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a b s t r a c t

Patterns of different symmetries may arise after solution to reaction–diffusion equations. Hexagonal

arrays, layers and their perturbations are observed in different models after numerical solution to the

corresponding initial-boundary value problems. We demonstrate an intimate connection between pat-

tern formations and optimal random packing on the plane. The main study is based on the following

two points. First, the diffusive flux in reaction–diffusion systems is approximated by piecewise linear

functions in the framework of structural approximations. This leads to a discrete network approximation

of the considered continuous problem. Second, the discrete energy minimization yields optimal random

packing of the domains (disks) in the representative cell. Therefore, the general problem of pattern forma-

tions based on the reaction–diffusion equations is reduced to the geometric problem of random packing.

It is demonstrated that all random packings can be divided onto classes associated with classes of iso-

morphic graphs obtained from the Delaunay triangulation. The unique optimal solution is constructed in

each class of the random packings. If the number of disks per representative cell is finite, the number of

classes of isomorphic graphs, hence, the number of optimal packings is also finite.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The Turing mechanism for reaction–diffusion equations mod-

els biological and chemical pattern formations. This approach was

widely discussed in literature and supported by many numeri-

cal examples (see the recent books [2,4,5] and many works cited

therein). Patterns of different symmetries may arise after solu-

tion to reaction–diffusion equations. Hexagonal arrays, layers and

their perturbations are observed in different models after numeri-

cal solution to the corresponding initial-boundary value problems

for nonlinear partial differential equations. However, these mod-

els do not answer the question, why the most frequently observed

patterns are close to the optimal packing structures. Why do the

hexagonal array arise? One can see, for instance, that a resulting

structure can be the hexagonal array disturbed by pentagon inclu-

sions. Is it related to a model approximation or to an inherent fea-

ture of pattern formations?

In the present paper, we try to answer the above questions to

demonstrate an intimate connection between pattern formations

and optimal random packing on the plane. The main study is based

on the following two points. First, the diffusive flux in reaction–

diffusion systems is approximated by piecewise linear functions

in the framework of structural approximations [3,7]. This leads
∗ Corresponding author. Tel.: +48126627864; fax: +48126358858.

E-mail address: mityu@up.krakow.pl

o

b

http://dx.doi.org/10.1016/j.mbs.2016.01.008

0025-5564/© 2016 Elsevier Inc. All rights reserved.
o a discrete network approximation of the considered continu-

us problem. Second, the discrete energy minimization yields opti-

al random packing of the domains in the representative cell. The

acked domains are approximated by equal disks. This approach is

escribed in the bulk of the paper.

Packing problems refer to geometrical optimization problems

11]. In the present paper, we consider the optimal packing of disks

n the plane in the random statement fitted to the description

f pattern formations. Optimal packing in the classic determinis-

ic statement is attained for the hexagonal array when the packing

oncentration holds π√
12

[11]. Computer simulations demonstrate

hat random packing have a lower density and depends on the pro-

ocol of the random packing [1].

It is shown in Section 3 that pattern formations lead to the op-

imal random packing problem in the equivalence classes of graphs

btained by means of the Delaunay triangulation. The justification

f such an approach is based on the observation that solution to

he physical problem of the optimal diffusion implies solution to

he geometrical problem of the packing disks [8]. The unique opti-

al solution is constructed in each class of the random packings.

f the number of disks per representative cell is finite, the num-

er of classes of isomorphic graphs, hence, the number of optimal

ackings is also finite.

The proposed method to study pattern formations is based

n the minimization of the discrete energy for graph structures

y analytical and numerical methods within treatment of PDE by

http://dx.doi.org/10.1016/j.mbs.2016.01.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mbs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mbs.2016.01.008&domain=pdf
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a b

Fig. 1. (a) Dependence of the inhibitor on the spatial variable. (b) Piecewise linear approximation of the inhibitor on a smaller interval (dashed line). The maxima are

approximated by segments Dk and Dj (disks in 2D) and the minima by points Pkj (segments in 2D).
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Fig. 2. 2D approximation of the inhibitor. The diffusion potential is approximated

by appropriate constants in disks and the diffusion flux between the disks by linear

functions along the edges of the Delaunay triangulation.
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1 The terms the Delaunay triangulation and graph used in this paper are slightly

different from the commonly used notations in degenerate cases. For example, con-

sider a square and its four vertices. The traditional Delaunay triangulation has four

sides of the square and one of the diagonals. In our approach, the Delaunay graph

has only four sides.
he structural approximation method. Though PDE are not directly

ritten in the paper, they are implicitly used in estimations of the

ocal flux between local spatial extrema of the inhibitor.

. Structural approximation

The Turing mechanism can create temporally stable and spa-

ially non-homogeneous structures. In order to present the main

dea of the structural approximation we consider 1D Schnakenberg

ystem [5, p. 156]. A typical dependence of the inhibitor on the

patial variable is displayed in Fig. 1a. It is assumed that such a

ependence can be approximated by a piecewise linear function as

hown in Fig. 1b. The solution of the continuous reaction–diffusion

quations is approximated by the discrete diffusion model with the

onstant diffusion fluxes (derivatives of the linear approximations)

etween the extrema of the potential.

A similar approximation can be extended to multidimensional

eaction–diffusion equations [9]. In the present paper, we deal with

D double periodic structures. Let e1 = (e1, 0) and e2 = (e21, e22)

e the translation vectors of the lattice Q = {l1e1 + l2e2 : l1,2 ∈ Z}
here Z denotes the set of integer numbers. Consider the periodic

epresentative cell

0 = {x = t1e1 + t2e2}, 0 < t1,2 < 1}.
or simplicity, we approximate the places of maximal diffusion po-

ential by equal disks Di (i = 1, 2, . . . , N) of radius r centered at the

et of points A = (a1, a2, . . . , aN) displayed in Fig. 2. The maxima of

he diffusion potential are approximated by disks and the minima

y lines. Every line segment Pkj is perpendicular to the segment

ak, aj), its length holds |Pk j| = 2r and it is divided onto equal parts

y (ak, aj). The described approximations fits for functions of type

hown in Fig. 1. Appendix contains a formal general description of

he approximations.

It is convenient to introduce new distance (metric) as follows.

wo points a, b ∈ R
2 are identified if their difference a − b = l1e1 +

2e2 belongs to the lattice Q. Hence, the classic flat torus topology

ith the opposite sides welded is introduced on the cell Q0. The

istance ‖a − b‖ between two points a, b ∈ Q0 is introduced as

a − b‖ := min
l1,l2∈Z

|a − b + l1e1 + l2e2|, (2.1)

here the modulus means the Euclidean distance in R
2 between

he points a and b.

Construct the double periodic Voronoi diagram and the Delau-

ay triangulation corresponding to the set A on the torus Q =
0
l1,l2∈Z(Q0 + l1e1 + l2e2). The edges of the Delaunay triangulation

correspond to linear approximations of the diffusion flux be-

ween disks. The Delauney triangulation of the vertices A con-

ists of straight lines connecting by pairs points of A belonging to

eighbor Voronoi regions.1 Let the neighborhood relation between

wo vertexes be denoted by aj ∼ ak or shortly j ∼ k. We call the

onstructed double periodic graph (A, E) by the Delaunay graph.

Two graphs are called isomorphic if they contain the same

umber of vertices connected in the same way. One of the most

mportant notation of the present paper is the class of graphs

= G(A,E) isomorphic to a given graph (A, E).

Let u = (u1, u2, . . . , uN) denote the vector whose components

re the maximal diffusion potentials in the corresponding disks.

he discrete network model for densely packed disks [3,7,10] is

ased on the fact that the diffusion flux is concentrated in the

ecks between closely spaced inclusions having different poten-

ials. In our model, closely spaced inclusions means the chain disk–

egment–disk (Dk�Pkj�Dj) displayed in Fig. 1b. For two neighbor
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disks Dk, Dj with centers ak, aj and a segment Pkj between them

the relative interparticle flux g(|ak − a j|) can be approximated by

Keller’s formula [6]

g(‖ak − a j‖) = π

√
r

δk j

, (2.2)

where δk j = ‖ak − a j‖ − 2r denotes the gap between the neighbor

disks. Keller’s formula (2.2) was deduced for the linear local dif-

fusion flux between the neighbor disks that is agree with our ap-

proximation. Introduce the designation∑
k, j

(G) =
N∑

k=1

∑
j∼k

, (2.3)

where j ∼ k means that the vertices aj and ak are connected. Fol-

lowing the authors in [3,7] introduce the functional associated to

the discrete energy

E(u, a) =
∑
k, j

(G)
g(‖ak − a j‖)(uk + uj)

2, (2.4)

where uk + u j is the variation of the diffusion potential along the

chain Dk�Pkj�Dj.

In the case of general approximations described in Appendix,

the variation uk + u j can be replaced by uk − u j . The latter case

corresponds to the monotonic change of the potential between two

neighbor disks Dk and Dj. In particular, uk − u j = 0 for touching

disks. Such a change will not impact on the optimization result

presented in the next section.

3. Optimal random packing

Consider the minimization problem

E(u) = min
A

E(u, A) = min
A

∑
k, j

(G)
g(‖ak − a j‖)(uk + uj)

2. (3.1)

The function g(x) = π
√

r
x−2r as a convex function satisfies Jensen’s

inequality

M∑
i=1

pig(xi) ≥ g

(
M∑

i=1

pixi

)
, (3.2)

where the sum of positive numbers pi is equal to unity. Equal-

ity holds if and only if all xi are equal. Let the sum from (2.4) is

arranged in such a way that xi = ‖ak − a j‖ and pi = 1
U (uk + u j)

2,

where U = ∑(G)(uk + u j)
2. Application of (3.2)–(2.4) yields

∑(G)
g(‖ak − a j‖)(uk + uj)

2 ≥ Ug

(
1

U

∑(G)
(uk + uj)

2‖ak − a j‖
)
.

(3.3)

Hölder’s inequality states that for non-negative ai and bi

M∑
i=1

aibi ≤
(

M∑
i=1

a2
i

) 1
2
(

M∑
i=1

b2
i

) 1
2

. (3.4)

This implies that

∑(G)
(uk + uj)

2‖ak − a j‖ ≤
[∑(G)

(uk + uj)
4
] 1

2
[∑(G) ‖ak − a j‖2

] 1
2

.

(3.5)

The function g(x) decreases, hence (3.3) and (3.5) give

1

U

∑(G)
g(‖ak − a j‖)(uk + uj)

2

≥ g

(
1

U

[∑(G)
(uk + uj)

4
] 1

2
[∑(G) ‖ak − a j‖2

] 1
2

)
. (3.6)
he minimum of the right hand part of (3.6) on A is achieved in-

ependently on uk for max Ah(A) where

(A) =
∑(G) ‖ak − a j‖2. (3.7)

emma 3.1 ([9]). For any fixed class G(A, E), every local maximizer of

(A) is the global maximizer which fulfils the system of linear algebraic

quations

k = 1

Nk

∑
j∼k

a j + 1

Nk

∑
�=1,2

sk�e�, k = 1, 2, . . . , N, (3.8)

here sk� can take the values 0, ±1, ±2 in accordance with the class

(A,E). The system (3.8) has always a unique solution up to an additive

rbitrary constant vector.

Equations (3.8) describe the stationary points of the functional

3.7) obtained by its differentiation on ak (k = 1, 2, . . . , N)

j∼k

(a j − ak) ≡ 0. (3.9)

ere, the congruence relation a ≡ b means that a − b = l1e1 + l2e2

or some integer l1, 2. Therefore, a point a on the torus Q0 is as-

ociated to the infinite set of points {a + l1e1 + l2e2, l1,2 ∈ Z} on

he plane R
2. We now rewrite equation (3.9) on the torus as an

quation on the plane for a fixed point ak ∈ Q0. Consider a points
′
j
∈ R

2 neighboring to ak, i.e., j ∼ k in a graph (A, E) ∈ G(A,E). The

oint a′
j

is congruent to a point aj ∈ Q0. The graph (A, E) cor-

esponds to the Voronoi tessellation, hence, a′
j

belongs to Q0 or

o neighbor cells Q0 ± e1, Q0 ± e2, Q0 ± e1 ± e2. Therefore,
′
j
= a j + l1 jke1 + l2 jke2, where l1jk and l2jk can be equal only to 0,

1. Then, equations (3.9) can be written in the form (3.8) where

1k =
∑
j∼k

l1 jk, s2k =
∑
j∼k

l2 jk. (3.10)

One can see that the sum of all equations (3.8) gives an

dentity, hence, they are linearly dependent. Moreover, if A =
(a1, a2, . . . , aN) is a solution of (3.8), then (a1 + c, a2 + c, . . . , aN +
) is also a solution of (3.8) for any c ∈ R

2. Let the point aN be arbi-

rarily fixed. Then, a1, a2, . . . , aN−1 can be found from the uniquely

olvable system of linear algebraic equations

k = 1

Nk

∑
j∼k

a j + 1

Nk

∑
�=1,2

sk�e�, k = 1, 2, . . . , N − 1. (3.11)

t is worth noting that the system (3.11) can be decomposed onto

wo independent systems of scalar equations on the first and sec-

nd coordinates of the points a1, a2, . . . , aN−1.

. Numerical examples

We now proceed to summarize the algorithm to solve the opti-

ization problem. First, let a class of graphs G(A,E) be fixed with

he corresponding translation vectors e1 and e2. The main step

s solution to the minimization problem (3.1). In the present pa-

er, we consider examples of the simplified optimization problem

hen the vertices A satisfy the uniquely solvable system of linear

lgebraic equations (3.11) with fixed sk�. The corresponding dou-

le periodic Delaunay graph (A, E) is called optimal in the class

(A,E). In such a simplified statement it satisfies the optimization

roblem (3.1) if the inequality (3.6) become equality. The optimal

raph not necessary does correspond to a Voronoi tessellation. In

his case, one can change a class of graphs by introduction of the

ew Voronoi tessellation for the vertices A. Then, the set A will not

ecessary be optimal in the new class G′
A

. Let (A′, E′) be the opti-

al graph in the class G′
A

. Next, if the graph (A′, E′) does not corre-

pond to a Voronoi tessellation, it can be “improved” by (A′′, E′′),
tc. Therefore, we arrive at the graph chain

(A, E) → (A′, E′) → (A′′, E′′) → · · · . (4.1)
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a b

Fig. 3. (a) Three points in the cell Q0 are distinguished. Dashed lines show the lattice, solid lines the double periodic Delaunay graph. (b) The optimal graph isomorphic to

the graph from (a).

Fig. 4. The optimal graph (A′ , E′) from Example 4.2.
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Fig. 5. The optimal graphs from Example 4.3. The disks in the layers 1 and 1’, 2

and 2’, 3 and 3’ are the same in the toroidal topology.
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xample 4.1. Consider the hexagonal lattice defined by the fun-

amental translation vectors e1 = 4

√
4
3 (1, 0) and e2 = 4

√
4
3 ( 1

2 ,
√

3
2 ).

he area of the cell Q0 holds unit. Consider N = 3 points (1.075,

.175), (0.919, 0.553), (0.444, 0.169) and the corresponding double

eriodic Voronoi tessellation shown in Fig. 3a.

Application of the algorithm yields the optimal hexagonal struc-

ure (Fig. 3b).

Example 4.1 is a simple illustration of the general result that

he class of regular graphs for which every vertex has six neigh-

ors contains the unique optimal graph corresponding to the reg-

lar hexagonal lattice.

xample 4.2. Consider the hexagonal lattice as in Example 4.1 and

= 16 points with the corresponding double periodic Voronoi tes-

ellation shown in Fig. 2. The considered structure determines a

ouble periodic graph (A, E). This graph generates the class of iso-

orphic graphs G(A,E). Find the optimal graph (A′, E) in the class

(A,E). Construct the Voronoi tessellation corresponding to the set
′ and the corresponding graph (A′, E′) which determines the new

lass G′
(A′,E′). The optimal graph in the class G′

(A′,E′) is the graph

A′, E′). Therefore, in this example the graph (A, E) from Fig. 2 is

ransformed into the graph (A′, E′) from Fig. 4.

Compare a regular graph where each vertex has 6 neighbors

ith the graph (A′, E′) from Fig. 4. This comparison demonstrates

hat fluctuations of the number 6 lead to other optimal structures.

hus, the optimal graph (A′, E′) from Fig. 4 contains five vertices

ith five neighbors, seven vertices with six neighbors, three ver-

ices with seven neighbors and one vertex with eight neighbors.
Every edge of the Delaunay graph models the interaction

aused by the diffusion flux. This flux between two disks can be

nsignificant if the gap between the disk is sufficiently large. The

ocal low flux can be caused by a biological mechanism. In this

ase, the corresponding edge should be deleted from the Delaunay

raph. We consider such a case in the following example.

xample 4.3. Consider N = 9 points and the double periodic

oronoi tessellation isomorphic to the hexagonal lattice. The per-

ect hexagonal array in Fig. 5a presents the optimal graph (A, E).

onsider another graph (A, E′) obtained from (A, E) by deletion of

he edges connecting the first layer of disks with other layers. In

his case, the optimal graph becomes similar to hexagonal-layered

tructure displayed in Fig. 5b.

The above examples illustrate few scenarios of the 2D pat-

ern formations. Systematic simulations of the general minimiza-

ion problem (3.1) can help to study properties of the optimal

raphs.

. Conclusions

The main feature of the proposed method is investigation of the

raph structures by analytical and numerical methods. The method

f structural approximation recalls a finite element method when

continuous problem is approximated by a discrete problem. The

tructural approximation is based on a “physical discretization” [3],

hen edges of the graph correspond to the most intensive places

f the diffusion flux. Further, the principle of minimum energy

ields a discrete numerical problem as in a finite element method.

he method of structural approximation was justified for the p-

aplacian including linear equations in [3,7,10].
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We note that the discrete energy (2.4) and the correspond-

ing continuous energy [3,7] can be considered independently on

the reaction–diffusion and other PDE. It is interesting to note that

Lemma 3.1 holds for an arbitrary interparticle flux g(‖ak − a j‖)

satisfying the following two conditions: (i) g(‖ak − a j‖) tends to

infinity, as δk j = ‖ak − a j‖ − 2r tends to zero; (ii) the function g is

convex.

The structural approximation approach was applied in [3,7]

for fixed geometries, i.e., for given locations of disks and their

radii. The energy (2.4) was minimized on the potential values

u = (u1, u2, . . . , uN). In the present paper, we consider the energy

minimization (3.1) on the geometric parameters A and demon-

strate emergence of the optimal structures. Moreover, we intro-

duced “hidden” optimal structures by introduction of the classes of

graphs. For instance, a pentagon embedded in the hexagonal struc-

ture can also form an optimal structure. All the possible optimal

structures are estimated in Lemma 3.1. This is the main result of

the paper. Further analysis can be performed following the struc-

tural approximations [3,7,10] by the energy minimization (2.4) on

u with fixed geometry. It can be done by fitting of u to the con-

sidered PDE.

The structural approximation method is numerically effective

for systems of PDE with large numbers of equations when the

traditional methods lead to numerical solution to huge system

of linear and nonlinear algebraic equations. Advantages take also

place for spatially high oscillating solutions of PDE (see [3,7,10] and

works cited therein). Let d denote the linear size of the “smoothed”

extremum (the domains Dk and Dj in Fig. 1b) and δ the distance

between neighbor extrema (the distance between Dk and Dj). An-

alytical estimations and numerical simulations [3,7] demonstrate

an excellent numerical precision of the structural approximations

for δ
d

< 0.2 which decreases when δ
d

increases. The number of

“smoothed” extrema per cell, N, is of order of oscillations per

cell. It should be taken a priory sufficiently large to get a suffi-

ciently precise solution. However, in pattern formation it is inter-

esting to qualitatively determine the type of patterns. For instance,

the hexagonal and layer patterns can be predicted for N = 9 in

Example 4.3. It is worth noting that all computational examples

in the present paper require at most 10 s of CPU time.

We suggest that natural patterns can be reduced to the optimal

structures which minimize the energy (2.4). Then, the presented

theoretical study can be used in biological research to classify the

patterns after advanced computer simulations and observation of

the real biological structures. The diversity of patterns is deter-

mined by classes of isomorphic graphs. If the number N of vertices

per representative cell is finite, then the number of classes, hence

the number of optimal structures, is also finite.

For simplicity, we approximate the high potential domains by

disks and points in the above figures. Actually, the disks can

schematically present domains of other shapes. For instance, series

of disks in Fig. 5b can be approximated by strips corresponding

to the 1D optimization. Example 4.3 demonstrates that anisotropic

structure of graphs can lead to the anisotropic strip structures. In

particular, this means that the strip structure is optimal in the cor-

responding class of graphs. It is interesting to describe the biolog-

ical reasons of local anisotropy modeled by edges of graphs.

In the following concluding remark, we want to stress that the

method of division onto isomorphic graphs can be applied to an-

other problem concerning simulations of random packings [1].

Remark 5.1. Solution to the optimal energy problem yields solu-

tion to the optimal packing problem for disks [8] and for spheres

in R
d [9]. The corresponding concentration ν(G) of disks attains
he maximal value in the class G(A,E). The set of optimal graphs

ncludes graphs corresponding to packing constructed by various

acking protocols. This scheme gives the set of the optimal con-

entrations depending on protocols, i.e., on the class of graphs and

ssentially reduce computations. Because in order to get the set of

ll optimal packings, it is sufficient to determine the target vertices

of the optimization problems (3.1) in all classes of graphs.
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ppendix

This section is devoted to justification that any function f(x)

ontinuously differentiable on a closed smooth connected domain

can be approximated by a function of the special type called

ere the packing function.

First, for any positive ε the function f(x) can be approximated

y a piecewise constant function fε(x) in such a way that ‖ f (x) −
fε(x)‖ < ε, x ∈ Q. Let Svj denote a connected component of the

omain where fε(x) = v ( j = 1, 2, . . . , Jv). The set

Sv j : v ∈ [min
x∈Q

fε(x), max
x∈Q

fε(x)], j = 1, 2, . . . , Jv}
enerates a finite partition of Q. Let |Svj| denote the area of Svj.

ach domain Svj can be filled by sufficiently small non-overlapping

isks (touching is possible) in such a way that the boundary chain

f touching disks with its interior forms a domain S̃v j ⊂ Sv j for

hich |Sv j| − |S̃v j| < ε. The piecewise constant function fε(x) can

e approximated by a continuous function f̃ε(x) equal to fε(x) on

ll S̃v j; f̃ε(x) is represented by ruled surfaces between every two

eighboring S̃v j .

Thus, any continuously differentiable function f(x) on a con-

ected closed domain Q ⊂ R
2 with smooth boundary can be ap-

roximated by a packing function f̃ε(x). More precisely, f̃ε(x) con-

erges pointwise to f(x), as ε → 0. In particular, any continuously

ifferentiable solution of the reaction–diffusion equations can be

pproximated by packing functions.
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