Functional Equations for Analytic Functions
and Their Application to Elastic Composites

Piotr Drygas and Vladimir Mityushev

Abstract Two-dimensional elastic composites with non-overlapping inclusions is
studied by means of the boundary value problems for analytic functions following
Muskhelishvili’s approach. We develop a method of functional equations to reduce
this problem for a circular multiply connected domain to functional-differential
equations. Analytical formulae for the effective constants are deduced.
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1 Introduction

Two-dimensional elastic composites with non-overlapping inclusions can be dis-
cussed through boundary value problems for analytic functions following Muskhe-
lishvili’s approach [16]. A method of functional equations was proposed to solve
the Riemann—Hilbert and R-linear problems for multiply connected domains [13].
These results were applied to description of the local fields and the effective
conductivity tensor for 2D composites [1, 4, 8, 9, 12, 14, 15]. In the present note,
we develop this method of functional equations to elastic problems modelled by
the biharmonic equation. We reduce the problem for a circular multiply connected
domain to a system functional-differential equations and propose a constructive
method for their solution in terms of the generalized Eisenstein and Natanzon
functions [2, 6, 7, 17]).
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2 Statement of the Elastic Problem

Consider n disks Dy = {z € C : |z—ax| < r}, (k = 1,..,n) in the complex plane
C.LetTy = 9Dy, C = CU {oo}, D = C\ U= (DU I}), D = D U {oo} where
the circle I’y is orientated in counter-clockwise sense. Further, the limit case as n —
oo will be considered following the method described in [5]. This means that we
formally introduce an infinite sequence of non-overlapping disks Dy (k = 1,2,...).
After, we fix a number n and consider only first n disks. Since the number 7 is
arbitrary in our study, hence we can take the limit n — oo in the final formulae.
The component of the stress tensor can be determined by the Kolosov—

Muskhelishvili formulas [16]

4Reg(2), z € Dy,

1
4Req;(z), z€ D, 8

Oxx + Oy =

—2|z¢/(2) + ¥(2) |, z € Dy,
—2|z¢)(z) + ¥((2)|, z€ D,

Oxx — Oyy + 200y, =

Introduce constants By = w, Iy = w, where 07, Og > Oy, are
the given stresses at infinity. Introduce the functions ¢y(z) = Boz + ¢(2), Vo(z) =
oz + ¥ (z) where ¢(z) and ¥ (z) are analytical in D and bounded at infinity, ¢;(z)
and Y (z) are analytical in D; and all one twice differentiable in the closures of the
considered domains. The ideal contact between different materials is expressed by

means of the following boundary conditions [16]

oo 00

o) + (1) + Vi (1) = o) + 195(0) + Yo(r), )

jz (Klfﬂk(f) - fm - W) = W (Kfpo(f) - fm - W) ; 3)

t € dDy. In these equations p is a shear modulus, « is Kolosov constant and k =
3 — 4v in plane strain; k = (3 — v)/(1 + v) in plane stress; v is Poisson’s ratio.
Index 1 denotes physical constants for inclusions.

3 Functional-Differential Equations

2 : . . .
Let zZ"k) = Zi—ak + ai denote the inversion with respect to the circle I'x. Introduce the

functions ®;(z) = %(p,ﬁ(z) + Vi (2), |z— ax| < r, analytic in Dy except point gy,
where its principal part has the form 2 (z — a;) " @, (ax). The problem (2), (3) can
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be reduced to the system of functional equations following [11, 13]

(&) = (2 =1) X [@atizy) - = am) i)

m#k
- (ﬂ _ 1) 1@ (2 —a)
m

+%(1+K)B()Z + po, |Z—Clk| <r, (4)
and
(:cﬂ + 1) Dy(z) = (Kﬂ —Kl) > o)
* ® m#k
2 2
+(ﬂ—1)2( +a - +@)
28 ok Z— ag Z—apy
/
|:(q)m(z>(km))) _(plln(am)j|
[ r _
+—(1 + «)Bo + a;
23 Z—ag
+%(1 Tz + 0@, r—a] < k=1.2.....n(5)
where
. rZQk
w@) =) + qo. 6)
=1 < Gk

qo 1s a constant and

ar = ¢ (ar) ((K — DB e - 1))—go,g(ak) (ﬂ — 1), k=1,2,....n. (1)
% %

The unknown functions ¢ (z) and ®x(z) (k = 1,2, ..., n) are related by 2n Egs. (4)
and (5).
Introduce the Banach space H(>? (U]';l Dk> as the space of functions f of the

form f(z) = fi(z), z € Dy, analytic in U]'.Z=1 Dy, endowed with the norm

n 2
|lf||§{<z,2) = Z ( sup /0 l]j (T’ele + Clj) |2d9+

=1 O<r<ry

2 2
sup /0 [fj’ (reig + a)) ?df + sup /0 [}3-” (reie + a;) |2d9) ,

O<r<rg O<r<rg
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The functional equations contain compositions of ¢;(z) and ®;(z) with inversions
which define compact operators in the Banach space H>? (U};l Dk). Hence, the

functional equations (4) and (5) can be effectively solved by use of the symbolic
computations. After their solution ¢(z) and 1/ (z) can be found

M09 = (1) Y [@a,) - - anel@] + .z e D,

m=1

®
I 0 ~( 7 —\ =
M0 1 = o) - (M- 1);(Z L) (@) ]
# (kB 0) el 2D, ©
m=1

Theorem 3.1 ([3]) For sufficiently small coefficients u, i, k and ki (k = 1,...,n)
the method of successive approximations applied to (4) and (5) converges in

2122 (U;.;1 Di) x HC?) (U;.;1 D).

For instance, the zero approximation has the form

() 1_ﬁ (K-l-l)
¢ (2) = 1i Ec ) E L E By (z — ax) + (k + 1)Boz + po, (10)
+ EKk —E‘FEK](
D@ =04+0Toz+qo lz—al <r, k=1,2,....n. (11)

Let the approximation of the order (p — 1) be known. Then the p-th approximation
for gp,Ep ) (z) has the form

-1
o (2) = (1 + i’(k)

Mk
[ (1= ) [T~ e (67 (]
m#k
(1= £) (& + DB
- _ﬁ+ﬁ/<k (z—ax) + (k+ 1)Boz+po | - (12)

Analogous formulae can be written for w}gp ) (2).
An alternative method is to solve Egs. (4) and (5) by series with undetermined
coefficients proposed in [11]. We are looking for the analytic potentials ¢; and ¥
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in the form of the series in 2

oi(z) = ZZa,Ef)rZY —a), Yi(2) = ZZﬂ,&f}r” (13)

j=0 s=0 j=0 s=0

Selecting the terms with the same powers (z — a;) and r* we arrive at an
iterative method to find a,g;.) and ,B,E’;). When the coefficients are determined,
the functions (13), hence (8) and (9), can be approximately constructed. The
stress and deformation tensors can be calculated by the Kolosov—Muskhelishvili
formulae [16]. Then, the effective elastic moduli of macroscopically isotropic
fibrous composites can be calculated as follows:

(Oxx - 0yy> ke = <0XX + Uyy)
eff

W e = e LW (14)
2(exx — Eyy) 2(ex + &yy)

Meff =

Here, the limit average over the plane is introduced

1
lim / / A dxdy.
000 | Oy
On

In the latter limit, it is assumed that the infinitely many points a; are distributed in
the plane. After long symbolic computations we get

(A) =

_ (k + Dy (p— 1)
Meff = L — f
K1 +

wlo(epr + w) (k1 — D+ 2p1)

268" (k + DuTo( — w)* | k(e + Dy — 1)’
2 + 2
nlo(kpr + @) (kpr + )

)f2 +0(f°) (15

and

k(k + Dp (—kip + (K = Dy + )
(k —=1) (k1 = 1) o+ 2pu1)

(ego)k(lc + 1) (0 — 1) To (k1o 4 1) (=K1t + kper + o — 1)

kegr = Tk +

mBo(k — 1) (kr + 1) (kipp — 0+ 21) (k1 + @)

ORTy (i + 1) (1 — ) (k1 + (€ = Dpy + )
mBo(k — 1) (k1 + 1) (1 — D) oo + 2p1) (ka1 + 1)
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C 2k + D (—oap 4+ (e =Dy + ) (1 = D —kpr + Ml))fz
(kK — 1)2 (k1 — 1) oo+ 241)°

+0(f?), (16)
where
- 1
(0) : - M _ g am
“ _nlig}o n? ;é;c (ak_am)z’ “ nli)rgo n? ZZ ( k_am)3 ("

are the generalized Eisenstein and Natanzon series [2, 3, 10, 17] which depend on the
values of By and I'y. The Eisenstein summation must be applied for the conditionally
convergent sums (17). Take By = 0, I'lp = i in (15) and By = 1, ['( = 0 in (16).

Then, we get e( ) = x (see discussion in [10, 15]). It is a generalization of the

Raylelgh formula [18] for a regular array. Numerical simulations suggest that e( ) =

5 - A rigorous proof of the latter formula has been unknown.
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