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Abstract

We study a composite material of the fibre - layer type by com-
bination of the method of symmetry and the method of functional
equations. Approximate analytical formulae are deduced for the ef-
fective conductivity tensor.

1 Introduction

The transport properties of various types of two-dimensional composite ma-
terials have been studied by different mathematical methods. There are exact
and approximate formulae for the effective conductivity tensor A, for special
types of the materials. The tensor A, for the layer materials is calculated by
the arithmetic and harmonic mean values of the properties of components.
Exact formulae in the case of rectangular compounds arranged in chess order
have been obtained in [9], [8]. If rectangular cells are square ones, we arrive
at the Dykhne - Keller formula [1] involving the geometric mean value.

McPhedran et al. [2] extend the Rayleigh method to analyze the transport
properties of composite materials consisting of a doubly periodic array of
cylinders. See also papers of the present book. A rigorous justification of
the Rayleigh lattice sums and relations between the Rayleigh and Schwarz
methods are exposed in [4]. Exact and approximate formulae for A, for simple
double periodic array and complex double periodic arrays are deduced in [3],
[6], [7] by the method of functional equations.

All these method are devoted to special types of composites: layer, chess,
fibre. In the present paper we study a composite material of the fibre -
layer type by combination of the method of symmetry and the method of
functional equations. Similar problems for materials with finite number of
inclusions are solved in [11].



2 Statement of the problem

We consider a lattice @ which is defined by two fundamental vectors a (o >
0) and ia~! on the complex plane C of the variable z = = + iy. The zero
cell Qo := {z = tha + tagia™' : —1/2 < ¢; < 1/2} is divided onto the domains
D3 :={z€Qo: |[z—ia|<r}, Dy :={2€Q)\(DsUL): Sz>0}, Dy :=
{z€Qo: |z+1ia| <71}, Dy := {z € Q\(DyUT): Sz <0}, where L :=
0D3, I := 0D,. We denote the boundary of D; by 0D;. See Figure.
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Figure 1:

Let a material of the conductivity \; occupies D; and Dy, a material of
the conductivity As occupies Dy and D3. The external field is applied in
the direction of the negative = axis. The general theory implies the following
boundary value problem. To find functions u;(z) harmonic in D; respectively
(j =1,2,3,4) and continuously differentiable in (D; U dD;) \ {£«a/2} ; u;(2)
for j = 1,2 are bounded near the points £a/2. The unknown functions
satisfy the boundary conditions:

o o 1
Uj(§ + iy) _Uj(_E +iy) =a, 0<|y| < %0



ouj o . ou;

TS i) S-S i) <yl < 5o, =12
uq (2 "‘2'@) = Uz(l’—%), )\1%—?@—%%) = )\2%—1;2(3:—%), |z| < %, (2.1)
ui(x 4 i0) = ug(xz — i0), Alz—l;(x—l—i()) = /\gaa—f(x —10), |z| < %,
u; = Us, )\1%1;; = )\2% on L,
Uy = Uy, )\QaUZ = )\1% on I,

on on
where 0/0n is the normal derivative outward to L and T

Following [3], [6], [7] we introduce the complex potentials ¢,(z) analytic
in D; in such a way that Rp;(2) = u;(z) in D;. Then the conditions (2.1)
become

. (e} . 1 .
it +a) —p;(t) = a+iv, t:—§+zy, 0<|y|<%, ji=1,2,

prlt) = o R0 + 20, 1= el < 5,
pi(t) = )\12—;1)\2903@) + A}; Mo, e L, (2.2)
prlt+2) = 2200 + 20T t—a— el < 5,
p2(t) = )\227;:\1904(15) + >\22; M oa(t), teT,

where 7 is a real constant. Introduce the vector-functions

w0=(56) = (58 ) epo0=(35) <o

o %903_(’2) ~ 2) = 904_(Z)+ 2)\1 903( ) .
V(z) := < %%(?) ) , 2 € D3, V(z) = ((’03(2) 1%&)@4( 2) ), € Dy.

V(z) is defined in different domains, but the same symbol is used for conve-
nience. For instance, the second equality (2.2) can be written through the
components of the vector-functions ® and © as follows

AL+ A2
2\

A=A
2\

0, (1) = O1() + D(t), (2.3)



)\1 + )\2 )\1 - )\2
O(t) = Do (t
2(1) 2\ 2(1) + 2\
One can see that (2.4) is the complex conjugation of (2.3). Her the relation
t =t on the real axis is used. The conditions (2.3), (2.4) can be written in

the vector-matrix form

O.(t), t =z, || < % (2.4)

(0]
o)

O(t) =GO(t), t ==, |z| < 5

(2.5)
where
G 1 ( 2o AL — Ao )
M+ L= (A= A2) 2\ '
We introduce a new vector-function F(z) = (Fy(z), Fy(2))" as follows

o ®(z2), z € Dy,
F(z) = { GO(z), z € Ds.

Then (2.5) in terms of F(z) takes the form of the analytic continuation
F(z +140) = F(z —10), |z| < §. Similar arguments applied to the forth
relation (2.2) yield the relation F(z + =) = F(z — 5%), |z| < . The third

and fifth conditions (2.2) yield

Fit)=V(t)+GV({@), tel, Ft)=V({#)+ GV (D), tel,  (2.6)

where

B 1 0 B 202 =1  2p(1—p) AN
Gl_p(o —1)’G2_p(2,0(1+p) —@2f-1) ) P NN

The first relation (2.2) implies

F(t+a)— F(t) = al +ivB(t), t = —% +iy, 0< |yl < % (2.7)

where 1 := (1,1)7, B(z) := (1,—=1)7, z € Dy, B(2) == (A1 + A2) 7 (3ha — A1, 30 — \o) T,
A DQ.

Thus we have the R—linear problem (2.6) in the cell )y with respect to the
vector-functions F'(z), V(z) analytic in D := Qo\ (DsU LU D,UT), D3 U
Dy, respectively. F'(z) is periodic along the y axis and has the prescribed
jump along the z axis. This jump is derived by (2.7). Differentiating (2.6)
we arrive to the R—linear problem

)2 GV, t e T
(2.8)

F(t) = V'(t)— (ﬁ)z G\V'{t), te L, F'(t) = V’(t)—(

t+1a
where the vector-function F”’(z) is doubly periodic.
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3 Functional equations

The vector-matrix problem (2.6), (2.7) is similar to a scalar R—linear problem
solved in [6]. It is possible to repeat the arguments of [6] and deduce a system
of functional equations. In order to write this system we introduce some
objects. In particular we shall use the Eisenstein functions [10]

“+o00

Eiz):= >  (z=emm) L az)=E() -2 1=23,., (31)

mi,ma=—00

where €, m, = mya+imaea~t. The series (3.1) for | > 3 converges absolutely
and uniformly in each compact subset of the complex plane except the points
€mymy- 1L L =2 then Fy(z2) := P(z) + S2, Sy :=2a~'Car/2), where P(z) and
((z) are the Weierstrass functions [10].

Consider the Banach space C, consisting of vector-functions continuous
on L with the norm ||¢| := max; max; |¢;(t)|, where 9;(¢) is the j—th
coordinate of ¥(t). Introduced the closed subspace C; C Cy, of the vector-
functions analytically continued into D3. Analogously the spaces C{ and Cr
are introduced. We also use the space C* containing the vector-functions
Y e CiNCE. Actually CT = Cf x Cf, since domains of the functions of C}
and Cj' have not joint points.

The vector-function V’(z) from the problem (2.8) belongs to C*. Hence,
it can be represented in the form of its Taylor expansion

[e'9) . N\
~ — € Dy
V(2 :{ Zégoo‘l (2 Z.a) ; < ;
) Sore Bi(z —ia), z € Dy,

where a; and (3, are two-dimensional vectors. Introduce the operators

o0

WV'(z Z T2(l+1) (Gi@E14s (2 — ia) + GoBiEpis (2 +ia)] , z € D,
1=0
W V' (2) = Z r*U [Giagorys (2 —ia) + GoBiEiss (2 +ia)] , 2 € Qo\D1,
I=
(3.2)

WFV/(Z) . Z 2(1+1) [GloélEH_g (Z — ZCL) + GQﬁlO'H_g (Z + ’LCL)} , 2 € Qo\Dg.

=0

It follows from [5] that the series (3.2) converges absolutely and uniformly in
the closures of the domains where they are defined. This implies that they
are analytic in these domains. The function WV’(z2) is doubly periodic, since
it is a linear combination of the doubly periodic functions F; (z), [ = 2,3, ... .
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We introduce the vector-function

V'(2) + W V'(2), |z—ia|l <,
E(z) :=¢ V'(2) +WrV'(2), |z+41ia| <,
F'(z) + WV'(2) z€D.

The jump of Z(z) along |t — ia| = r is calculated as follows

- )2G1V’—(t):0.

t—1a

F't)+ WV'(t) = V'(t) = W_LV'(t) = F'(t) - V'(t) + (

Here (2.8) =
we obtain the zero jump of Z(z) along |t 4 ia| = r. Applying the principle of
analytic continuation and the general Liouville theorem for the lattice Q we
conclude that Z(z) is a constant vector. Following [3] it is possible to show
that this constant vector is 1. The definition of =(z) implies the system of
functional equations

|t — ia| = r are used. Analogously

V'(z) = Z P2+ [G]_E[O—l_i_Q (z —ia) + GoB1Epys (2 + ia)] +1, |z —dal <,
1=0
(3.3)

V'(z) = Z U (G Erys (2 — ia) + GoBio142 (2 +4a)] + 1, |z +ia] < 7.
1=0

Theorem 3.1. . The system (3.3) has a unique solution in C*. This solution
can be found by the method of successive approximations.

The proof of the theorem repeats analogous proof of the scalar theorem
from [5].
4 Effective conductivity

We apply Theorem 3.1 to calculate the component A? of the effective prop-

erties tensor
A0
Ae ‘( 0 Xz)

of the composite material represented by the zero cell )g. We have
Ar = M1+ Ao, (4.1)

where

J1 :/ —d d +// dxdy, Jo = / —d d +// dxdy.
D afE Dy Do 5’x D5
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Applying Green’s formula [ [, %2dzdy = [, Qdy we obtain

1
Ji Z/ uldy+/U4dy= 5—/u3dy+/u4dy,
oDy r L r

since u; = ug on L and the jump of u; on the opposite vertical sides of )y
is equal to a, the length of these sides is equal to a~'/2. Tt follows from the
mean value theorem of harmonic functions that

. 1 2 _0u4 . (9U3 . |
Ji = 3 + 7 _8_x(m) - %(—w)_ (4.2)
Analogously
1 5 [ Ouy dus . |
Jy = 5 +7r K (—ia) — e (za)_ (4.3)
Substituting (4.2), (4.3) in (4.1) we obtain
- - Juy , . Jus , .
A= A (A — Ao) a—;(—w) - 8—;’@@) : (4.4)

where AJ = (A + A2) /2 is the effective conductivity of the layer material,
when the inclusions D3 and D, are absent (r = 0).
Let us use in (4.4) the complex potentials. We have

’ o 8Uj _ ,8Uj
ij(’z> - or ('ruy) ¢ ay ('rvy)a

then Ry’ (z) = %4 (z,y). In accordance with the definitions of V'(z) and

— oz
complex potentials the following relation

Ous (;
3_13@@) _ 2 )\1 0 e
( Gt (—ia) ) AL+ A ( 0 A RV (ia)

holds. Then (4.4) yields

M= N8+ 21 p [NV (i) — M\ V; (ia)] (4.5)

where V/(ia) and Vj(ia) are the components of the vector V' (ia).

Thus we can propose the following constructive method to calculate A\Z.
First we solve (3.3) by the method of successive approximations. Further,
we calculate RV (ia) and substitute it in (4.5). Let us consider some simple
analytic formulae which follow from this method. We have in the first order
approximation the following formulae

ML= [1 = dmr?p® — Arr*RP(2ia)p*(2p + 1)] + O(p*), as p — 0, (4.6)
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where P(z) is the Weierstrass function. We shall use the Keller identity
AEAY = Mg, Let us note that if we change Ay and Ay, then A7 and \Y do
not change because of symmetry. We have

N = N [L+ 4mr?p® + dar*RP(2ia) p* (2p 4+ 1)] + O(p), (4.7)
where \j = % One can apply the next approximations to (3.3) and

deduce higher-order formulae. It is possible to apply the method of successive
approximations to (3.3) assuming that r? is a small parameter and deduce
formulae with small r? and arbitrary p.
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