
MATHEMATICAL BIOSCIENCES doi:10.3934/mbe.2017018
AND ENGINEERING
Volume 14, Number 1, February 2017 pp. 277–287

A CRITERION OF COLLECTIVE BEHAVIOR OF BACTERIA
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Abstract. It was established in the previous works that hydrodynamic in-

teractions between the swimmers can lead to collective motion. Its implicit
evidences were confirmed by reduction in the effective viscosity. We propose

a new quantitative criterion to detect such a collective behavior. Our crite-
rion is based on a new computationally effective RVE (representative volume

element) theory based on the basic statistic moments (e-sums or generalized

Eisenstein-Rayleigh sums). The criterion can be applied to various two-phase
dispersed media (biological systems, composites etc). The locations of bacteria

are modeled by short segments having a small width randomly embedded in

medium without overlapping. We compute the e-sums of the simulated disor-
dered sets and of the observed experimental locations of Bacillus subtilis. The

obtained results show a difference between these two sets that demonstrates

the collective motion of bacteria.

1. Introduction. Experimental and theoretical models have been recently devel-
oped to examine fundamental aspects of collective motion exhibited by various
biological systems. Following the seminal papers [18]-[17] and works cited therein
we suggest that hydrodynamic interactions between the swimmers lead to collective
motion when every bacterium interacts with other ones through the viscous envi-
ronment. The implicit evidences of collective motion were confirmed by reduction in
the effective viscosity [16]. The theoretical investigations of collective motion were
based on the considering the motion in the framework of mechanical dynamical sys-
tems [13]-[20]. While the above presented theoretical and experimental results are
related via the effective viscosity of suspension of swimmers, these relation lack sim-
ple and direct comparisons of viscosity for experimentally observed sets of bacteria
and for simulated ensembles.

In the present paper, we propose a new quantitative criterion of collective be-
havior. The locations of bacteria are modeled by short segments having a small
width randomly embedded in medium without overlapping. First, we theoretically
simulate locations of particles called below by disordered sets of bacteria (DB sets
for shortness) subjected to local viscous stresses and randomly reacted on hydro-
dynamic interactions. Second, we calculate the basic statistic moments of the con-
structed DB sets in terms of the generalized Eisenstein-Rayleigh sums (e-sums for
shortness) introduced in [6]. Further, we construct the e-sums (2) for the observed
experimental locations (31 film frames) of Bacillus subtilis in a very thin liquid film
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[18]. As the final step, we compare the e-sums of DB sets and of the experimental
locations. The obtained results show a difference between these two sets of e-sums
that demonstrates the collective motion of bacteria. We do not explain reasons for
the collective motion and refer to [18]-[17], [13]-[20].

Our criterion of the collective behavior is based on a new RVE (representative
volume element) theory proposed in [6], on the invariance of the effective transport
properties on the conformal mappings [4] and on the algebraic dependence of the
viscous lattice sums on the e-sums [6]. The main object of this theory is a set
of e-sums systematically investigated in [10], [8], [2], [3], [4], [15]. According to
the new RVE theory, the set of the e-sums (see (2) below and general formulas in
[6]) determines macroscopically equivalent cells, i.e. cells having the same effective
properties (conductivity, viscosity etc). The RVE is chosen as the minimal size
cell from all the equivalent cells. The necessary justification of this theory can
be found in the above cited works. It is worth noting that the usage of the e-
sums implicitly takes into account high order correlation functions without their
hard direct computations. In particular, we make simple implementation of the
RVE theory [6] which demonstrates its numerical advantages in comparison with
expensive computations based on the traditional statistical notion of the RVE.

It is worth noting that the criterion can be applied to various two-phase dispersed
media (biological systems, composites etc).

2. Random location of segments. In the present section, we discuss theoretical
simulations of elements embedded in a medium. Bacteria are modeled by short
segments having non-overlapping thin δ-security coatings. Random locations of
segments are generated in the following way. The plane geometry is considered as
the complex plane C of the complex variable z = x+ iy with standard designations
accepted in complex analysis where i denotes the imaginary unit, Re and Im the
real and imaginary parts, the bar stands for the complex conjugation.

The complex numbers 1 and i can be considered as the fundamental translation
vectors on the complex plane C. We introduce the (0, 0)-cell as the square

Q(0,0) =

{
z = t1 + it2 : −1

2
< tk <

1

2
(k = 1, 2)

}
.

The square latticeQ consists of the cellsQ(m1,m2) := {z ∈ C : z−m1−im2 ∈ Q(0,0)},
where m1,m2 run over integers.

Consider N non-overlapping segments Γk of length l with the centers bk ∈ Q(0,0)

with the angle of inclination αk ∈ [−π, π]. (see Fig.1).
The centers bk are considered as random variables distributed in such a way that

the segments

Γk =

{
z ∈ C : z = bk ±

l

2
eiαkt, 0 ≤ t ≤ 1

}
generate a set of uniformly distributed non-overlapping segments. Theoretically,
this distribution can be introduced as the distribution of the variable b = (b1, b2, · · · ,
bN ) ∈ QN(0,0) with the restrictions |bm − bn| ≥ δ for m 6= n (m,n = 1, 2, . . . , N).

The separation parameter δ is taken equal to l
4 . This value refers to the minimum

distance between the centers of the bacteria. The choice of the constant 4 is based
on the experimentally observed widths of bacteria. It should be noted that the seg-
ments Γk belong to the cell Q(0,0) in the double periodic topology when the opposite
sides of Q(0,0) are glued by pairs.
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Figure 1. Double periodic cell Q(0,0) with segments.

The random variable b can be statistically realised for largeN by the Monte Carlo
method to get numerical results. The following constructive procedure to generate
random locations of segments is used. Let a random point b1 is taken in accordance
with the uniform distribution in Q(0,0). Next, a random angle α1 ∈ [−π, π] is

chosen. Hence, the pair of points z1 = b1± l
2e
iα1 is constructed. This is equivalent

to the construction of the first segment Γ1 determined by the point b1 and angle
α1. At the next step, we take a random point b2 uniformly distributed in Q\H1,
where H1 = {z ∈ C : |z − b1| ≤ δ}. Further, a random angle α2 is selected and we
check whether the segments with the ends z2 = b2± l

2e
iα2 and z1 do not intersect.

If it is true, we have the second random segment determined by the point b2 and
angle α2. If the segments intersect, we take a random point b2 again in Q\H1 and
randomly select a new random angle α2. In the same way, we take the next point
b3 uniformly distributed in Q\(H1 ∪ H2), where H2 = {z ∈ C : |z − b2| ≤ δ} and

so forth. The last random point bN is uniformly distributed in Q\
(⋃N−1

k=1 Hk

)
and

determines a pair of points zN = bN ± l
2e
iαN with the random angle αN .

Introduce the density segments associated to the conformally invariant conduc-
tivity (capacity) [4]

%(l, N) = N

(
l

2

)2

, (1)

where l is the length of the segment and N the number of segments per represen-
tative cell. The algorithm described above generates a probability distribution U%
depending on the density. This distribution models the DB sets. In the limit case
% = 0, the distribution U0 becomes the well known Poisson distribution of points in
the square.
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In order to study the distributions U% for various densities % we will use the
following e-sums [9]

e2 =
1

N2

N∑
k=1

N∑
m=1

E2(bk − bm),

epp =
(−1)p

Np+1

N∑
m=1

∣∣∣∣∣
N∑
k=1

Ep(bm − bk)

∣∣∣∣∣
2

, p = 2, 3, 4.

(2)

Here, Ep denotes the Eisenstein functions of order p (see Appendix). The values of
the basic sums e2, e22, e33 and e44 will be estimated using the Monte Carlo method.

3. Computation of e-sums for DB sets. The theoretical probabilistic distribu-
tions corresponding to disordered locations of bacteria are modeled in the previous
section. Now, we propose an effective computational tool to properly describe U%.

Let M denote the number of simulated realizations of the unit cell (Monte Carlo
experiments) with the random value b. The parameters M and N must be chosen
sufficiently large in order to obtain the stable averaged value of the e-sums. Theo-
retically, it is possible to consider only one experiment (M = 1) and to take a huge
number N . But computations are less expensive if M is large and N can be not so
huge as in the case M = 1.

First, we determine the minimal N for which the distribution is characterized
in that the angles of the segments will be uniformly distributed over the interval
[−π, π]. It is assumed that the segments directions are uniformly distributed if the
following inequalities are fulfilled∣∣∣∣∣ 1

N

N∑
n=1

Re
[

exp(iαn)
]∣∣∣∣∣ ≤ 0.15 and

∣∣∣∣∣ 1

N

N∑
n=1

Im
[

exp(iαn)
]∣∣∣∣∣ ≤ 0.15, (3)

These conditions are satisfied for N = 500 (see Fig.2).
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Figure 2. The real (circles) and imaginary (crosses) parts of the
averaged directions for N = 500 and for the total number of dis-
tributions M = 1500 (% = 0.25). All absolute values do not exceed
0.15.

In order to estimate M0 = M when the computations become stable we consider
the dependence of the mean 〈e44〉 on M for M ∈ [1, 1500] experiments. All the sums
e2 and epp (p = 2, 3, 4) are estimated, but e44 is characterized by major volatility.
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Here, 〈e44〉 is equal to the mean value of (e44)m calculated for b generated in the
m-th numerical experiment, more precisely,

〈e44〉 =
1

M

M∑
m=1

(e44)m. (4)

The results are shown in Fig.3. One can observe that errors do not exceed 2% for
M > 700. Therefore, the computations demonstrate that we have to simulate at
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Figure 3. 〈e44〉 for N = 500 and for various densities a) % = 0.15;
b) % = 0.25; c) % = 0.35. Dashed lines show the deviation bounds
2% (for % = 0.15), 1.5% (for % = 0.25) and 1% (for % = 0.35).

least M = 800 cells each of them contains at least N = 500 segments.
The values e2, e22, e33, e44 are computed for the distributions U% for various densi-

ties %. The sum e2 must be equal to π [9] for ideal macroscopically isotropic random
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locations of segments. This yields the first criterion equation for the macroscopic
isotropy of structures. The sums epp (p = 2, 3, 4) describe high order basic terms
of the distributions U%. The next terms could describe more precisely U% for higher
densities [8].

Table 1. The averaged e-sums for various densities.

% Re
[
〈e2〉

]
〈e22〉 〈e33〉 〈e44〉

0.05 3.12977 129.053 −3554.78 165787.0
0.1 3.14228 68.9110 −926.015 21743.5
0.15 3.13271 48.7003 −424.611 6725.43
0.2 3.13447 38.8351 −251.143 3037.38
0.25 3.14641 33.0394 −167.170 1635.55
0.3 3.13646 28.9718 −121.079 1000.09
0.35 3.14165 26.3229 −93.1703 672.818
0.4 3.14652 24.2258 −73.9405 472.197
0.45 3.14838 22.7573 −61.2791 354.635
0.5 3.14157 21.4983 −51.8595 274.963
0.55 3.14517 20.5061 −44.5169 218.888
0.6 3.13946 19.7609 −39.4423 180.827

The average e-sums are selected in Table 1 for the densities % changing from 0.05
to 0.6 with the step 0.05. The algorithm works too slowly for higher densities. The
results from Table 1 can be extended by expensive computations to higher densities.

Table 1 contains the fundamental parameters of the uniform non-overlapping
distribution U% of segments on the plane. The simulated theoretical distribution
describes DB sets when bacteria may affect each other but these interactions are
local and do not yield the collective behavior.

4. Collective motion of bacteria. In the present section, we pay attention to
experimental results partially presented in [18]. The images of Bacillus subtilis in
31 frames are used in computations. One of the typical frame is displayed in Fig.4.

Figure 4. Bacillus subtilis [18].
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We use algorithms of image processing and analysis to determine number, centers,
angles of inclinations and length of bacteria. The density of bacteria is calculated
by formula (1) and oscillates around value 0.15. The results of the image processing
and analysis are applied to computation of the values of the experimental e-sums.
The results are selected in Table 2.

Table 2. The e-sums for 31 film frames of Bacillus subtilis. The
first column contains the number of the film frame, the second
column contains the number of bacteria N detected in the frame.
The next columns show basic sums.

no. N Re[e2] e22 e33 e44
1 2065 3.24113 35.3172 −166.312 2351.56
2 2067 3.25984 36.6725 −158.136 1920.47
3 2066 3.19667 34.8162 −164.29 2071.58
4 2040 3.29149 35.4505 −149.94 2060.21
5 2064 3.27662 33.9367 −141.591 1627.76
6 2056 3.42917 37.4054 −190.248 2867.12
7 2026 3.34495 35.6335 −157.051 1811.85
8 2030 3.13718 34.0681 −169.746 2077.70
9 2039 3.21947 34.6973 −148.317 1675.23
10 2044 3.06423 37.2784 −177.122 2865.54
11 2023 2.95417 32.9400 −157.421 1695.34
12 2014 3.09097 36.1141 −208.578 2967.78
13 2027 3.00734 36.0749 −215.528 3292.64
14 2034 3.16291 35.3946 −194.029 2697.51
15 2059 3.21142 35.7572 −175.982 2647.37
16 2016 3.19012 36.9914 −200.469 3200.68
17 2016 3.30939 35.3018 −163.073 1911.99
18 2057 3.22744 38.7036 −243.944 4057.40
19 2055 3.18527 35.9201 −144.187 1701.75
20 2071 3.31315 37.6613 −152.177 2094.90
21 2066 3.2770 33.6304 −131.371 1735.46
22 2073 3.3854 35.1252 −129.436 1330.40
23 2040 3.24423 33.6249 −126.809 1305.79
24 2080 3.30177 36.0663 −159.988 1707.04
25 2077 3.19037 34.2243 −168.806 1970.43
26 2065 3.39291 39.0489 −186.748 2108.54
27 2062 3.17936 34.0767 −138.028 1354.70
28 2024 3.11102 40.2420 −202.873 3966.32
29 2068 3.12904 33.4322 −155.213 1801.78
30 2059 3.28145 36.8591 −176.772 2198.46
31 2042 3.24301 37.0932 −208.055 2844.27

In order to compare the distributions of DB sets with the distribution of bacteria
we have made theoretical calculation of 31 samples. Because of the average number
of bacteria in the frame is about 2050, the minimum distance between the centers
of the bacteria is 1

4 of their length and density of bacteria equals about 0.15, the
theoretical calculations have been carried out for the following parameters N =
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2050, % = 0.15 and δ = l
4 . The length l = 0.017108 is normalized to the normalized

unit area of the cell. The results of the calculations are shown in Table 3.

Table 3. The e-sums calculated for 31 samples of DB sets. The
parameters of distribution are N = 2050, % = 0.15 and δ = l

4 .

no. Re[e2] e22 e33 e44
1 3.17987 46.6427 −393.453 6565.85
2 3.07985 50.6260 −515.407 9617.15
3 3.36286 58.2470 −629.653 11184.9
4 3.31838 47.8645 −380.243 5763.63
5 3.01309 47.7780 −435.587 6984.50
6 3.14305 47.8691 −400.298 6207.25
7 3.20741 50.5550 −433.739 6256.86
8 3.20946 45.6877 −348.511 4868.42
9 3.08756 50.2205 −485.495 8630.89
10 3.14825 51.9186 −498.135 7884.83
11 3.15232 50.4770 −407.538 5794.05
12 2.97260 48.3467 −415.332 6423.79
13 3.18407 48.6382 −406.544 6317.61
14 3.12623 43.5618 −332.846 5012.32
15 2.96333 47.0048 −403.513 6158.98
16 3.13992 49.2681 −428.006 6764.48
17 3.16460 48.0914 −402.791 6347.72
18 3.09493 53.3020 −483.722 7700.97
19 3.12330 50.4108 −415.444 6743.15
20 3.21182 49.3165 −410.478 6876.66
21 3.21308 50.4445 −476.521 8126.50
22 2.97221 48.6954 −441.899 7384.68
23 3.23927 51.1514 −466.984 6864.76
24 3.11142 43.8766 −362.591 5776.80
25 2.84798 44.1550 −383.563 5705.14
26 3.09189 44.8430 −373.888 6020.28
27 3.11219 44.5645 −331.345 4733.94
28 3.05673 50.1022 −490.807 8516.17
29 3.09775 48.5431 −416.398 6597.56
30 2.99318 47.1511 −432.571 6636.21
31 3.01481 47.5799 −400.869 6078.16

5. Conclusion. Comparing the results shown in the Tables 2 and 3 for the observed
and theoretical distributions of bacteria, we can see that values of the corresponding
e-sums differ. Therefore, the observed locations of bacteria are not fitted with the
simulated disordered locations. We can conclude that the behavior of the bacteria is
not disordered, hence, we suggest that it is collective. An exception is the values of
e2 which is close to π ≈ 3.14 for the DB sets and the observed locations (see Table
4). This demonstrates averaged isotropy of the bacteria motion for the considered
data.

In order to see that the theoretical and observed distributions are essentially
different, we compare averaged basic sums (see Table 4) from Table 2 and Table 3.
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Table 4. Comparison of the averaged e-sums for the observed
bacteria locations with the e-sums computed for the DB sets (% =
0.15) from Table 2 and Table 3.

Re
[
〈e2〉

]
〈e22〉 〈e33〉 〈e44〉

averaged e-sums
for theoretical
distributions

3.11721 48.6107 −425.941 6791.75

standard deviation
of the e-sums
for theoretical
distributions

0.107542 3.02546 60.3803 1366.42

averaged e-sums
for distributions
of bacteria

3.22092 35.7922 −169.75 2255.47

standard deviation
of the e-sums
for distributions
of bacteria

0.108139 1.73937 27.9609 717.895

It is worth noting that changes of the parameters (δ, M etc) do not essentially
impact onto deviations of the e-sums of DB sets. Moreover, the DB sets have
significantly higher values epp (p = 2, 3, 4) than the observed ones (c.f., the bold
line in Table 1 and the averaged data from Table 4).

The above analysis of collective behavior can be considered as the first application
of the RVE theory [6] which will be extended in the future. In particular, we plan
to study dynamical parameters of the bacteria distributions in time using the data
displayed in Fig.5.
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Figure 5. The values of e44 for subsequent frames of the film.

Appendix. Following [6], [7] we present constructive formulae for the Eisenstain-
Rayleigh sums Sm the Eisenstain functions Em corresponding to square lattice Q
(see section 2).

The Eisenstein–Rayleigh lattice sums Sm can be easily calculated through the
rapidly convergent series (43) and recurrent formulae (44) from paper [7]. For the
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square array, we have S2 = π = 3.14159, S4 = 3.15121, S8 = 4.25577, S12 =
3.93885. Only the sums Sm (m = 2; m = 4, 8, 12, 16, . . .) do not vanish for the
square array.

The Eisenstein functions [21] are related to the Weierstrass function ℘(z) [1] by
the identities

E2(z) = ℘(z) + S2,

Em(z) =
(−1)m

(m− 1)!

dm−2℘(z)

dzm−2
, m = 3, 4, . . . .

(5)

Every function (5) is doubly periodic and has a pole of order m at z = 0. For
shortness, it is convenient to redefine the Eisenstein functions in (2) at zero as
Ep(bk − bm) := Sp for k = m.
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