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1.Introduction.

A differential holomorphic anywhere on the  closed  Riemannian surface is called  an  Abelian

differential of  the  first kind. The Abelian differentials generate a vector space . The complex

dimension  of  the space is equal to the genus of the surface. The Abelian differentials has been

discussed in [1,2]. In particular it is known the theorem of existence. But the  explicit  form  of

the Abelian differentials is known only in  some  particular  cases [1-6]. The Riemann boundary

value problem on closed Riemannian surfaces  has been solved in [5] in terms of the Abelian

differentials.  That  is  why construction of the  differentials  allows us to  write  solution  of

the Riemann problem in closed form.

     In this paper the Abelian differentials of the first kind have  been constructed on Riemannian

surface represented in the form of N copies of  the one-point compactified complex plane

without discs. Circumferences  are identified in prescribed  rule.  As  an  example  a  double  of

multiply connected domain refers to such surfaces. Each multiply connected domain can be

mapped conformally to circular domain [7]. Hence, if that conformal mapping is known, then

the  Abelian  differentials  of double of the origin domain are known too.

     In order to construct the Abelian differentials we use the Poincare θ 2 -series  for a Kleinian

group. Moreover, functional equations for analytic functions  [9]  and  R-linear  boundary

value problem [10] are used. One can consider an Abelian differential as a solution of the

simplest Riemann boundary value problem on a Riemannian surface. The last general problem

on double of a multiply connected domain has been solved in [11].

     Let us consider N numerated copies  of  the  one-point  compactified complex plane C . Let

{ }D z C z a rk k k: ,= ∈ − < ( )k n= 12, ,... ,   be mutually disjoint discs. Let for each number k it is

possible to indicate two numbers  l(k)  and q(k) of the copies of C  containing the disc with



the  number  k. Everywhere in the paper we shall denote by l  and  q  numbers  of  sheets

corresponding to the number k. Moreover, we assume that l is odd and q is even numbers. For

each l -th  sheet exists the set Il  of the numbers of discs belonging to the l -th copy of C . Let

us consider the multiply connected circular domain

G points of the l th sheet not belonging to Dl m
m I

n

l

: , .= −






∈

U

Let us identify the boundaries of all domains Gl  and  Gq  along the circumferences

{ }∂D t C t a rk k k: ,= ∈ − =  oriented  in  the positive direction. For each number of

circumference k only  two  domains Gl  and  Gq  corresponding to k are identified. Let us

suppose that after this procedure we get a closed Riemannian surface R. On each sheet with

odd number  we introduce the local coordinate z, on the sheet with  even  number  -   z . Then

the Riemannian surface R is oriented.

Fig.1. An example of the Rimannian surface in question

     Let dw be an Abelian differential of the first kind on R. Let us denote

( )dw dw z z belongs to the p th sheet p is oddp= −, , ,

( )dw dw z z belongs to the p th sheet p is evenp= −, , ,

p = 1, 2,..., N. The section of dw on the p-th sheet can be  written in the form



( ) ( )dw z d z A
dz

z ap p pm
m I mp

= +
−∈

∑ϕ ,  p is odd,

( ) ( )dw z d z A
dz

z ap p pm
m I mp

= +
−∈

∑ϕ ,  p is even.                               (1.1)

Here the function ( )ϕ p z is analytic and single-valued in Gp ,

2π
∂

iA dwpm p

Dm

= ∫ , p = 1, 2,..., N

is a period of dwp  along ∂Dm . The condition of analytic continuation of dw through ∂Dk  (l

and q correspond to k) has the form

( ) ( )dw t dw t t a rl q k k= − =, ,  k = 1, 2,..., n                            (1.2)

Let us fix the branch of the function ( )ln z ak−  in such a way  that whole cut connecting the

points z ak=  and z = ∞  lies in the domain D DkU , where D C D Gs m
m

N

s

n

:= − =
== 11
IU .

Integrating (1.2)  and applying (1.1), we obtain

( ) ( ) ( ) ( )ϕ ϕl q lk qk k kt t f t f t t a r= − + − =, , ,                               (1.3)

where

 ( ) ( )f t A t a blk lm m
m I k

k

k

: ln= − +
∈ ≠
∑ ,        ( ) ( )f t A t aqk qm m

m I kk

: ln ,= −
∈ ≠
∑  k = 1, 2,..., n.

Here :=
∈ ≠ ∈
∑ ∑

m I k m Ik k

with m k≠ , bk  is a constant . One can consider the equality (1.3) as the

simplest boundary value problem on R [5]. Calculate the period

( ) ( )dw z dw z iA
D

l

D

lk

k k

= =∫ ∫
∂ ∂

π2 .

From other hand

( ) ( )dw z dw z iA
D

q

D

qk

k k

= − =∫ ∫
∂ ∂

π2 .

Then



A Alk qk= , k = 1, 2,..., n.                                                (1.4)

The sum of the residues of dwp  at infinity is equal  to  zero. Hence,

Apm
m Ip

=
∈
∑ 0 ,  p = 1, 2,..., N.                                            (1.5)

2.Reducing the problem (1.3) to a system of functional equations

According to scheme of [8, 11] let us rewrite the problem (1.3) in  the  form of a vector-matrix

R-linear boundary value problem

( ) ( ) ( ) ( )Φ Φ Φt t Q t F t t a rk k k k k k= + − − =, , k = 1, 2,..., n,                (2.1)

where

( )

( )

( )

Φ z

z

zN

=























ϕ

ϕ

1

.

.

.

,   ( )

( )

( )

Φ k

k

Nk

z

z

z

=























ϕ

ϕ

1

.

.

.

.

The uknown vector-functions ( )Φ z and ( )Φk z  are  analytic  in D  and Dk  respectively  and

continuously  differentiable  in D Dk, .  The   known vector-function ( )F tk  has the l-th

coordinate ( )f tkl , the q-th - of ( )f tql , the rest coordinates are equal to zero. The matrix Qk

has the dimension N x N and consists of zeros except the coordinates (l,q) and (q,l), with 1. As

above the numbers l and q correspond to the number of circumference k.

     Let us show the equivalence of the problem (1.3) and (2.1).  Let  us fix the number of

circumference k. If ( ) ( )Φ Φz zk,  satisfy (2.1), then

( ) ( )ϕ ϕs skt t= ,

for s l≠  and q, i.e. ( )ϕ s t  is analytically continuied to Gs . For s  =  l

and s = q we have the relations

( ) ( ) ( ) ( )ϕ ϕ ϕl lk qk lkt t t f t= + − ,   ( ) ( ) ( ) ( )ϕ ϕ ϕq qk lk qkt t t f t= + − ,   t a rk k− = .



Therefore, the equality (1.3) holds. Conversly, let ( )ϕ l z  satisfy (1.3). Then the functions

( )ϕ lk z   are restored  up to  an  additive complex constant from two Schwarz problems for the

disc z a rk k− ≤  [12]:

( ) ( )[ ] ( ) ( )[ ]Re Re ,ϕ ϕ ϕlk qk l lkt t t f t+ = +   ( ) ( )[ ] ( ) ( )[ ]Im Im ,ϕ ϕ ϕlk qk l lkt t t f t− = +  t a rk k− = .

It is easily to check, that these functions satisfy (2.1).

     Let us reduce the problem (2.1) to  a  system  of  functional equations. Let us introduce the

vector-function

( ) ( ) ( ) ( )Ω Φ Φz z Q z F zk m
m k

n

k m k: ,*= − −
= ≠
∑

1

 z a rk k− ≤ ,  k = 1, 2,...,n,   

( ) ( ) ( )Ω Φ Φz z Q z z Dm
m

n

k m: , .*= − ∈
=
∑

1

Here :=
= ≠ =
∑ ∑

m k

n

m

n

1 1

with m k≠ ,  ( )z r z a am m m m
* : /= − +2  is the inversion with respect  to

the circumference t a rk k− = . Let us show that Ω(z) is analytic in C. We have

( ) ( ) ( ) ( ) ( ) ( )Ω Ω Φ Φ Φ+ −− = + − − =t t t F t t Q tk k k k 0,   t a rk k− = .

Taking into account the principle of  analytic  continuation  and the Liouville theorem we have

( ) ( ) ( ) ( )Ω Ω Φ Φz w w Q w
m

n

m m m= = −
=
∑

1

* ,

where w is a fixed point belonging to { }D − ∞ . From the definition of Ω(z) in Dk  we obtain

the following relations

( ) ( ) ( )[ ] ( ) ( ) ( )Φ Φ Φ Φ Φk
m k

n

m m m m m k k k kz Q w w Q w F z w= − − + +
= ≠
∑

1

* * * , z a rk k− ≤ ,  k = 1, 2,..., n.

(2.2)

These relations constitute a system of n x N linear scalar functional equations for  n  unknown

vector-functions ( )Φk z  (k = 1, 2,..., n), which are analytic in Dk  and are continuously



differentiable in Dk . Introduce new notations for the most important components  of  ( )Φk z .

Let

( ) ( ) ( ) ( )ψ ϕ ω ϕk lk k qkz z z z= =, ,   z a rk k− ≤ .

Remark. Further we shall write one relation on ( )ψ k z  and ( )ω k z  instead of two

ones.

The auxiliary functions ( )ϕ sk s l and q≠  are represented by ( )ψ k z  and ( )ω k z  in

(2.2). The l-th component of (2.2) for each k takes the form

 ( ) ( ) ( )[ ] ( ) ( ) ( )ψ ω ω ω ϕk
m I k

m m m m k k lk lz w w w f z w
l

= − − + +
∈ ≠
∑ * * * ,  z a rk k− ≤ , k = 1, 2,...,n.   (2.3)

We keep in our mind in (2.3) the analogous relations, when ( )ψ k z  and ( )ω k z , l and q are

changed by places. The relations (2.3) can be considered  as  a system of 2n scalar functional

equations  with  respect  to  2n  unknown functions ( )ψ k z  and ( )ω k z . The system (2.2) and

(2.3) are equivalent. From  the definition of Ω(z) we have the relations

( ) ( ) ( )[ ] ( )ϕ ω ω ϕl
m I

m m m m l lz w w w z G
l

= − + ∈
∈
∑ * * , .

According to (1.1) we need only the derivative

          ( ) ( )[ ]ϕ ωl
m I

m m lz w z G
l

' *
'

,= ∈
∈
∑                                             (2.4)

to calculate the differentials.

3.Solution of the system of functional equations.

Let us prove convergence of the successive approximation method  for  the system (2.3). We

shall use some auxiliary assertions.



     Consider the Banach space C consisting of functions continuous on ∂Dk
k

n

=1
U . The norm

( )Ψ Ψ: max max ,
/

= 







≤ ≤ =

∑
0

2

1

1 2

k n D
s

s

N

k

t
∂

 where ( )Ψ Ψ Ψ Ψ= 1 2, , ... , .N

T
 Introduce the subspace

C C+ ⊂ , which consists of vector-functions analytic in all Dk . Differentiate the system (2.3)

( ) [ ] ( ) ( )Ψ Ψk m
m I k

k m m kz Q z z F z
l

= − +
∈ ≠
∑ *

'
* ' ,  z a rk k− ≤ .                              (3.1)

Rewrite the last system in the form of equation

( ) ( ) ( )Ψ Ψz A z F z= + '                                                          (3.2)

in the space C + , where the operator A is defined by the right-hand part of the system (3.1),

( ) ( ) ( ) ( )Ψ Ψz z F z F zk k: , := = , when z a rk k− ≤ ; Ψ, .'F C∈ +

     Lemma 1. [8]. The equation (3.2) is a Fredholm equation in C +  .

     Lemma 2. The homogeneous  equation  (3.2) ( )( )F z' ≡ 0  has  zero solution only.

     P r o o f.  Let us consider the differentiated homogeneous  system (2.3) corresponding to

homogeneous equation (3.2)

( ) [ ] ( )[ ]ψ ωk k
m I k

m mz z w
l

' * *
'

,=
∈ ≠
∑  z a rk k− ≤ .                            (3.3)

As ealier we write only one equation. If the system (3.3)  has  only trivial solution,  then

homogeneous  equation  (3.2)  has  only  trivial solution too.

    Integrating the system (3.3) we obtain

     ( ) ( )[ ]ψ ω γk
m I k

m m lkz w
l

= +
∈ ≠
∑ * ,   z a rk k− ≤ ,

where γ lk  is a constant of integration. If ω k  and ψ k  is a solution of the last system , then the

functions

 ( ) ( )ϕ ωl m m
m I

lz w z G
l

= − ∈
∈
∑ * , ,

satisfy the conditions



( ) ( ) ( )ψ ϕ ω γk l k lkt t t= + + ,   ( ) ( ) ( )ω ϕ ψ γk q k qkt t t= + + ,   t a rk k− = .

Hence, the functions ( )ϕ l t  and ( )ϕ q t are related by equalities

( ) ( )ϕ ϕ γ γl q qk lkt t= + − ,   t a rk k− = .

Differetiating this relation we have

( ) ( )d t d tl qϕ ϕ= ,   t a rk k− = .

The last relations define an Abelian differential of the fist kind on the surface R. But the

functions ( )ϕ l t are single-valued in Gl . Therefore, if we assume that ∂Dk  are canonical

sections of R, then the period

( )d z dz k I
D

l l

k∂

ϕ∫ = ∈0, .

And we immeadetly obtain, that ( )ϕ l z is a constant. Then ( )ω m z is a constant too, and

( )ω m z' = 0 .

     The lemma is proved.

     Let us consider the R-linear boundary value problem

( ) ( ) ( )Φ Φ Φt t Q t t a rk k k k k k= − − − =λ γ , ,         k = 1, 2,..., n,   (3.4)

where the unknown vector-functions ( ) ( )Φ Φz zk,  are analytic in D Dk,  respectively and are

continuously differentiable in D Dk, . Here λ is a constant, γ k  is a constant vector.

     Lemma 3. The problem (3.4) for λ < 1 has constant solutions only.

     P r o o f.  We shall use the idea of Bojarski [10]. Let us put

( ) ( )U z z z D: , ,= ∈Φ   ( ) ( ) ( )U z z Q z z Dk k k k k: , .= − − ∈Φ Φλ γ

Then the vector-function U(z) is  a  solution  of  the  following partial differential equation

U QU z C D
z z k

k

n

+ = ∈ −
=

0
1

, ,∂U                                         (3.5)



where Q z D= ∈0, ,  Q Q z Dk k= ∈λ , . Let us check that the system (3.5) is elliptic.  The

determinator of that system is

∆ ∆=
− +
− − −









 ≠ ⇔ = ≠det : det ,

I Q I Q

I Q I Q
M0 01 where  M

I Q

Q I
: .=

−
−










Here the second matrix M is obtained from  the  first  by summation and reduction of columns.

We have ∆1 0≠ , because

( ) ( )
( ) ( )

M
I Q Q I Q

Q I Q I Q

−

− −

− −=
− −

− −















1
2 1 2 1

2 1 2 1 .

exists. It can be verified by direct calculation of MM −1 . Let  us  show the existence of

( )I Q−
−2 1

. The matrix ( )I Q− 2  is equal to I  except  the l-th and the q-th elements for

z Dk∈ , which equal to 1 2− λ .  The inequality λ < 1 implies that the matrix ( )I Q− 2  is

diagonal  and inversable. So we have proved, that (3.5) is elliptic. The condition U U+ −=  is

valid on ∂Dk , moreover, ( )U L Dk
± ∈ 2 ∂ . Hence,  (3.5)  holds in C . Taking into account the

general Liouville theorem we have the equality U = const. Therefore, the problem (3.4)  for

λ < 1 has constant solutions only.

     The lemma is proved.

     Lemma 4. The equation (3.2) has one and only  one  solution  in C+ . This solution can be

found by the method of successive approximations  in C+ .

     P r o o f.  Let us rewrite the system (3.1) on ∂Dk   in the form  of integral equations

( ) [ ] ( ) ( )Ψ
Ψ

k m m

m m

mD

k
m k

n

t t Q
i t

F t
m

= −
−

+∫∑
= ≠

*
'

*

*

' ,
1

21 π
τ

τ∂

  t a rk k− = .

It can be written as the equation in C

( ) ( ) ( )Ψ Ψt A t F t= + ' .                                                 (3.6)



The integral operator is compact in C. The operator of multiplication  on the matrix [ ]t Qm m
*

'

and the operator of complex conjugation are bounded in C. Hence, A is a compact operator in

C. The Cauchy  integral property implies if Ψ is a solution of (3.2) in C, then Ψ ∈ +C .

Therefore, the equation (3.2) in C and the equation (3.6) in C+   are equivalent  when F C' ∈ + .

It follows from Lemma 2 that the homogeneous equation Ψ =  ΑΨ has only zero solution.

Then the Fredholm theorem implies that the system (3.6) or the system (3.1) has the unique

solution.

     Let  us  demonstrate  convergence  of  the  method   of   successive approximations. It is

sufficient to prove the inequality ρ(A) < 1,  where ρ(A) is the spectral radius of A. The

compact operator A has  a  spectrum consisting of eigenvalues [13]. The inequality ρ(A) < 1 is

observed  iff there exists a complex number λ such that λ ≤ 1 and the equation

( ) ( )Ψ Ψt A t= λ

has zero solution only. The equation can be written in the form

( ) [ ] ( )Ψ Ψk m
m k

k m mz Q z z= −
≠
∑λ *

'
* ,  z a rk k− ≤ .                              (3.7)

     Let λ < 1. Then, we introduce the vector-function

                 ( ) [ ] ( )Ω Ψz Q
m

z zm

n

k m m= −
=
∑λ

0

*
'

* ,

which is analytic in D . From (3.7) we have

( ) ( ) [ ] ( )Ω Ψ Ψt t
m

t Q tk

n

k k k k= −
=
∑λ

0

*
'

* ,   t a rk k− = .

By integrating the relations we obtain the following  R-linear boundary value problem

( ) ( ) ( )Φ Φ Φt t Q t t a rk k k k k k= − + − =λ γ , .



Here ( ) ( ) ( ) ( )Φ Ω Φ Ψ' ', ,z z z zk k k= = γ are arbitrary constant vectors. It follows from

Lemma 3 that the R-linear boundary value  problem has constant solutions only. Then

( ) ( )Φ Φ' ' .z zk= = 0

     Let λ = 1. Then, by changing the variable z Z= λ we reduce the  system  (3.7) to the

same system with λ = 1, where a Ak k= λ and ( ) ( )Ω Ψk kZ z: .=  It follows from Lemma 3  that

( ) ( )Ω Ψk kZ z= = 0. Hence, ρ(A) < 1.

This inequality proves the lemma.

Introduce the mappings

( )z zk k k k k km m m
m

− −
=

1 1 1 1...
*

...
* *

: .

There are no equal neighbor numbers in the sequence k k km1 2, , ... , .  When m is even we have

Moebius transformations on z.  If  m  is  odd  we  have transformations on z .

     Theorem 1. The system of functional equations

( ) [ ] ( )[ ] ( )ψ ωk k
m I k

m m lkz z w f z
l

' *
'

* ' ,= +
∈ ≠
∑  z a rk k− ≤ , k n= 1 2, ,..., ,                            (3.8)

has the unique solution

( ) ( ) ( )[ ] ( )[ ]

( )[ ]

ψ k lk q k k
k I k k I k

l k k k
k I k

k I k k I k
q k k k k

k I k
k k

z f z f z f z

f z z a r

l l q

l q l

' ' *
'

*
'

*
'

... , .

= + + +

+ − ≤

∈ ≠ ∈ ≠ ∈ ≠

∈ ≠ ∈ ≠ ∈ ≠

∑ ∑ ∑

∑ ∑ ∑

1 1 1

1 1

21 2 2 1

2 1

1 2 1

3 3 3 2 1

3 2

The proof follows from Lemma 4. Because the equality  (3.8)  is  the l-th coordinate of

the vector equality (3.1) for fixed k.

     The theorem is proved.

Remark. The convergence in C+  means the uniform convergence.

From (2.4) we have



( ) ( )[ ] ( )[ ] ( )[ ]

( )[ ]

ϕ ωk k k
k I

q k k
k I k I

l k k k
k I k

k I k I k
q k k k k

k I k
l

z z f z f z

f z z G

l l l l

l l q

' *
'

*
'

*
'

*
'

..., .

= = + +

+ ∈

∈ ∈ ∈ ∈ ≠

∈ ∈ ≠ ∈ ≠

∑ ∑ ∑ ∑

∑ ∑ ∑

0 0

0

0 0 0

0 0

21 2 1 0

1 0

0 1

3 3 3 2 1

2 1

(3.9)

The formula

( )( )[ ] ( )
( )f z A

z

z alk
m I k

lk
ml

α
α

α
'

'

=
−∈ ≠

∑

follows from the definitions of f lk . So we have  the final

     Theorem 2. All Abelians differentials  of  the  first  kind  on  the Riemannian surface R

have the form (1.1), (3.9), where the  constants Alm  are related by (1.4), (1.5).

     Let us study  the number  of  the  constants  Alm  corresponding to linear independent

differentials (1.1). According to the  general  theory  [1,2] that number is equal to the genius

ρ(R). Let us consider  the  surface  Q homeomorphic to R, when  instead of the discs we have

cuts gluied  in  the same rule. Let V be a branch index of Q [2]. It is easily seen, that V = 2n,

where 2n is the number of ends of the cuts,  1  is  the  order  of branching. The following

formula

                         V = 2(N + ρ(Q) - 1)

holds [2]. Then ρ(R) = ρ(Q) = n - N + 1. The number of constants Alm  is equal to 2n. After

(1.4)  that  number  reduces  on  n.  Hence,  from  N relations (1.5) we can choose (N - 1)

linear independent relations.
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