.7)

They are equal to zero because of the boundary conditions from (0.2). Take the coefficients on the
same powers ofε in (0.6) and (0.7)

{

−bT ′ + ∂u1

∂y
= 0

−bT ′ ∂u1

∂x
+ ∂u2

∂y
= 0

(0.8)

{

bB′ − ∂u1

∂y
= 0

bB′ ∂u1

∂x
− ∂u2

∂y
= 0

(0.9)

Consider now the problem (0.2) in the first order approximation















∇2u1 = 0, (x, y) ∈ D0

u1(π, y) − u1(−π, y) = 0,
∂u1

∂y
(x, b) = bT ′(x),

∂u1

∂y
(x,−b) = bB′(x)

(0.10)



whereD0 = {(x, y) ∈ R
2 : −b < y < b}.

The functionsu1, T andB can be presented as their complex Fourier series

T (x) =
+∞
∑

ν=−∞

Tνe
iνx, B(x) =

+∞
∑

ν=−∞

Bνe
iνx, (0.11)

u1(x, y) =
+∞
∑

ν=−∞

cν(y)eiνx. (0.12)

Then the conditions (0.10) can be written in the form

∇2u1(x, y) =
+∞
∑

ν=−∞

(c′′ν(y) − ν2cν(y))eiνx = 0 (0.13)

+∞
∑

ν=−∞

c′ν(b)e
iνx = b

+∞
∑

ν=−∞

iνTνe
iνx,

+∞
∑

ν=−∞

c′ν(−b)eiνx = b

+∞
∑

ν=−∞

iνBνe
iνx (0.14)

Uniqueness of the Fourier representation yields the following ordinary differential equations and
the boundary conditions forcν .







c′′ν(y) − ν2cν(y) = 0
c′ν(b) = ibνTν

c′ν(−b) = ibνBν

(0.15)

The solution of (0.15) has the form

cν(y) =
ib

sinh(2νb)

(

Tν cosh
(

ν(b + y)
)

− Bν cosh
(

ν(b − y)
)

)

. (0.16)

1 Conductivity

The effective conductivity of the channel is defined as the double integral

λx =
1

|D|

∫∫

D

|∇u|2 dxdy (1.1)

It can be written in extended form as follows

1

4πb

∫ π

−π

dx

∫ S+

S−

(

∂u

∂x

)2

+

(

∂u

∂y

)2

dy (1.2)

It is easy to show that
(

∂u

∂x

)2

⊜ 1 + 2ε
∂u1

∂x
+ ε2

(

∂u1

∂x

)2

+ 2ε2
∂u2

∂x
(1.3)

and
(

∂u

∂y

)2

⊜ ε2

(

∂u1

∂y

)2

. (1.4)

Substitution of (1.3) and (1.4) into (1.2) yields

λx ⊜
1

4πb

∫ π

−π

dx

∫ S+

S−

(

1 + 2ε
∂u1

∂x
+ 2ε2

∂u2

∂x
+ ε2 |∇u1|

2

)

dy. (1.5)



One of the integrals of (1.5) is transformed as follows (withthe accuracyO(ε2))

ε2

4πb

∫∫

D0

|∇u1|
2
dxdy + 2b

∫ π

−π

(

T
∂u1

∂x
(x, b) − B

∂u1

∂x
(x,−b)

)

dx, (1.6)

since the functionsu1 andu2 are periodic inx. Here, we use the following formula based on the
Taylor theorem

∫ S+

S−

f(y)dy ⊜

∫ b

−b

f(y)dy + bε [Tf(b) − Bf(−b)] +
bε

2
[Tf ′(b) − Bf ′(−b)]

Applycation of Green’s theorem to the double integral in (1.6) and use of∇2u1 = 0 yield
∫∫

D0

|∇u1|
2
dxdy =

∫∫

∂D0

u1

∂u1

∂n
ds (1.7)

Compute (1.7) using the boundary and the periodicity conditions on∂D0

∫∫

D0

|∇u1|
2
dxdy = b

∫ π

−π

(T ′(x)u1(x, b) − B′(x)u1(x,−b))dx. (1.8)

The latter integrals are calculated by parts. The periodicity of u1, T andB yields
∫ π

−π

T ′(x)u1(x, b)dx = −

∫ π

−π

(

T (x)
∂u1

∂x
(x, b)

)

dx (1.9)

∫ π

−π

B′(x)u1(x,−b)dx = −

∫ π

−π

B(x)
∂u1

∂x
(x,−b)dx (1.10)

Hence,

λx = 1 +
ε2

4π

∫ π

−π

T (x)
∂u1

∂x
(x, b) − B(x)

∂u1

∂x
(x,−b)dx (1.11)

The integral in (1.11) can be considered as the zeroth coefficient F0 of the Fourier series of the
integrand multiplied by2π

2πF0 =

∫ π

−π

[

T (x)
∂u1

∂x
(x, b) − B(x)

∂u1

∂x
(x,−b)

]

dx (1.12)

The zeroth coefficient of the productT (x) and ∂u1

∂x
(x, b) takes the form

{

T (x)
∂u1

∂x
(x, b)

}

0

=
+∞
∑

ν=−∞

T−νiνcν(b) =
+∞
∑

ν=−∞

−νbTν

Tν cosh(2νb) − Bν

sinh 2νb
, (1.13)

where the bar denote the complex conjugation. Along similarlines
{

B(x)
∂u1

∂x
(x,−b)

}

0

=
+∞
∑

ν=−∞

−νbBν

Tν − Bν cosh(2νb)

sinh 2νb
(1.14)

Therefore,

F0 =
+∞
∑

ν=−∞

−νb

sinh (2νb)

(

TνTν cosh(2νb) − TνBν − BνTν + BνBν cosh(2νb)
)

= −b

+∞
∑

ν=−∞

ν

sinh (2νb)

(

cosh(2νb)(|Tν |
2 + |Bν |

2) − 2Re(TνBν)
)

,

(1.15)



whereRe stands for the real part. The ultimate formula for the effective conductivity becomes

λx = 1 −
ε2b

2

+∞
∑

ν=−∞

ν

sinh (2νb)

(

cosh(2νb)(|Tν |
2 + |Bν |

2) − 2Re(TνBν)
)

. (1.16)

The results for the several bounded channels are presented in Fig. 2 and Fig. 3.
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Figure 2: Effective conductivity calculated by (1.16) forT (x) = − cos(x), B(x) = sin(5x) andb from
1.5 to 9. Data are for: solid line:b = 1.5, thick broken line:b = 3; dots: b = 4.5; dots and broken line:
b = 6; broken:b = 7.5; thick solid line:b = 9
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Figure 3:Effective conductivity calculated by (1.16) forT (x) = 0, B(x) = sin(x)+ 1

3
cos(2x)− 1

5
cos(4x)

andb from 1.5 to 9. Data are for: solid line:b = 1.5, thick broken line:b = 3; dots: b = 4.5; dots and
broken line:b = 6; broken:b = 7.5; thick solid line:b = 9



References

[1] A. E. Malevich, V. V. Mityushev and P. M. Adler, Electrokinetic phenomena in wavy channels. J
Colloid Interface Sci. 2010, 345(1), 72-87.

[2] A. E. Malevich, V. V. Mityushev and P. M. Adler, Stokes flow througha channel with wavy walls,
Acta Mechanica, 2006, 182, 3-4, 151-182.


