On the construction of Abelian differentials on closed Riemannian surface

Vladimir Mityushev

1.Introduction.

A differential holomorphic anywhere on the closed Riemannian surface is called an Abelian differential of the first kind. The Abelian differentials generate a vector space. The complex dimension of the space is equal to the genus of the surface. The Abelian differentials has been discussed in $[1,2]$. In particular it is known the theorem of existence. But the explicit form of the Abelian differentials is known only in some particular cases [1-6]. The Riemann boundary value problem on closed Riemannian surfaces has been solved in [5] in terms of the Abelian differentials. That is why construction of the differentials allows us to write solution of the Riemann problem in closed form.

In this paper the Abelian differentials of the first kind have been constructed on Riemannian surface represented in the form of N copies of the one-point compactified complex plane without discs. Circumferences are identified in prescribed rule. As an example a double of multiply connected domain refers to such surfaces. Each multiply connected domain can be mapped conformally to circular domain [7]. Hence, if that conformal mapping is known, then the Abelian differentials of double of the origin domain are known too.

In order to construct the Abelian differentials we use the Poincare θ_{2}-series for a Kleinian group. Moreover, functional equations for analytic functions [9] and \mathbf{R}-linear boundary value problem [10] are used. One can consider an Abelian differential as a solution of the simplest Riemann boundary value problem on a Riemannian surface. The last general problem on double of a multiply connected domain has been solved in [11].

Let us consider N numerated copies of the one-point compactified complex plane \bar{C}. Let $D_{k}:=\left\{z \in C,\left|z-a_{k}\right|<r_{k}\right\}(k=1,2, \ldots, n)$ be mutually disjoint discs. Let for each number k it is possible to indicate two numbers $l(k)$ and $q(k)$ of the copies of \bar{C} containing the disc with
the number k. Everywhere in the paper we shall denote by l and q numbers of sheets corresponding to the number k. Moreover, we assume that l is odd and q is even numbers. For each l-th sheet exists the set I_{l} of the numbers of discs belonging to the l-th copy of \bar{C}. Let us consider the multiply connected circular domain

$$
G_{l}:=\left\{\text { points of the } l-\text { th sheet, not belonging to } \bigcup_{m \in L_{l}}^{n} \overline{D_{m}}\right\} .
$$

Let us identify the boundaries of all domains G_{l} and G_{q} along the circumferences $\partial D_{k}:=\left\{t \in C,\left|t-a_{k}\right|=r_{k}\right\} \quad$ oriented in the positive direction. For each number of circumference k only two domains G_{l} and G_{q} corresponding to k are identified. Let us suppose that after this procedure we get a closed Riemannian surface R. On each sheet with odd number we introduce the local coordinate z, on the sheet with even number $-\bar{z}$. Then the Riemannian surface R is oriented.

Fig.1. An example of the Rimannian surface in question
Let $d w$ be an Abelian differential of the first kind on R . Let us denote

$$
\begin{aligned}
& d w=d w_{p}(z), z \text { belongs to the } p-\text { th sheet, } p \text { is odd, } \\
& d w=d w_{p}(\bar{z}), z \text { belongs to the } p-\text { th sheet, } p \text { is even, }
\end{aligned}
$$

$p=1,2, \ldots, N$. The section of $d w$ on the p-th sheet can be written in the form

$$
\begin{align*}
& d w_{p}(z)=d \varphi_{p}(z)+\sum_{m \in I_{p}} A_{p m} \frac{d z}{z-a_{m}}, p \text { is odd, } \\
& d w_{p}(\bar{z})=\overline{d \varphi_{p}(z)}+\overline{\sum_{m \in I_{p}} A_{p m} \frac{d z}{z-a_{m}}}, p \text { is even. } \tag{1.1}
\end{align*}
$$

Here the function $\varphi_{p}(z)$ is analytic and single-valued in $\overline{G_{p}}$,

$$
2 \pi i A_{p m}=\int_{\partial D_{m}} d w_{p}, p=1,2, \ldots, N
$$

is a period of $d w_{p}$ along ∂D_{m}. The condition of analytic continuation of $d w$ through $\partial D_{k}(l$ and q correspond to k) has the form

$$
\begin{equation*}
d w_{l}(t)=d w_{q}(\bar{t}), \quad\left|t-a_{k}\right|=r_{k}, \quad k=1,2, \ldots, n \tag{1.2}
\end{equation*}
$$

Let us fix the branch of the function $\ln \left(z-a_{k}\right)$ in such a way that whole cut connecting the points $z=a_{k}$ and $z=\infty$ lies in the domain $D \cup D_{k}$, where $D:=\bar{C}-\bigcup_{s=1}^{n} \overline{D_{s}}=\bigcap_{m=1}^{N} G_{m}$.

Integrating (1.2) and applying (1.1), we obtain

$$
\begin{equation*}
\varphi_{l}(t)=\overline{\varphi_{q}(t)}-f_{l k}(t)+\overline{f_{q k}(t)}, \quad\left|t-a_{k}\right|=r_{k}, \tag{1.3}
\end{equation*}
$$

where

$$
f_{l k}(t):=\sum_{m \in I_{k} \neq k} A_{l m} \ln \left(t-a_{m}\right)+b_{k}, \quad f_{q k}(t):=\sum_{m \in I_{k} \neq k} \overline{A_{q m}} \ln \left(t-a_{m}\right), k=1,2, \ldots, n .
$$

Here $\sum_{m \in I_{k} \neq k}:=\sum_{m \in I_{k}}$ with $m \neq k, b_{k}$ is a constant. One can consider the equality (1.3) as the simplest boundary value problem on R [5]. Calculate the period

$$
\int_{\partial D_{k}} d w(z)=\int_{\partial D_{k}} d w_{l}(z)=2 \pi i A_{l k}
$$

From other hand

$$
\int_{\partial D_{k}} d w(z)=-\int_{\partial D_{k}} d w_{q}(\bar{z})=2 \pi i \overline{A_{q k}} .
$$

Then

$$
\begin{equation*}
A_{l k}=\overline{A_{q k}}, k=1,2, \ldots, n . \tag{1.4}
\end{equation*}
$$

The sum of the residues of $d w_{p}$ at infinity is equal to zero. Hence,

$$
\begin{equation*}
\sum_{m \in I_{p}} A_{p m}=0 \quad, p=1,2, \ldots, N . \tag{1.5}
\end{equation*}
$$

2.Reducing the problem (1.3) to a system of functional equations

According to scheme of $[8,11]$ let us rewrite the problem (1.3) in the form of a vector-matrix \mathbf{R}-linear boundary value problem

$$
\begin{equation*}
\Phi(t)=\Phi_{k}(t)+Q_{k} \overline{\Phi_{k}(t)}-F_{k}(t), \quad\left|t-a_{k}\right|=r_{k}, \mathrm{k}=1,2, \ldots, \mathrm{n}, \tag{2.1}
\end{equation*}
$$

where

$$
\Phi(z)=\left(\begin{array}{c}
\varphi_{1}(z) \\
\cdot \\
\cdot \\
\cdot \\
\varphi_{N}(z)
\end{array}\right), \quad \Phi_{k}(z)=\left(\begin{array}{c}
\varphi_{1 k}(z) \\
\cdot \\
\cdot \\
\cdot \\
\varphi_{N k}(z)
\end{array}\right)
$$

The uknown vector-functions $\Phi(z)$ and $\Phi_{k}(z)$ are analytic in D and D_{k} respectively and continuously differentiable in $\bar{D}, \overline{D_{k}}$. The known vector-function $F_{k}(t)$ has the l-th coordinate $f_{k l}(t)$, the q-th - of $f_{q l}(t)$, the rest coordinates are equal to zero. The matrix Q_{k} has the dimension $N x N$ and consists of zeros except the coordinates (l, q) and (q, l), with 1 . As above the numbers l and q correspond to the number of circumference k.

Let us show the equivalence of the problem (1.3) and (2.1). Let us fix the number of circumference k. If $\Phi(z), \Phi_{k}(z)$ satisfy (2.1), then

$$
\varphi_{s}(t)=\varphi_{s k}(t),
$$

for $s \neq l$ and q, i.e. $\varphi_{s}(t)$ is analytically continuied to G_{s}. For $s=l$
and $s=q$ we have the relations

$$
\varphi_{l}(t)=\varphi_{l k}(t)+\overline{\varphi_{q k}(t)}-f_{l k}(t), \quad \varphi_{q}(t)=\varphi_{q k}(t)+\overline{\varphi_{l k}(t)}-f_{q k}(t), \quad\left|t-a_{k}\right|=r_{k} .
$$

Therefore, the equality (1.3) holds. Conversly, let $\varphi_{l}(z)$ satisfy (1.3). Then the functions $\varphi_{l k}(z)$ are restored up to an additive complex constant from two Schwarz problems for the $\operatorname{disc}\left|z-a_{k}\right| \leq r_{k}$ [12]:

$$
\operatorname{Re}\left[\varphi_{l k}(t)+\varphi_{q k}(t)\right]=\operatorname{Re}\left[\varphi_{l}(t)+f_{l k}(t)\right], \quad \operatorname{Im}\left[\varphi_{l k}(t)-\varphi_{q k}(t)\right]=\operatorname{Im}\left[\varphi_{l}(t)+f_{l k}(t)\right],\left|t-a_{k}\right|=r_{k}
$$

It is easily to check, that these functions satisfy (2.1).
Let us reduce the problem (2.1) to a system of functional equations. Let us introduce the vector-function

$$
\begin{gathered}
\Omega(z):=\Phi_{k}(z)-\sum_{m=1 \neq k}^{n} Q_{m} \overline{\Phi_{k}\left(z_{m}^{*}\right)}-F_{k}(z),\left|z-a_{k}\right| \leq r_{k}, k=1,2, \ldots, n, \\
\Omega(z):=\Phi(z)-\sum_{m=1}^{n} Q_{m} \overline{\Phi_{k}\left(z_{m}^{*}\right)}, \quad z \in \bar{D} .
\end{gathered}
$$

Here $\sum_{m=1 \neq k}^{n}:=\sum_{m=1}^{n}$ with $m \neq k, z_{m}^{*}:=r_{m}^{2} / \overline{\left(z-a_{m}\right)}+a_{m}$ is the inversion with respect to the circumference $\left|t-a_{k}\right|=r_{k}$. Let us show that $\Omega(z)$ is analytic in \mathbf{C}. We have

$$
\Omega^{+}(t)-\Omega^{-}(t)=\Phi_{k}(t)+F_{k}(t)-\Phi(t)-Q_{k} \overline{\Phi_{k}(t)}=0, \quad\left|t-a_{k}\right|=r_{k} .
$$

Taking into account the principle of analytic continuation and the Liouville theorem we have

$$
\Omega(z)=\Omega(w)=\Phi(w)-\sum_{m=1}^{n} Q_{m} \overline{\Phi_{m}\left(w_{m}^{*}\right)}
$$

where w is a fixed point belonging to $\bar{D}-\{\infty\}$. From the definition of $\Omega(z)$ in D_{k} we obtain the following relations

$$
\begin{equation*}
\Phi_{k}(z)=\sum_{m=1 \neq k}^{n} Q_{m}\left[\overline{\Phi_{m}\left(w_{m}^{*}\right)}-\overline{\Phi_{m}\left(w_{m}^{*}\right)}\right]-Q_{k} \overline{\Phi_{k}\left(w_{k}^{*}\right)}+F_{k}(z)+\Phi(w),\left|z-a_{k}\right| \leq r_{k}, k=1,2, \ldots, n \tag{2.2}
\end{equation*}
$$

These relations constitute a system of $n x N$ linear scalar functional equations for n unknown vector-functions $\Phi_{k}(z)(k=1,2, \ldots, n)$, which are analytic in D_{k} and are continuously
differentiable in $\overline{D_{k}}$. Introduce new notations for the most important components of $\Phi_{k}(z)$.

Let

$$
\psi_{k}(z)=\varphi_{l k}(z), \quad \omega_{k}(z)=\varphi_{q k}(z), \quad\left|z-a_{k}\right| \leq r_{k} .
$$

Remark. Further we shall write one relation on $\psi_{k}(z)$ and $\omega_{k}(z)$ instead of two ones.

The auxiliary functions $\varphi_{s k} \quad(s \neq l$ and $q)$ are represented by $\psi_{k}(z)$ and $\omega_{k}(z)$ in (2.2). The l-th component of (2.2) for each k takes the form

$$
\begin{equation*}
\psi_{k}(z)=\sum_{m \in l_{l} \neq k}\left[\overline{\omega_{m}\left(w_{m}^{*}\right)}-\overline{\omega_{m}\left(w_{m}^{*}\right)}\right]-\overline{\omega_{k}\left(w_{k}^{*}\right)}+f_{l k}(z)+\varphi_{l}(w),\left|z-a_{k}\right| \leq r_{k}, k=1,2, \ldots, n . \tag{2.3}
\end{equation*}
$$

We keep in our mind in (2.3) the analogous relations, when $\psi_{k}(z)$ and $\omega_{k}(z), l$ and q are changed by places. The relations (2.3) can be considered as a system of $2 n$ scalar functional equations with respect to $2 n$ unknown functions $\psi_{k}(z)$ and $\omega_{k}(z)$. The system (2.2) and (2.3) are equivalent. From the definition of $\Omega(z)$ we have the relations

$$
\varphi_{l}(z)=\sum_{m \in I_{l}}\left[\overline{\omega_{m}\left(w_{m}^{*}\right)}-\overline{\omega_{m}\left(w_{m}^{*}\right)}\right]+\varphi_{l}(w), \quad z \in \overline{G_{l}} .
$$

According to (1.1) we need only the derivative

$$
\begin{equation*}
\varphi_{l}^{\prime}(z)=\sum_{m \in I_{l}}\left[\overline{\omega_{m}\left(w_{m}^{*}\right)}\right], \quad z \in \overline{G_{l}} \tag{2.4}
\end{equation*}
$$

to calculate the differentials.

3.Solution of the system of functional equations.

Let us prove convergence of the successive approximation method for the system (2.3). We shall use some auxiliary assertions.

Consider the Banach space C consisting of functions continuous on $\bigcup_{k=1}^{n} \partial D_{k}$. The norm $\|\Psi\|:=\max _{0 \leq k \leq n} \max _{\partial D_{k}}\left[\sum_{s=1}^{N}\left|\Psi_{s}(t)\right|^{2}\right]^{1 / 2}, \quad$ where $\quad \Psi=\left(\Psi_{1}, \Psi_{2}, \ldots, \Psi_{N}\right)^{T} . \quad$ Introduce the subspace $C^{+} \subset C$, which consists of vector-functions analytic in all D_{k}. Differentiate the system (2.3)

$$
\begin{equation*}
\Psi_{k}(z)=-\sum_{m \in l_{l} \neq k} Q_{m}\left[\overline{z_{k}^{*}}\right] \overline{\Psi_{m}\left(z_{m}^{*}\right)}+F_{k}^{\prime}(z),\left|z-a_{k}\right| \leq r_{k} \tag{3.1}
\end{equation*}
$$

Rewrite the last system in the form of equation

$$
\begin{equation*}
\Psi(z)=A \Psi(z)+F^{\prime}(z) \tag{3.2}
\end{equation*}
$$

in the space C^{+}, where the operator A is defined by the right-hand part of the system (3.1), $\Psi(z):=\Psi_{k}(z), \quad F(z):=F_{k}(z)$, when $\left|z-a_{k}\right| \leq r_{k} ; \Psi, F^{\prime} \in C^{+}$.

Lemma 1. [8]. The equation (3.2) is a Fredholm equation in C^{+}.
Lemma 2. The homogeneous equation (3.2) $\left(F^{\prime}(z) \equiv 0\right)$ has zero solution only.

Proof. Let us consider the differentiated homogeneous system (2.3) corresponding to homogeneous equation (3.2)

$$
\begin{equation*}
\psi_{k}^{\prime}(z)=\sum_{m \in l_{\neq k}}\left[\overline{z_{k}^{*}}\right]\left[\overline{\omega_{m}\left(w_{m}^{* *}\right)}\right],\left|z-a_{k}\right| \leq r_{k} . \tag{3.3}
\end{equation*}
$$

As ealier we write only one equation. If the system (3.3) has only trivial solution, then homogeneous equation (3.2) has only trivial solution too.

Integrating the system (3.3) we obtain

$$
\psi_{k}(z)=\sum_{m \in I_{l} \neq k}\left[\overline{\omega_{m}\left(w_{m}^{*}\right)}\right]+\gamma_{l k}, \quad\left|z-a_{k}\right| \leq r_{k},
$$

where $\gamma_{l k}$ is a constant of integration. If ω_{k} and ψ_{k} is a solution of the last system, then the functions

$$
\varphi_{l}(z)=-\sum_{m \in I_{l}} \overline{\omega_{m}\left(w_{m}^{*}\right)}, \quad z \in \overline{G_{l}},
$$

satisfy the conditions

$$
\psi_{k}(t)=\varphi_{l}(t)+\overline{\omega_{k}(t)}+\gamma_{l k}, \quad \omega_{k}(t)=\varphi_{q}(t)+\overline{\psi_{k}(t)}+\gamma_{q k}, \quad\left|t-a_{k}\right|=r_{k} .
$$

Hence, the functions $\varphi_{l}(t)$ and $\varphi_{q}(t)$ are related by equalities

$$
\varphi_{l}(t)=\overline{\varphi_{q}(t)}+\overline{\gamma_{q k}}-\gamma_{l k}, \quad\left|t-a_{k}\right|=r_{k} .
$$

Differetiating this relation we have

$$
d \varphi_{l}(t)=d \overline{\varphi_{q}(t)}, \quad\left|t-a_{k}\right|=r_{k} .
$$

The last relations define an Abelian differential of the fist kind on the surface R. But the functions $\varphi_{l}(t)$ are single-valued in $\overline{G_{l}}$. Therefore, if we assume that ∂D_{k} are canonical sections of R, then the period

$$
\int_{\partial D_{k}} d \varphi_{l}(z) d z=0, \quad k \in I_{l} .
$$

And we immeadetly obtain, that $\varphi_{l}(z)$ is a constant. Then $\omega_{m}(z)$ is a constant too, and $\omega_{m}{ }^{\prime}(z)=0$.

The lemma is proved.
Let us consider the \mathbf{R}-linear boundary value problem

$$
\begin{equation*}
\Phi(t)=\Phi_{k}(t)-\lambda Q_{k} \overline{\Phi_{k}(t)}-\gamma_{k}, \quad\left|t-a_{k}\right|=r_{k}, \quad k=1,2, \ldots, n, \tag{3.4}
\end{equation*}
$$

where the unknown vector-functions $\Phi(z), \Phi_{k}(z)$ are analytic in D, D_{k} respectively and are continuously differentiable in $\bar{D}, \overline{D_{k}}$. Here λ is a constant, γ_{k} is a constant vector.

Lemma 3. The problem (3.4) for $|\lambda|<1$ has constant solutions only.
Proof. We shall use the idea of Bojarski [10]. Let us put

$$
U(z):=\Phi(z), \quad z \in D, \quad U(z):=\Phi_{k}(z)-\lambda Q_{k} \overline{\Phi_{k}(z)}-\gamma_{k}, \quad z \in D_{k} .
$$

Then the vector-function $U(z)$ is a solution of the following partial differential equation

$$
\begin{equation*}
U_{\bar{z}}+Q \overline{U_{z}}=0, \quad z \in \bar{C}-\bigcup_{k=1}^{n} \partial D_{k}, \tag{3.5}
\end{equation*}
$$

where $Q=0, \quad z \in D, Q=\lambda Q_{k}, \quad z \in D_{k}$. Let us check that the system (3.5) is elliptic. The determinator of that system is

$$
\Delta=\operatorname{det}\left(\begin{array}{cc}
I-Q & I+Q \\
I-Q & -I-Q
\end{array}\right) \neq 0 \quad \Leftrightarrow \quad \Delta_{1}:=\operatorname{det} M \neq 0, \text { where } \quad M:=\left(\begin{array}{cc}
I & -Q \\
-Q & I
\end{array}\right)
$$

Here the second matrix M is obtained from the first by summation and reduction of columns. We have $\Delta_{1} \neq 0$, because

$$
M^{-1}=\left(\begin{array}{cc}
\left(I-Q^{2}\right)^{-1} & Q\left(I-Q^{2}\right)^{-1} \\
Q\left(I-Q^{2}\right)^{-1} & \left(I-Q^{2}\right)^{-1}
\end{array}\right)
$$

exists. It can be verified by direct calculation of $M M^{-1}$. Let us show the existence of $\left(I-Q^{2}\right)^{-1}$. The matrix $\left(I-Q^{2}\right)$ is equal to I except the l-th and the q-th elements for $z \in D_{k}$, which equal to $1-\lambda^{2}$. The inequality $|\lambda|<1$ implies that the matrix $\left(I-Q^{2}\right)$ is diagonal and inversable. So we have proved, that (3.5) is elliptic. The condition $U^{+}=U^{-}$is valid on ∂D_{k}, moreover, $U^{ \pm} \in L_{2}\left(\partial D_{k}\right)$. Hence, (3.5) holds in \bar{C}. Taking into account the general Liouville theorem we have the equality $U=$ const. Therefore, the problem (3.4) for $|\lambda|<1$ has constant solutions only.

The lemma is proved.
Lemma 4. The equation (3.2) has one and only one solution in C^{+}. This solution can be found by the method of successive approximations in C^{+}.

Proof. Let us rewrite the system (3.1) on ∂D_{k} in the form of integral equations

$$
\Psi_{k}(t)=-\sum_{m=1 \neq k}^{n}\left[\overline{t_{m}^{*}}\right] Q_{m} \frac{1}{2 \pi i} \int_{\partial D_{m}} \frac{\Psi_{m}\left(\tau_{m}^{*}\right)}{\tau-t_{m}^{*}}+F_{k}^{\prime}(t), \quad\left|t-a_{k}\right|=r_{k} .
$$

It can be written as the equation in C

$$
\begin{equation*}
\Psi(t)=A \Psi(t)+F^{\prime}(t) \tag{3.6}
\end{equation*}
$$

The integral operator is compact in C. The operator of multiplication on the matrix $\left[\begin{array}{l}t_{m}^{*}\end{array}\right] Q_{m}$ and the operator of complex conjugation are bounded in C. Hence, A is a compact operator in C. The Cauchy integral property implies if Ψ is a solution of (3.2) in C, then $\Psi \in C^{+}$. Therefore, the equation (3.2) in C and the equation (3.6) in C^{+}are equivalent when $F^{\prime} \in C^{+}$. It follows from Lemma 2 that the homogeneous equation $\Psi=A \Psi$ has only zero solution. Then the Fredholm theorem implies that the system (3.6) or the system (3.1) has the unique solution.

Let us demonstrate convergence of the method of successive approximations. It is sufficient to prove the inequality $\rho(A)<1$, where $\rho(A)$ is the spectral radius of A. The compact operator A has a spectrum consisting of eigenvalues [13]. The inequality $\rho(A)<1$ is observed iff there exists a complex number λ such that $|\lambda| \leq 1$ and the equation

$$
\Psi(t)=\lambda A \Psi(t)
$$

has zero solution only. The equation can be written in the form

$$
\begin{equation*}
\Psi_{k}(z)=-\lambda \sum_{m \neq k} Q_{m}\left[\overline{z_{k}^{*}}\right] \overline{\Psi_{m}\left(z_{m}^{*}\right)},\left|z-a_{k}\right| \leq r_{k} . \tag{3.7}
\end{equation*}
$$

Let $|\lambda|<1$. Then, we introduce the vector-function

$$
\Omega(z)=-\lambda \sum_{m=0}^{n} Q_{m}\left[\overline{z_{k}^{*}}\right] \overline{\Psi_{m}\left(z_{m}^{*}\right)},
$$

which is analytic in \bar{D}. From (3.7) we have

$$
\Omega(t)=\Psi_{k}(t)-\lambda \sum_{m=0}^{n}\left[\overline{t_{k}^{*}}\right] Q_{k}^{\prime} \overline{\Psi_{k}\left(t_{k}^{*}\right)}, \quad\left|t-a_{k}\right|=r_{k}
$$

By integrating the relations we obtain the following \mathbf{R}-linear boundary value problem

$$
\Phi(t)=\Phi_{k}(t)-\lambda Q_{k} \overline{\Phi_{k}(t)}+\gamma_{k}, \quad\left|t-a_{k}\right|=r_{k} .
$$

Here $\Phi^{\prime}(z)=\Omega(z), \quad \Phi_{k}{ }^{\prime}(z)=\Psi_{k}(z), \quad \gamma_{k} \quad$ are arbitrary constant vectors. It follows from Lemma 3 that the \mathbf{R}-linear boundary value problem has constant solutions only. Then $\Phi^{\prime}(z)=\Phi_{k}{ }^{\prime}(z)=0$.

Let $|\lambda|=1$. Then, by changing the variable $z=\sqrt{\lambda} Z$ we reduce the system (3.7) to the same system with $\lambda=1$, where $a_{k}=\sqrt{\lambda} A_{k}$ and $\Omega_{k}(Z):=\Psi_{k}(z)$. It follows from Lemma 3 that $\Omega_{k}(Z)=\Psi_{k}(z)=0$. Hence, $\rho(A)<1$.

This inequality proves the lemma.
Introduce the mappings

$$
z_{k_{m} k_{m-1} \ldots k_{1}}^{*}:=\left(z_{k_{m-1} \ldots k_{1}}^{*}\right)_{k_{m}}^{*} .
$$

There are no equal neighbor numbers in the sequence $k_{1}, k_{2}, \ldots, k_{m}$. When m is even we have Moebius transformations on z. If m is odd we have transformations on \bar{z}.

Theorem 1. The system of functional equations

$$
\begin{equation*}
\psi_{k}^{\prime}(z)=\sum_{m \in l_{\neq k} \neq k}\left[\overline{z_{k}^{*}}\right]^{\prime}\left[\overline{\omega_{m}\left(w_{m}^{*}\right)}\right]+f_{l k}^{\prime}(z),\left|z-a_{k}\right| \leq r_{k}, k=1,2, \ldots, n, \tag{3.8}
\end{equation*}
$$

has the unique solution

$$
\begin{aligned}
& \left.\psi_{k}^{\prime}(z)=f_{l k}^{\prime}(z)+\sum_{k_{1} \in I_{l} \neq k}\left[\overline{f_{q_{1} k_{1}}\left(z_{k_{1}}^{*}\right)}\right)\right]^{\prime}+\sum_{k_{1} \in l_{l} \neq k} \sum_{k_{2} \in l_{q} \neq k_{1}}\left[f_{l_{2} k_{2}}\left(z_{k_{2} k_{1}}^{*}\right)\right]^{\prime}+ \\
& \sum_{k_{1} \in I_{l} \neq k} \sum_{k_{2} \in I_{q} \neq k_{1}} \sum_{k_{3} \in I_{l} \neq k_{2}}\left[f_{q_{3} k_{3}}\left(z_{k_{3} k_{2} k_{1}}^{*}\right)\right]^{\prime}+\ldots, \quad\left|z-a_{k}\right| \leq r_{k} .
\end{aligned}
$$

The proof follows from Lemma 4. Because the equality (3.8) is the l-th coordinate of the vector equality (3.1) for fixed k.

The theorem is proved.
Remark. The convergence in C^{+}means the uniform convergence.
From (2.4) we have

$$
\begin{align*}
& \varphi_{k}^{\prime}(z)=\sum_{k_{0} \in I_{l}}\left[\overline{\omega_{k_{0}}\left(z_{k_{0}}^{*}\right)}\right]=\sum_{k_{0} \in I_{l}}\left[\overline{f_{q_{0} k_{0}}\left(z_{k_{0}}^{*}\right)}\right]+\sum_{k_{0} \in I_{l}} \sum_{k_{1} \in E_{l} \neq k_{0}}\left[f_{l_{2} k_{2}}\left(z_{k_{1} k_{0}}^{*}\right)\right]^{\prime}+ \tag{3.9}\\
& \sum_{k_{0} \in I_{l}} \sum_{k_{1} \in I_{l} \neq k} \sum_{k_{2} \in I_{q} \neq k_{1}}\left[f_{q_{3} k_{3}}\left(z_{k_{3} k_{2} k_{1}}^{*}\right)\right]^{\prime}+\ldots, \quad z \in \overline{G_{l}} .
\end{align*}
$$

The formula

$$
\left[f_{l k}(\alpha(z))\right]^{\prime}=\sum_{m \in l_{l} \neq k} A_{l k} \frac{\alpha^{\prime}(z)}{\alpha(z)-a_{m}}
$$

follows from the definitions of $f_{l k}$. So we have the final
Theorem 2. All Abelians differentials of the first kind on the Riemannian surface R have the form (1.1), (3.9), where the constants $A_{l m}$ are related by (1.4), (1.5).

Let us study the number of the constants $A_{l m}$ corresponding to linear independent differentials (1.1). According to the general theory [1,2] that number is equal to the genius $\rho(R)$. Let us consider the surface Q homeomorphic to R, when instead of the discs we have cuts gluied in the same rule. Let V be a branch index of \mathbf{Q} [2]. It is easily seen, that $V=2 n$, where $2 n$ is the number of ends of the cuts, 1 is the order of branching. The following formula

$$
V=2(N+\rho(\mathrm{Q})-1)
$$

holds [2]. Then $\rho(\mathrm{R})=\rho(\mathrm{Q})=n-N+1$. The number of constants $A_{l m}$ is equal to $2 n$. After (1.4) that number reduces on n. Hence, from N relations (1.5) we can choose ($N-1$) linear independent relations.

References

[1] M.Schiffer, D.K.Spencer, Functionals on finite Rimaniannian surfaces, Moscow, IL 1957
[2] G.Springer, Introduction to Riemannian Surfaces, Addison-Wesley, Reading, MA 1957
[3] N.I.Zhukova, E.I.Zverovich, Riemannian surfaces of regular 2n-polygons, Preprint VINITI N 887-76, 1976, Minsk-Moscow (in Russian).
[4] Setko E. A., E.I.Zverovich, Riemannian surfaces of regular 4n-polygons, Preprint VINITI N 1845-B90, 1990, Minsk-Moscow (in Russian).
[5] E.I.Zverovich, Boundary value problems of the theory of analytic functions in Hoelder clases on Riemannian surfaces, Uspehi Mat. Nauk 26(1971), 113-179 (in Russian).
[6] H.Poincare, Ouevres, Gauthier-Villar, Paris t.2, 1916; t.4, 1950
[7] Golusin G.M., Geometrische Funktionentheorie, Verlag, Berlin 1957
[8] V.V.Mityushev, On solution of boundary R-value problem for complex cotour, Preprint VINITI N 158-B86, 1986, Minsk-Moscow (in Russian).
[9] Kuczma M., Functional equations in a single variable, PWN, Warszawa,1968.
[10] B.Bojarski, On generated Hilbert boundary value problem, Soobszczenia AN Gr SSR 25 (1960), 385-390 (in Russian).
[11] V.V.Mityushev, Riemann problem on double of a multiply connected circular region, Ann.Pol.Math., 1997 (to appear)
[12] F.D.Gakhov, Boundary value problems, Nauka, Moscow 1977 (in Russian)
[13] Krasnoselski MA, Vainikko, GM, Zabreiko, PP, Rutitski, Ya. B., Stetsenko,. V.Ya. Approximate Solution of Operator Equations. Nauka, Moscow 1969 (in Russian).

