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1 Problems in porous media

The major purpose of this report is to present boundary value problems and
related questions appearing in the study of transport properties of various
mechanical objects and to state new problems having important applications
in porous media. We discuss here the simplest transport processes that might
occur in a heterogeneous system, namely diffusion of a solute and viscous flow
at low Reynolds numbers.
Artificial and natural porous media have a very complex geometric struc-

ture, but they are invariant in a wide sense. The simplest translational in-
variance is modeled by the periodicity of the medium. Invariance may occur
for random stationary fields or self-similar sets (fractals). The latter ones can
also have a random structure! Numerical generations of such media is given
in [1]. Geological media can be considered as complicated fractured networks.
Study of their transport properties is an important task of geophysics. Some
mathematical problems and methods of their solution are presented in [2].
In general properties of porous media are governed by partial differential

equations. Macroscopical properties can be considered as functionals depend-
ing on the solution of a boundary value problem for such an equation or sets
∗The work was performed at IPGP
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of such equations. Here for clarity, we discuss simple stationary processes
which are derived from the classical equations of mathematical physics.
Diffusion processes are governed by the Laplace equation

∇2c = 0, (1)

where c is the concentration of a solute. Heat conduction, flow of an electric
current, the dielectric constant are also governed by the Laplace equation [1],
[18]. The flow of a viscous fluid is governed by the Stokes equation [1]

µ∇2v = ∇p, ∇ · v = 0, (2)

where v, p and µ are the velocity, pressure and viscosity of the fluid, respec-
tively. Longitudinal laminar flow between unidirectional cylinders is governed
by the two-dimensional Poisson equation [1]

∇2w = 1, (3)

where w is the component of velocity which is parallel to cylinders; µ and
the pressure gradient are taken equal to 1. In general c and w satisfy a
classical boundary condition (Dirichlet, Neumann and their generalizations);
v vanishes on ∂D, the boundary of a domain D, where equations (2) are
fulfilled. If D is a Lyapunov’s curve (surface) with a finite number of singu-
larities because of angles and sources, then we deal with the classical theory of
boundary value problems. But the complex and random geometry of porous
media requires the study of boundary value problems with a complicated
boundary ∂D. This boundary can be, for instance, a deterministic or a ran-
dom fractal [1]. Moreover, equations (1) - (2) are also considered on surfaces
[2]. The boundary of an infinitely connected domain can be considered as
a fractal in the topology of the extended complex plane. Here one can note
that the problems with such boundaries can be treated as the boundary value
problems with infinite index (winding number) [5]. The natural relation to
the entire and meromorphi functions is noted in Sec. 4.
Many theoretical and experimental forces are applied to evaluate the ef-

fective properties of the medium. More precisely, let us consider a porous
medium of macroscopic dimension L. If we assume that the medium is sta-
tistically homogeneous at a length scale ` << L, we can extract a unit cell Q
representing the medium. Let hai denote the average hai := 1

|Q|
R
∂D
Rds · a,

where D ⊂ Q, R denotes position and |Q| the area of Q. The concentration
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flux with a normalized unit diffusivity can be expressed as q := −∇c in D.
Then the effective diffusion tensor D is defined by the relation

hqi = −D h∇ci . (4)

For simple structures determined by the domain D the tensor D is correctly
defined [6] by a variational problem.
Despite the great success of numerical calculations (see [1], [2] and papers

cited therein), many unsolved questions arise if geometrical structure of the
medium is complicated. Some theoretical questions are discussed in the next
section.

2 Boundary value problems appearing in porous
media and methods of complex analysis in
the complex plane

Methods of complex analysis constitute one of the most powerful tools of
continuum mechanics. They allows us to get constructive results mainly in
two-dimensional problems.
Any function c(x, y) satisfying the Laplace equation (1) in a simply con-

nected domain D is represented as the real part of a function analytic in D
on z = x + iy. This analytic function is called the complex potential. Any
function w(x, y) satisfying the Poisson equation (3) is decomposed as follows
w = u+ w0, where u is harmonic and w0 is a partial solution of (3). Hence,
using complex potentials one can express w in terms of an analytic function.
The Dirichlet problem u = f on ∂D for (1) becomes

Reϕ(z) = f(t), t ∈ ∂D, (5)

where ϕ(z) = u(z) + iv(z) is a complex potential. The Neumann problem
∂u
∂n
= g on ∂D after application the Cauchy - Riemann equation ∂u

∂n
= ∂v

∂s
and

integration on natural parameter s becomes

Imϕ(z) = f(t), t ∈ ∂D, (6)

where f is a primitive function for g.
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Many problems of porous media and mechanics of composite materials
have the form of the conjugation condition

u+ = u−,
∂u+

∂n
= λk

∂u−

∂n
on ∂Dk, k = 1, 2, ..., n (7)

with respect to the function u(x, y) sectionally harmonic inD+ andD−. Here
D+ ∪ clD− generates a simply connected domain G, D− := ∪nk=1Dk, clD−
denotes the closure of the domain D−; Dk are simply connected domains
modeling inclusions of conductivity (diffusivity) λk in the host material D+

of unit conductivity. Condition (7) corresponds to perfect contact between
different materials. The Dirichlet and Neumann conditions might be given
on the exterior boundary ∂G. Condition (7) can be written as the R−linear
conjugation condition

ϕ+(t) = ϕ−(t)− ρkϕ
−(t), t ∈ ∂Dk, k = 1, 2, ..., n. (8)

Here ρk := (λk − 1) (λk + 1)−1. If λk → +∞, i.e., the conductivity of the
inclusion is large in comparison with the matrix conductivity, (8) becomes
(5). If λk = 0, i.e., Dk is insulating, (8) becomes (6). Conversely, (6) can be
written as

ϕ+(t) = ϕ−(t)− ρ(t)ϕ−(t) + f(t), t ∈ ∂D, (9)

where ρ(t) = −1, ϕ−(z) is an appropriate function analytic in D−. See for
details [12, 16].
Let ∂D be divided into two parts L1 and L2. If (5) is given in the interior

of L1, if (6) is given in the interior of L2, and if ϕ is bounded at the boundary
points of L1 and L2, we arrive at the Riemann - Hilbert problem

Reλ(t)ϕ(z) = f(t), t ∈ ∂D, (10)

where λ(t) = 1 on L1 and λ(t) = −i on L2. Solution to problem (10) for
a simply connected domain is given in the classical books [4, 8]. If D is an
n−connected domain, the complex potential becomes

ϕ(z) +
nX
k=1

Ak ln (z − zk) , (11)

where ϕ(z) is a function analytic and single-valued in D; zk are fixed points
from Dk; Ak are real constants which should be determined. A method of
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integral equations for multiply connected domains was applied in [4, 7, 8].
The problem (10) for multiply connected domain has been solved in [13, 16]
in closed form by the method of functional equations.
Analytic functions are also used to study the two-dimensional Stokes

equation (2). The following Kolosov - Muskhelishvili formula µv = ϕ(z) −
zϕ/(z)−ψ(z), z = x+ iy ∈ D, expresses the velocity v in terms of complex
potentials ϕ(z)and ψ(z) [7, 9]. The no-slip condition becomes

ϕ(t)− tϕ/(t)− ψ(t) = f(t), t ∈ ∂D, (12)

where the known Hölder continuous function f models external field.

3 Boundary value problems appearing in porous
media and methods of complex analysis on
the torus

The conception of the unit cell derived in Sec.1 leads in a natural way to
boundary value problems of the analytic function theory on the torus Q
which appears by identification of the opposite sides of the unit cell Q. For
a multiply connected domain on Q, the complex potential (11) becomes

ϕ(z) +
nX
k=1

Ak [lnσ(z − zk) + zkζ(z − zk)] , (13)

where σ and ζ are the Weierestrass functions,
Pn

k=1Ak = 0. Therefore, we
obtain the problems (5) - (10), (7) - (12) on the torus Q.
The most studied problem (9) on Q is the case of the circle ∂D =

{t ∈ C : |t| = r}. The Laplace and the Poisson equations for the circle are
solved in [14] and in [10], respectively by the method of functional equa-
tions. This method is extended in [11] to the case of many inclusions on
the torus Q. Analytical formulae for the effective permeability have been
deduced. Such formulae are very useful in applications because they contain
the concentration of inclusions and their positions in symbolic form. Note
that the symbolic computations have been performed withMathematica. For
instance, for the simple square array of cylinders, we obtain

k∗c = lnφ
−1 − 1.47644 + 2φ− 0.5φ2 − 0.0509713φ4 + 0.077465φ8− (14)
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0.109757φ12+0.122794φ16−0.146135φ20+0.244536φ24−0.322667φ28+O(φ32),
where φ = πr2 is the area fraction of the cylinders. Moreover, potentials
in analytic form can be used as a first approximation to solve more compli-
cated partial differential equations with the help of numerical methods and
computers.

4 Discussion of problems with complex ge-
ometry

A random porous medium is characterized by the random positions and the
random geometry of the inclusions. The boundary condition (8) holds along
random contours ∂Dk ( k = 1, 2, ..., n). In the paper [11] it is assumed that
each contour ∂Dk is a circle, which is characterized by two random parame-
ters, the radius rk and the centre ak of each inclusion. The expected value of
the effective permeability is calculated in the simple case where the centers
ak are uniformly distributed in the unit cell. In [11], double integrals of the
following form were calculatedZ Z

Q

F (z − w)dszdsw, (15)

where F (z) is an elliptic function, for instance, ln bσ(z)c , ζ(z), or the Eisen-
stein functions El(z) (l = 2, 3, ...) [19, 10]. One of the formulae from [11] for
a rectangular unit cell of the dimension α×α−1 is

R
Q
P(z−w)dsw = π−S2,

where S2 = 2ζ (α/2) is the well known Rayleigh sum of second order. If
the centres ak are arbitrarily located on the complex plane, a problem of
construction of meromorphic functions with prescribed singularities arises.
Examples of such functions are constructed in [15] by analogy with the con-
struction of elliptic functions.
Problems of porous media on fractal sets are discussed in [1], [2]. There

are two types of problems. The first type appears, when we consider a porous
mediumwith many inclusions arranged in a multiscale structure and when we
try to evaluate the influence of large and small inclusions on the macroscopic
properties, when the number of small inclusions is large and the number of
large inclusions is small. This problem can be treated as the problem of
the behavior of the ensemble of particles. Can the ensemble be replaced by
a single large element? This question has been partially solved in [11] by
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reducing the problem to the problem of approximating of Riemannian sums
by Riemannian integrals. For doubly periodic media the elliptic functions
are integrands in these integrals. In the general case, the problem can be
considered as the problem of substituting the system of functional equations

ψk (z) = ρ
X
m6=k

µ
r

z − am

¶2
ψk

µ
r2

z − am + am
¶
+gk(z), |z − ak| ≤ r, k = 1, 2, ..., n.

(16)
by the integral equation

Ψ (w) =
ρv

π

Z Z
F

Ψ (z)

(z − w)2dσz +G(w), w ∈ F. (17)

Here, v is the area fraction of the circular inclusions |z − ak| ≤ r in the unit
cell Q, dσz = dxdy. It follows from the physical point of view that (16) can
be replaced by (17) for inclusions diluted in F ⊂ Q. If v is not small, (16)
should yield a more complicated integral equation. Moreover, there is an
interesting relation between (17) and the R−linear conjugation problem [3].
If we deal with a fractal, then the structure of the measure dσz can be very
complex.
The second type of problems appears, when flow in a channel with frac-

tal boundaries is studied. It is worth noting that the classical theory of
potentials does not work with fractal curves. Ponomarev [17] has con-
structed a Borel measure µ on the Koch curve L so that the Cauchy in-
tegral Φ(z) = 1

2πi

R
L
(t− z)−1 dµ(t) is continuous in C∪ {∞} , analytic in

C∪ {∞} \L, but Φ(z) is not constant.
Fractured media can also be considered as particular porous media. In

this case boundary value problems on surfaces appear [2]. Boundary value
problems on surfaces and for anisotropic media are equivalent. Hence, the
complex variable technique [18] can be successfully applied to problems on
surfaces. When fractured porous media are modeled by minimal surfaces, it
is known that there exists a conformal structure on each minimal surface.
Hence, a boundary value problem appears in a Riemann surface [20] in a
natural way. The problem is to find this conformal structure. Therefore, the
derivation of a minimal surface as a Riemann surface with global uniformisa-
tion is a constructive method to solve boundary value problems on surfaces.
Some simple examples of such approaches can be found in [16].
In general, fractured media are modeled by a network composed of many
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surfaces [2]. Hence, boundary value problems arise in on configurations con-
sisting of surfaces. See examples in [16].

5 Conclusion

We briefly presented some general approaches that we have extensively de-
veloped and that are related to boundary value problems of the analytic
functions theory. Many of the problems are only stated and their solution
even in particular cases will be useful for applications in porous media.
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