MACROSCOPIC CONDUCTIVITY OF CURVILINEAR CHANNELS

Roman Czapla ${ }^{1}$
E-mail: romanczapla@tlen.pl
Vladimir V. Mityushev ${ }^{1}$
E-mail: vmityu@yahoo.com
Wojciech Nawalaniec ${ }^{1}$
E-mail: wnawalaniec@gmail.com
${ }^{1}$ Department of Mathematics, Krakow Pedagogical University, ul. Podchorazych 2, 30-084 Krakow, Poland

Abstract

Consider a channel with two-dimensional wavy walls whose amplitude is proportional to the mean clearance of the channel multiplied by a small dimensionless parameter ε. Using the method of perturbations we explicitly write the effective conductivity of the channel up to ε^{3} for arbitrary shapes of the walls.

Introduction

Determination of the effective conductivity λ of curvilinear channels is an important applied problem. Though this problem can be solved by application of various numerical methods, it is interesting to obtain analytical formulae for the effective conductivity in order to find explicitly dependence on geometrical parameters. In the present paper, we consider a channel with twodimensional wavy walls whose amplitude is proportional to the mean clearance of the channel multiplied by the small dimensionless parameter ε. Using the method described in [1], [2] we explicitly write λ up to $O\left(\varepsilon^{3}\right)$.

Figure 1: Bounded periodical channel domain D.

Let a periodical channel domain D is bounded by the top and bottom walls

$$
\begin{equation*}
S^{+}(x) \equiv b(1+\varepsilon T(x)), \quad S^{-}(x) \equiv b(-1+\varepsilon B(x)), \tag{0.1}
\end{equation*}
$$

(Fig. 1) where $b>0$ and ε is a non-negative dimensionless small parameter. It is assumed that the functions T and B are continuously differentiable and periodic in $[-\pi, \pi]$. The potential u satisfies the following problem

$$
\left\{\begin{array}{l}
\nabla^{2} u(x, y)=0, \quad(x, y) \in D \tag{0.2}\\
u(\pi, y)-u(-\pi, y)=2 \pi \\
\frac{\partial u}{\partial \mathbf{n}}\left(x, S^{ \pm}(x)\right)=0
\end{array}\right.
$$

The second equation means that the potential has a constant jump along the x-axis. The third condition means that the normal flux on the surfaces vanishes. The solution of (0.2) can be found in the form [2]

$$
\begin{equation*}
u(x, y)=u_{0}(x, y)+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y)+\varepsilon^{3} u_{3}(x, y)+\ldots \tag{0.3}
\end{equation*}
$$

In the simple case of the plane channel $(\varepsilon=0)$ the potential has the form $u_{0}(x, y)=x$.
All the following computations are performed with the accuracy $O\left(\varepsilon^{2}\right)$ which is noted by the asymptotic equality $\stackrel{\circ}{=}$, in particular,

$$
\begin{equation*}
u(x, y) \stackrel{\circ}{=} x+\varepsilon u_{1}(x, y)+\varepsilon^{2} u_{2}(x, y) \tag{0.4}
\end{equation*}
$$

The normal vectors to the surfaces (0.1) have the form

$$
\begin{equation*}
\mathbf{n}^{+}=\left(-\varepsilon b T^{\prime}, 1\right), \quad \mathbf{n}^{-}=\left(\varepsilon b B^{\prime},-1\right) \tag{0.5}
\end{equation*}
$$

where primes denote the derivative. The normal derivatives of the potential with the required accuracy become

$$
\begin{gather*}
\frac{\partial u}{\partial \mathbf{n}^{+}} \stackrel{\circ}{=} \varepsilon\left(-b T^{\prime}+\frac{\partial u_{1}}{\partial y}\right)+\varepsilon^{2}\left(-b T^{\prime} \frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}\right)=0 \tag{0.6}\\
\frac{\partial u}{\partial \mathbf{n}^{-}} \stackrel{\circ}{=} \varepsilon\left(b B^{\prime}-\frac{\partial u_{1}}{\partial y}\right)+\varepsilon^{2}\left(b B^{\prime} \frac{\partial u_{1}}{\partial x}-\frac{\partial u_{2}}{\partial y}\right)=0 \tag{0.7}
\end{gather*}
$$

They are equal to zero because of the boundary conditions from (0.2). Take the coefficients on the same powers of ε in (0.6) and (0.7)

$$
\begin{align*}
& \left\{\begin{array}{l}
-b T^{\prime}+\frac{\partial u_{1}}{\partial y}=0 \\
-b T^{\prime} \frac{\partial u_{1}}{\partial x}+\frac{\partial u_{2}}{\partial y}=0
\end{array}\right. \tag{0.8}\\
& \left\{\begin{array}{l}
b B^{\prime}-\frac{\partial u_{1}}{\partial y}=0 \\
b B^{\prime} \frac{\partial u_{1}}{\partial x}-\frac{\partial u_{2}}{\partial y}=0
\end{array}\right. \tag{0.9}
\end{align*}
$$

Consider now the problem (0.2) in the first order approximation

$$
\left\{\begin{array}{l}
\nabla^{2} u_{1}=0, \quad(x, y) \in D_{0} \tag{0.10}\\
u_{1}(\pi, y)-u_{1}(-\pi, y)=0, \\
\frac{\partial u_{1}}{\partial y}(x, b)=b T^{\prime}(x), \\
\frac{\partial u_{1}}{\partial y}(x,-b)=b B^{\prime}(x)
\end{array}\right.
$$

where $D_{0}=\left\{(x, y) \in \mathbb{R}^{2}:-b<y<b\right\}$.
The functions u_{1}, T and B can be presented as their complex Fourier series

$$
\begin{gather*}
T(x)=\sum_{\nu=-\infty}^{+\infty} T_{\nu} e^{i \nu x}, \quad B(x)=\sum_{\nu=-\infty}^{+\infty} B_{\nu} e^{i \nu x} \tag{0.11}\\
u_{1}(x, y)=\sum_{\nu=-\infty}^{+\infty} c_{\nu}(y) e^{i \nu x} \tag{0.12}
\end{gather*}
$$

Then the conditions (0.10) can be written in the form

$$
\begin{gather*}
\nabla^{2} u_{1}(x, y)=\sum_{\nu=-\infty}^{+\infty}\left(c_{\nu}^{\prime \prime}(y)-\nu^{2} c_{\nu}(y)\right) e^{i \nu x}=0 \tag{0.13}\\
\sum_{\nu=-\infty}^{+\infty} c_{\nu}^{\prime}(b) e^{i \nu x}=b \sum_{\nu=-\infty}^{+\infty} i \nu T_{\nu} e^{i \nu x}, \quad \sum_{\nu=-\infty}^{+\infty} c_{\nu}^{\prime}(-b) e^{i \nu x}=b \sum_{\nu=-\infty}^{+\infty} i \nu B_{\nu} e^{i \nu x} \tag{0.14}
\end{gather*}
$$

Uniqueness of the Fourier representation yields the following ordinary differential equations and the boundary conditions for c_{ν}.

$$
\left\{\begin{array}{l}
c_{\nu}^{\prime \prime}(y)-\nu^{2} c_{\nu}(y)=0 \tag{0.15}\\
c_{\nu}^{\prime}(b)=i b \nu T_{\nu} \\
c_{\nu}^{\prime}(-b)=i b \nu B_{\nu}
\end{array}\right.
$$

The solution of (0.15) has the form

$$
\begin{equation*}
c_{\nu}(y)=\frac{i b}{\sinh (2 \nu b)}\left(T_{\nu} \cosh (\nu(b+y))-B_{\nu} \cosh (\nu(b-y))\right) . \tag{0.16}
\end{equation*}
$$

1 Conductivity

The effective conductivity of the channel is defined as the double integral

$$
\begin{equation*}
\lambda_{x}=\frac{1}{|D|} \iint_{D}|\nabla u|^{2} d x d y \tag{1.1}
\end{equation*}
$$

It can be written in extended form as follows

$$
\begin{equation*}
\frac{1}{4 \pi b} \int_{-\pi}^{\pi} d x \int_{S^{-}}^{S^{+}}\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2} d y \tag{1.2}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
\left(\frac{\partial u}{\partial x}\right)^{2} \stackrel{\circ}{=} 1+2 \varepsilon \frac{\partial u_{1}}{\partial x}+\varepsilon^{2}\left(\frac{\partial u_{1}}{\partial x}\right)^{2}+2 \varepsilon^{2} \frac{\partial u_{2}}{\partial x} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial u}{\partial y}\right)^{2} \doteq \varepsilon^{2}\left(\frac{\partial u_{1}}{\partial y}\right)^{2} . \tag{1.4}
\end{equation*}
$$

Substitution of (1.3) and (1.4) into (1.2) yields

$$
\begin{equation*}
\lambda_{x} \stackrel{\circ}{=} \frac{1}{4 \pi b} \int_{-\pi}^{\pi} d x \int_{S^{-}}^{S^{+}}\left(1+2 \varepsilon \frac{\partial u_{1}}{\partial x}+2 \varepsilon^{2} \frac{\partial u_{2}}{\partial x}+\varepsilon^{2}\left|\nabla u_{1}\right|^{2}\right) d y . \tag{1.5}
\end{equation*}
$$

One of the integrals of (1.5) is transformed as follows (with the accuracy $O\left(\varepsilon^{2}\right)$)

$$
\begin{equation*}
\frac{\varepsilon^{2}}{4 \pi b} \iint_{D_{0}}\left|\nabla u_{1}\right|^{2} d x d y+2 b \int_{-\pi}^{\pi}\left(T \frac{\partial u_{1}}{\partial x}(x, b)-B \frac{\partial u_{1}}{\partial x}(x,-b)\right) d x \tag{1.6}
\end{equation*}
$$

since the functions u_{1} and u_{2} are periodic in x. Here, we use the following formula based on the Taylor theorem

$$
\int_{S^{-}}^{S^{+}} f(y) d y \doteq \int_{-b}^{b} f(y) d y+b \varepsilon[T f(b)-B f(-b)]+\frac{b \varepsilon}{2}\left[T f^{\prime}(b)-B f^{\prime}(-b)\right]
$$

Applycation of Green's theorem to the double integral in (1.6) and use of $\nabla^{2} u_{1}=0$ yield

$$
\begin{equation*}
\iint_{D_{0}}\left|\nabla u_{1}\right|^{2} d x d y=\iint_{\partial D_{0}} u_{1} \frac{\partial u_{1}}{\partial n} d s \tag{1.7}
\end{equation*}
$$

Compute (1.7) using the boundary and the periodicity conditions on ∂D_{0}

$$
\begin{equation*}
\iint_{D_{0}}\left|\nabla u_{1}\right|^{2} d x d y=b \int_{-\pi}^{\pi}\left(T^{\prime}(x) u_{1}(x, b)-B^{\prime}(x) u_{1}(x,-b)\right) d x . \tag{1.8}
\end{equation*}
$$

The latter integrals are calculated by parts. The periodicity of u_{1}, T and B yields

$$
\begin{align*}
& \int_{-\pi}^{\pi} T^{\prime}(x) u_{1}(x, b) d x=-\int_{-\pi}^{\pi}\left(T(x) \frac{\partial u_{1}}{\partial x}(x, b)\right) d x \tag{1.9}\\
& \int_{-\pi}^{\pi} B^{\prime}(x) u_{1}(x,-b) d x=-\int_{-\pi}^{\pi} B(x) \frac{\partial u_{1}}{\partial x}(x,-b) d x \tag{1.10}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\lambda_{x}=1+\frac{\varepsilon^{2}}{4 \pi} \int_{-\pi}^{\pi} T(x) \frac{\partial u_{1}}{\partial x}(x, b)-B(x) \frac{\partial u_{1}}{\partial x}(x,-b) d x \tag{1.11}
\end{equation*}
$$

The integral in (1.11) can be considered as the zeroth coefficient F_{0} of the Fourier series of the integrand multiplied by 2π

$$
\begin{equation*}
2 \pi F_{0}=\int_{-\pi}^{\pi}\left[T(x) \frac{\partial u_{1}}{\partial x}(x, b)-B(x) \frac{\partial u_{1}}{\partial x}(x,-b)\right] d x \tag{1.12}
\end{equation*}
$$

The zeroth coefficient of the product $T(x)$ and $\frac{\partial u_{1}}{\partial x}(x, b)$ takes the form

$$
\begin{equation*}
\left\{T(x) \frac{\partial u_{1}}{\partial x}(x, b)\right\}_{0}=\sum_{\nu=-\infty}^{+\infty} T_{-\nu} i \nu c_{\nu}(b)=\sum_{\nu=-\infty}^{+\infty}-\nu b \bar{T}_{\nu} \frac{T_{\nu} \cosh (2 \nu b)-B_{\nu}}{\sinh 2 \nu b} \tag{1.13}
\end{equation*}
$$

where the bar denote the complex conjugation. Along similar lines

$$
\begin{equation*}
\left\{B(x) \frac{\partial u_{1}}{\partial x}(x,-b)\right\}_{0}=\sum_{\nu=-\infty}^{+\infty}-\nu b \overline{B_{\nu}} \frac{T_{\nu}-B_{\nu} \cosh (2 \nu b)}{\sinh 2 \nu b} \tag{1.14}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
F_{0} & =\sum_{\nu=-\infty}^{+\infty} \frac{-\nu b}{\sinh (2 \nu b)}\left(\overline{T_{\nu}} T_{\nu} \cosh (2 \nu b)-\overline{T_{\nu}} B_{\nu}-\overline{B_{\nu}} T_{\nu}+\overline{B_{\nu}} B_{\nu} \cosh (2 \nu b)\right) \\
& =-b \sum_{\nu=-\infty}^{+\infty} \frac{\nu}{\sinh (2 \nu b)}\left(\cosh (2 \nu b)\left(\left|T_{\nu}\right|^{2}+\left|B_{\nu}\right|^{2}\right)-2 \operatorname{Re}\left(\overline{T_{\nu}} B_{\nu}\right)\right), \tag{1.15}
\end{align*}
$$

where $R e$ stands for the real part. The ultimate formula for the effective conductivity becomes

$$
\begin{equation*}
\lambda_{x}=1-\frac{\varepsilon^{2} b}{2} \sum_{\nu=-\infty}^{+\infty} \frac{\nu}{\sinh (2 \nu b)}\left(\cosh (2 \nu b)\left(\left|T_{\nu}\right|^{2}+\left|B_{\nu}\right|^{2}\right)-2 \operatorname{Re}\left(\overline{T_{\nu}} B_{\nu}\right)\right) \tag{1.16}
\end{equation*}
$$

The results for the several bounded channels are presented in Fig. 2 and Fig. 3.

Figure 2: Effective conductivity calculated by (1.16) for $T(x)=-\cos (x), B(x)=\sin (5 x)$ and b from 1.5 to 9 . Data are for: solid line: $b=1.5$, thick broken line: $b=3$; dots: $b=4.5$; dots and broken line: $b=6$; broken: $b=7.5$; thick solid line: $b=9$

Figure 3: Effective conductivity calculated by (1.16) for $T(x)=0, B(x)=\sin (x)+\frac{1}{3} \cos (2 x)-\frac{1}{5} \cos (4 x)$ and b from 1.5 to 9 . Data are for: solid line: $b=1.5$, thick broken line: $b=3$; dots: $b=4.5$; dots and broken line: $b=6$; broken: $b=7.5$; thick solid line: $b=9$

References

[1] A. E. Malevich, V. V. Mityushev and P. M. Adler, Electrokinetic phenomena in wavy channels. J Colloid Interface Sci. 2010, 345(1), 72-87.
[2] A. E. Malevich, V. V. Mityushev and P. M. Adler, Stokes flow through a channel with wavy walls, Acta Mechanica, 2006, 182, 3-4, 151-182.

