
ARTICLE IN PRESS 

JID: SAS [m5G; July 9, 2016;16:44 ] 

International Journal of Solids and Structures 0 0 0 (2016) 1–12 

Contents lists available at ScienceDirect 

International Journal of Solids and Structures 

journal homepage: www.elsevier.com/locate/ijsolstr 

Effective elastic properties of random two-dimensional composites 

Piotr Dryga ́s a , Vladimir Mityushev 

b , ∗

a University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland 
b Pedagogical University, ul. Podchorazych 2, Krakow 30-084, Poland 

a r t i c l e i n f o 

Article history: 

Received 29 February 2016 

Revised 26 June 2016 

Available online xxx 

MSC: 

74Q15 

Keywords: 

Effective elastic moduli 

Complex potentials 

Random composites 

Double periodic problem 

Eisenstein summation 

Functional equation method 

a b s t r a c t 

Consider 2D two-phase random composites with circular inclusions of concentration f . New analytical 

formulae for the effective constants are deduced up to O ( f 4 ) for macroscopically isotropic composites. It 

is shown that the second order terms O ( f 2 ) do not depend on the location of inclusions whilst the third 

order terms do. This implies that the previous analytical methods (effective medium approximation, dif- 

ferential scheme, Mori–Tanaka approach and so forth) can be valid at most up to O ( f 3 ) for macroscopically 

isotropic composites. First, the local elastic field for a finite number n of inclusions arbitrarily located on 

the plane are found by a method of functional equations. Further, the limit n → ∞ yields conditionally 

convergent series defined by the Eisenstein summation method. One of the series for periodic composites 

is the famous lattice sum S 2 = π deduced by Rayleigh for a conductivity problem. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Analytical formulae for the effective properties of random com-

osites are of great interest in the fundamental science and engi-

eering applications. In the present paper, we deduce formulae for

D two-phase elastic composites with equal unidirectional fibers

f circular section with isotropic components. For definiteness, the

iscussed composites are assumed to be macroscopically isotropic.

ormulae for dilute composites in the first order approximation in

he concentration f were deduced by various self consistent meth-

ds shortly addressed below as SCM (effective medium approxi-

ation, differential scheme, Mori–Tanaka approach and so forth

 Kanaun and Levin, 2008 )). All these formulae are equivalent up

o O ( f 2 ) and the effective constants μe and k e can be written in

he form ( Bertoldi et al., 2007 ) 

μe 

μ
= 1 + (κ + 1) 

μ1 

μ − 1 

κ μ1 

μ + 1 

f + O ( f 2 ) , (1)

k e 

k 
= 1 + (κ + 1) 

μ1 

μ − κ+1 
κ1 −1 

κ1 − 1 + 2 

μ1 

μ

f + O ( f 2 ) , (2)

here μ denotes the shear modulus of matrix; κ = 3 − 4 ν for the

lane strain ( κ = 

3 −ν
1+ ν for the plane stress); ν is the Poisson’s ratio;
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1 and κ1 denote the corresponding elastic constants for inclu-

ions. Analogous formulae were deduced for other shapes and for

ultiphase composites (see Kanaun and Levin (2008) and works

ited therein). A lot of effort s have been applied to extend formu-

ae (1) and (2) to high orders by use of the SCM without a justifi-

ation. 

In the present paper, we develop a rigorous method to extend

1) and (2) to higher order concentrations. Though the method

ractically has no restrictions, here, we explicitly present the re-

ults only up to O ( f 4 ). We take the minimal order O ( f 3 ) of sym-

olic computations in order to explicitly demonstrate the principal

mpossibility to deduce high order formulae without using of mi-

rostructure information given in terms of the high order statistical

escription (see n -point correlation functions ( Torquato, 2002 ) and

he basic e -sums ( Czapla et al., 2012 )). Advanced symbolic compu-

ations for higher orders of f and comparison with pure numerical

esults will be presented in a separate publication. 

Such a study had already been performed for the conductiv-

ty problem. It was shown in Mityushev and Adler (2002) and

ityushev and Rylko (2013) that all SCM yield actually only one

ormula, the famous Clausius–Mossotti approximation, which can

e applied only within the first order approximation. Other formu-

ae can be obtained from it by elementary manipulations within

he accuracy O ( f ). It was also shown that for macroscopically

sotropic composites the second order term for the effective con-

uctivity does not depend on the location of inclusions whilst the
roperties of random two-dimensional composites, International 
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third order term does. This implies that any SCM is valid up to

O ( f 2 ) in general case and up to O ( f 3 ) for macroscopically isotropic

composites. In the present paper, we demonstrate that the same

result holds for 2D elasticity problem. 

As in Mityushev and Rylko (2013) , the main difficulty is the

proper treatment of the conditionally convergent series (integrals)

arisen in the seminal papers by Rayleigh (1892) and discussed in

Batchelor and Green (1972) and Jeffrey (1973) (see the recent re-

view Brady et al. (2006) ). Rayleigh (1892) discussed regular com-

posites (one inclusion per periodicity cell) and justified the fa-

mous formula S 2 = π for the conditionally convergent series (55) .

Batchelor and Green (1972) and others (the most advanced is

the paper Wang et al. (2003) ) used n -particle interactions ( n was

taken as a finite number, not in symbolic form). Roughly speak-

ing, Batchelor’s approach was based on the finite approximation

of the conditionally convergent series similar to Rayleigh’s series

(55) . Rayleigh’s method ( Rayleigh, 1892 ) to the elastic problem for

regular arrays was extended in the papers Drummond and Tahir

(1984) , Greengard and Helsing (1998) and Movchan et al. (1997) .

One of the main step of these works was the proper treatment of

the conditionally convergent series (59) . For random composites,

the series (45) and (47) were investigated in Mityushev (1999) and

Czapla et al. (2012) , but the series (46), (48), (49) and (59) for

the hexagonal array were not studied. It is worth noting that the

conditionally convergent series (55) and (59) for regular arrays,

(45) –(49) for random composites are the key values for high or-

der formulae (see Czapla et al. (2012) and Gluzman and Mityushev

(2015) for the effective conductivity). 

The homogenization theory of random media deals with

uniqueness and existence of the RVE (representative volume ele-

ment) and of the effective constants. The direct ε-method yields

analytical formulae only for general 1D and some 2D composites

( Jikov et al., 1994 ). Variational methods of the homogenization the-

ory yield the theory of bounds ( Milton, 2002 ). Some of them can

be written in analytical form as the Hashin–Strikman bounds (3) –

(5) . Bounds are useful when microstructure of composites is not

known. If it is known in the form of statistical information, the

effective properties of composites can be precisely determined as

the mathematical expectation of the effective constants of the sta-

tistically representative cells. It was done in Czapla et al. (2012) ,

Mityushev and Nawalaniec (2015) and Gluzman and Mityushev

(2015) for 2D conductivity problems. In the present paper, we ex-

tend the results ( Czapla et al., 2012 ) to 2D elastic composites with

arbitrary locations of circular identical inclusions. Any plane shape

can be approximated by an appropriate packed disks. This implies

that the obtained results can be extended to other shapes, and it

will be discussed in a separate paper with advanced symbolic com-

putations. 

Construction of the RVE is a separate question not discussed

here. We refer to Mityushev (2006) and Rylko (2014) where a

computationally effective method was proposed and to Czapla

et al. (2012) , Mityushev and Nawalaniec (2015) and Kurtyka et al.

(2015) where the method was developed and applied to casting

stir processes. 

This paper is organized as follows. In Section 2 , we discuss the

Hashin–Shtrikman bounds Hashin and Shtrikman (1962) and the

MMM principle by Hashin (1983) . Further, we demonstrate that

Hashin’s physical approach is in agree with the homogenization

theory of random media developed in Golden and Papanicolaou

(1983) , Jikov et al. (1994) and Telega (2005) . Section 3 is devoted

to application of the method of functional equations in order to

obtain the local elastic fields in analytical form for media with a

finite number of inclusions n . The obtained formulae are used in

Section 4 to calculate the average elastic constants. Section 5 con-

tains subtle mathematical discussion of the limit formulae as

n → ∞ . One can consider our investigations as a rigorous math-
Please cite this article as: P. Dryga ́s, V. Mityushev, Effective elastic p
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matical treatment of the problem of infinite integral discussed in

ayleigh (1892) and Jeffrey (1973) and their extension to random

omposites. Analytical formulae for the effective elastic constants

re written in Section 6 . We demonstrate that our approach is in

ccordance with the homogenization theory and serves as a math-

matical realization of the MMM principle by Hashin. Concluding

emarks are collected in Section 7 . Some long formulae and ex-

ressions are written in Supplementary which contains also a high

rder formula for the hexagonal regular array of disks. 

. The Hashin–Shtrikman bounds and Hashin’s approach 

Any expression for the effective constants must obey the

ashin–Strikman bounds. Let μ1 ≥ μ and k 1 ≥ k . Then, we have

 Hashin, 1983; Hashin and Shtrikman, 1962 ) 

− ≤ μe ≤ μ+ , k − ≤ k e ≤ k + , (3)

here 

 

− = k + 

f 
1 

k 1 −k 
+ 

1 − f 
k + μ

, k + = k 1 + 

1 − f 
1 

k −k 1 
+ 

f 
k 1 + μ1 

, (4)

− = μ + 

f 
1 

μ1 −μ + 

(1 − f )(k +2 μ) 
2 μ(k + μ) 

, μ+ = μ1 + 

1 − f 
1 

μ−μ1 
+ 

f (k 1 +2 μ1 ) 
2 μ1 (k 1 + μ1 ) 

. 

(5)

ormulas (1) and (2) coincides up to O ( f 2 ) with the low HS bounds
− and k − ( Bertoldi et al., 2007 ). The Padé approximation coin-

ides with the low HS (see details in Chapters 23, 27 of the book

ilton (2002) ). 

The effective constants can be estimated by two methods lead-

ng to the same result. The first method is based on the dou-

ly periodic problems. It was proposed and constructively applied

y using of integral equations due to Filshtinsky ( Grigolyuk and

il’shtinskij, 1970; 1992; Helsing, 1995 ). Pure numerical methods

FEM etc) leading to numerical results are applied by many au-

hors. We omit a long discussion concerning numerical methods

nd deal only with analytical methods leading to analytical formu-

ae. 

In the present paper, we follow the second method consisting

f two steps. A problem with a finite number of inclusions n is

olved at the first step. Further, the limit of the obtained solution

s investigated as n → ∞ . This formal mathematical approach is

onsistent with the MMM principle by Hashin based on the in-

estigation of the homogenization problem in the scales ( Hashin,

983 ) 

ICRO � MINI � MACRO (6)

ollowing Hashin (1983) microstructure of composites is analyzed

n the level MICRO. Further, a representative volume element

RVE) is introduced during the passage from MICRO to MINI. The

acroscopic constants on the level MACRO are constructed by

eans of the RVE. We refer to the review Hashin (1983) for the

xtended physical discussion of the MMM principle. 

Many discussions on the physical level can be found in litera-

ure which can be considered as using of the MMM principle for

ultilevel structures by repeated application of the scheme (6) and

ntroduction mesoscales. Some conceptions skip the level MINI and

reat homogenization as “periodization”, for instance, approximate

he structure of composite by a periodic material with one inclu-

ion per cell. Such a method leads to correct results for regular

omposites. 

The mathematical homogenization theory of random media

 Golden and Papanicolaou, 1983; Jikov et al., 1994; Telega, 2005 )

orresponds to Hashin’s lines and shortly outlined below. First, it

s assumed that a random field which describes microstructure on
roperties of random two-dimensional composites, International 
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he level MICRO is statistically homogeneous. This is a mathemat-

cal assumption (axiom) accepted in the theory of random com-

osites. This assumption yields existence of the RVE which rep-

esents the composite on the MINI level. This RVE is the bench-

ark of homogenization. Further, it is proved that the composite

an be homogenized, i.e., the corresponding PDE converges to the

omogenized equation with constant coefficients called the effec-

ive constants. It is worth noting that the composite is not nec-

ssary periodic. But one can consider a periodic material on the

evel MINI when RVE-cells form a periodic structure. Though all

he RVEs can be different internally, each RVE obeys the same sta-

istical distribution. Hence, any RVE yields the same effective con-

tants on the level MACRO. Therefore, for any statistically homoge-

eous field there exist a set of the statistically same RVEs which

orms the class of equivalence. The investigation of the stochas-

ic composite can be simplified if we fix a RVE from the class of

quivalence and consider a periodic composite represented by the

VE. 

Thus, the homogenization theory justifies the physical MMM

rinciple by Hashin (6) . As it is noted in Introduction, the homog-

nization theory of random media deals with the rigorous mathe-

atical definition of the effective constants and refers to the math-

matical quantitative methods of existence and uniqueness. How

o compute these effective constants is a separate question. In the

ext sections, we describe such an analytical constructive method

or 2D elastic composites with circular inclusions. 

. Method of functional equations for local fields 

We begin our study with a finite number n of inclusions on

he infinite plane. This number n is given in symbolic form that

llows us further to pass to the limit n → ∞ . Mutually dis-

oint disks D k := { z ∈ C : | z − a k | < r } (k = 1 , 2 , ..., n > 1) are con-

idered in the complex plane C of the variable z = x + iy . Let

 := C ∪ { ∞ } \ (∪ 

n 
k =1 

D k ∪ ∂D k 

)
, where ∂D k := { t ∈ C : | t − a k | = r } .

e assume that ∂D k are orientated in clockwise sense. Hereafter,

e use the letter t for a complex variable on a curve and z in a

omain. 

The component of the stress tensor can be determined by the

olosov–Muskhelishvili formulae ( Muskhelishvili, 1966 ) 

xx + σyy = 

{
4 Re ϕ 

′ 
k 
(z) , z ∈ D k , 

4 Re ϕ 

′ 
0 (z) , z ∈ D, 

(7) 

xx − σyy + 2 iσxy = 

{
−2 

[
z ϕ 

′′ 
k 
(z ) + ψ 

′ 
k 
(z) 

]
, z ∈ D k , 

−2 

[
z ϕ 

′′ 
0 
(z ) + ψ 

′ 
0 
(z) 

]
, z ∈ D, 

here Re denotes the real part and the bar the complex conju-

ation. Let 

(
σ∞ 

xx σ∞ 

xy 

σ∞ 

yx σ∞ 

yy 

)
be the stress tensor applied at infinity.

ollowing ( Muskhelishvili, 1966 ) introduce the constants 

 0 = 

σ∞ 

xx + σ∞ 

yy 

4 

, 
0 = 

σ∞ 

yy − σ∞ 

xx + 2 iσ∞ 

xy 

2 

. (8)

hen, 

 0 (z) = B 0 z + ϕ(z) , ψ 0 (z) = 
0 z + ψ(z) , (9)

here ϕ( z ) and ψ( z ) are analytical in D and bounded at infinity.

he functions ϕ k ( z ) and ψ k ( z ) are analytical in D k and twice dif-

erentiable in the closures of the considered domains. 

The perfect bonding at the matrix-inclusion interface can be ex-

ressed by two equations ( Muskhelishvili, 1966 ) 

 k (t) + t ϕ 

′ 
k 
(t) + ψ k (t) = ϕ 0 (t) + t ϕ 

′ 
0 
(t) + ψ 0 (t) , (10) 

1 ϕ k (t) − t ϕ 

′ 
k 
(t) − ψ k (t) = 

μ1 

μ

(
κϕ 0 (t) − t ϕ 

′ 
0 
(t) − ψ 0 (t) 

)
. (11) 
Please cite this article as: P. Dryga ́s, V. Mityushev, Effective elastic p
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he problem (10) and (11) is the classic boundary value problem

f the plane elasticity. It was discussed in many works by various

ethods ( Helsing, 1995; Linkov, 2002; Mogilevskaya et al., 2013;

012; Muskhelishvili, 1966 ). Below, we concentrate our attention

o its analytical solution. 

Introduce the new unknown functions 

k (z) = 

(
r 2 

z − a k 
+ a k 

)
ϕ 

′ 
k (z) + ψ k (z) , | z − a k | ≤ r, 

nalytic in D k except the point a k , where its principal part has the

orm r 2 ( z − a k ) 
−1 ϕ 

′ 
k 
(a k ) . 

Let z ∗
( k ) 

= r 2 
(
z − a k 

)−1 + a k denote the inversion with respect to

he circle ∂D k . If a function f ( z ) is analytic in | z − a k | < r, then

f (z ∗
( k ) 

) is analytic in | z − a k | > r. The problem (10) and (11) was

educed in Mityushev and Rogosin (1999) (see Eqs. (5.6.11) and

5.6.16) in Chapter 5), ( Mityushev, 20 0 0 ) to the system of func-

ional equations 

μ1 

μ
+ κ1 

)
ϕ k (z) = 

(
μ1 

μ
− 1 

) ∑ 

m � = k 

[
�m 

(z ∗
( m ) 

) − ( z − a m 

) ϕ 

′ 
m 

(a m 

) 
]

−
(
μ1 

μ
− 1 

)
ϕ 

′ 
k 
(a k ) ( z − a k ) + 

μ1 

μ
(1 + κ) B 0 z 

+ p 0 , | z − a k | ≤ r, k = 1 , 2 , ..., n, (12) 

(
κ

μ1 

μ
+ 1 

)
�k (z) = 

(
κ

μ1 

μ
− κ1 

) ∑ 

m � = k 
ϕ m 

(z ∗
( m ) 

) + 

(
μ1 

μ
− 1 

)
×

∑ 

m � = k 

(
r 2 

z − a k 
+ a k −

r 2 

z − a m 

+ a m 

)[ (
�m 

(z ∗
( m ) 

) 
)′ − ϕ 

′ 
m 

(a m 

) 
] 

+ 

μ1 

μ
(1 + κ) B 0 

(
r 2 

z − a k 
+ a k 

)
+ 

μ1 

μ
(1 + κ)
0 z + ω(z) , 

| z − a k | ≤ r, k = 1 , 2 , ..., n. (13) 

here 

(z) = 

n ∑ 

k =1 

r 2 q k 
z − a k 

+ q 0 , (14)

 0 is a constant and 

q k = ϕ 

′ 
k (a k ) 

(
(κ − 1) 

μ1 

μ
− (κ1 − 1) 

)
− ϕ 

′ 
k 
(a k ) 

(
μ1 

μ
− 1 

)
, 

k = 1 , 2 , ..., n. (15) 

he unknown functions ϕ k ( z ) and �k ( z ) ( k = 1 , 2 , . . . , n ) are related

y 2 n Eqs. (12) and (13) . One can see that the functional equations

o not contain integral operators but contain compositions of ϕ k ( z )

nd �k ( z ) with inversions. These compositions define compact op-

rators in a Banach space ( Mityushev and Rogosin, 1999 ). 

The functions ϕ( z ) and ψ( z ) are expressed through ϕ k ( z ) and

 k ( z ) by formulae 

μ1 

μ
( 1 + κ) ϕ(z) = 

(
μ1 

μ
− 1 

) n ∑ 

m =1 

[
�m 

(z ∗
( m ) 

) − ( z − a m 

) ϕ 

′ 
k 
(a k ) 

]
+ p 0 , z ∈ D, (16) 

μ1 

μ
( 1 + κ) ψ(z) = ω(z) −

(
μ1 

μ
− 1 

) n ∑ 

m =1 

(
r 2 

z − a m 

+ a m 

)
×
[ (

�m 

(z ∗
( m ) 

) 
)′ − ϕ 

′ 
m 

(a m 

) 
] 

+ 

(
κ

μ1 

μ
− κ1 

)
×

n ∑ 

m =1 

ϕ m 

(z ∗
( m ) 

) , z ∈ D. (17) 
roperties of random two-dimensional composites, International 
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(

We are looking for the complex potentials ϕ k and ψ k up to

O ( r 6 ) in the form 

ϕ k (z) = ϕ 

(0) 
k 

(z) + r 2 ϕ 

(1) 
k 

(z) + r 4 ϕ 

(2) 
k 

(z) + O (r 6 ) (18)

and 

ψ k (z) = ψ 

(0) 
k 

(z) + r 2 ψ 

(1) 
k 

(z) + r 4 ψ 

(2) 
k 

(z) + O (r 6 ) . (19)

Remark 1. The analytical dependencies of the complex potentials

(18) and (19) on r 2 near r = 0 follows from the compactness of the

operators defined by the system of functional Equations (12) and

(13) in a Banach space and by the uniform convergence of succes-

sive approximations for small r ( Mityushev, 20 0 0; Mityushev and

Rogosin, 1999 ). 

Remark 2. In Section 4 , we introduce a dimensional rectangle of

the unit area. This justifies the consideration of the formally small

parameter r 2 through the ratio of the disk area π r 2 to the rectangle

area. 

The functions ϕ 

(s ) 
k 

and ψ 

(s ) 
k 

( s = 0 , 1 , 2 ) in each inclusion are

presented by their Taylor series. It is sufficient to take only first

three terms 

ϕ 

(s ) 
k 

(z) = α(s ) 
k, 0 

+ α(s ) 
k, 1 

(z − a k ) + α(s ) 
k, 2 

(z − a k ) 
2 + O ((z − a k ) 

3 ) , (20)

ψ 

( s ) 
k 

( z ) = β( s ) 
k, 0 

+ β( s ) 
k, 1 

( z − a k ) + β( s ) 
k, 2 

( z − a k ) 
2 + O 

(
( z − a k ) 

3 
)
. (21)

The precision O ((z − a k ) 
3 ) is taken here by the reason explained

below after Eqs. (22 ) and (24) . 

Introduce the auxiliary constants γ (s ) 
m,l 

for shortness 

γ (s ) 
m,l 

= (l + 2) r 2 α(s ) 
m,l+2 

+ a m 

(l + 1) α(s ) 
m,l+1 

+ β(s ) 
m,l 

s = 0 , 1 ; l = 1 , 2 .

(22)

Substitution of (18) and (19) in (12) and (13) yields (
μ1 

μ
+ κ1 

) ∑ 

p=0 , 1 , 2 

r 2 p ϕ 

(p) 
k 

(z) 

= 

(
μ1 

μ
− 1 

) ∑ 

m � = k 

∑ 

l+ s ≤2 

r 2(s + l) γ (s ) 
m,l 

(z − a m 

) −l 

+ 

( 

μ1 

μ
(1 + κ) B 0 −

(
μ1 

μ
− 1 

) ∑ 

s =0 , 1 , 2 

r 2 s α(s ) 
k, 1 

) 

(z − a k ) 

+ p 1 + O (r 6 ) (23)

and (
κ

μ1 

μ
+ 1 

) ∑ 

p=0 , 1 , 2 

r 2 p 
(

a k 
(
ϕ 

(p) 
k 

(z) 
)′ + ψ 

(p) 
k 

(z) 
)

= −μ1 

μ

∑ 

s =0 , 1 

r 2(s +1) 
(
ϕ 

(s ) 
k 

(z) 
)′ 

(z − a k ) 
−1 

+ 

(
κ

μ1 

μ
− κ1 

) ∑ 

m � = k 

∑ 

l+ s ≤2 

r 2(l+ s ) α(s ) 
m,l 

(z − a m 

) −l 

−
(

1 − μ

μ1 

) ∑ 

m � = k 
r 4 γ (0) 

m, 1 
(z − a k ) 

−1 (z − a m 

) −2 

+ 

(
μ1 

μ
− 1 

) ∑ 

m � = k 

∑ 

l+ s ≤1 

lr 2(l+ s +1) γ (s ) 
m,l 

(z − a m 

) −l−2 

−
(

1 − μ

μ1 

) ∑ 

m � = k 

∑ 

l+ s ≤2 

lr 2(l+ s ) γ (s ) 
m,l 

( a k − a m 

)(z − a m 

) −l−1 
u  
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+ 

μ1 

μ
(1 + κ)
0 (z − a k ) 

+ 

∑ 

m � = k 
r 2 q m 

(z − a m 

) −1 + q 0 + O (r 6 ) , 

(24)

here the sum 

∑ 

l+ s ≤2 contains three terms with l = 1 , 2 and s =
 , 1 satisfying the inequality l + s ≤ 2 . The sum �m � = k means that

 runs over {1, 2, ..., n } except k . Other sums are defined anal-

gously. One can check that the higher order terms (z − a k ) 
l (for

 ≥ 3) in (20) and (21) produce terms of order O ( r 6 ) in (23) and

24) . Such a rule takes place in general case when the terms (z −
 k ) 

l yield O ( r 2 l ). The constants p 1 , q 0 , α
(s ) 
m, 0 

and β(s ) 
m, 0 

( m = 1 , .., n,

 = 0 , 1 , 2 ) in (23) and (24) should not be found since they deter-

ine parallel translations not important for the stress and defor-

ation fields. 

Introduce the following constants for shortness 

�1 = 

μ1 

μ − 1 

(1 + κ) μ1 

μ

, �2 = 

μ1 

μ + κ1 

(1 + κ) μ1 

μ

, �3 = 

κ μ1 

μ − κ1 

(1 + κ) μ1 

μ

, 

�4 = 

κ μ1 

μ + 1 

(1 + κ) μ1 

μ

. (25)

electing the terms with the same powers r 2 p , we arrive at the

ollowing iteration scheme for Eqs. (23) and (24) . The zero terms

 p = 0 ) are calculated by 

 

(0) 
k 

(z) = B 0 (�1 + �2 ) 
−1 (z − a k ) , (26)

 

(0) 
k 

(z) = 
0 �
−1 
4 (z − a k ) . (27)

he higher order terms ϕ 

(1 , 2) 
k 

(z) and ψ 

(1 , 2) 
k 

(z) are written in Sup-

lementary (see formulae (S1)–(S4)). 

It follow from (12) –(16) that 

(z) = r 2 ϕ 

(1) (z) + r 4 ϕ 

(2) (z) + O (r 6 ) , 

here 

 

(1) (z) = �1 �
−1 
4 
0 

n ∑ 

k =1 

(z − a k ) 
−1 . (28)

nalogously, the function ψ has the form 

(z) = r 2 ψ 

(1) (z) + r 4 ψ 

(2) (z) + O (r 6 ) , 

here 

 

(1) (z) = 

n ∑ 

k =1 

(
2(�4 − �2 )(�1 + �2 ) 

−1 B 0 (z − a k ) 
−1 

+ �1 �
−1 
4 
0 a k (z − a k ) 

−2 
)
. (29)

he second order terms ϕ 

(2) ( z ) and ψ 

(2) ( z ) are written in Supple-

entary (see formulae (S5) and (S6)). 

The present computational scheme was implemented in

athematica © to perform symbolic computations. It can be eas-

ly extended to higher orders. The main problem is to see the re-

ult since very long formulae arise after symbolic computations.

e shall treat this problem in a separate paper. 

. Averaged fields in finite composites 

The displacement ( u, v ) are calculated by formulae

 Muskhelishvili, 1966 ) 

 + i v = 

{
1 

2 μ1 

(
κ1 ϕ k (t) − t ϕ 

′ 
k 
(t) − ψ k (t) 

)
, z ∈ D k , 

1 
2 μ

(
κϕ 0 (t) − t ϕ 

′ 
0 
(t) − ψ 0 (t) 

)
, z ∈ D. 

(30)
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Fig. 1. Schematic presentation of the infinite number of disks on the plane with the 

rectangle Q n containing a finite number of disks. In Sections 2 and 3 , we consider 

the problem when inclusions exterior to Q n are absent. In Section 4 , we consider 

the infinite set of points on the plane and pass to the limit when Q n extends and 

embraces the corresponding points, i.e., the boundary of Q n tends to the infinite 

point, as n → ∞ . 

Fig. 2. The hexagonal cell with 104 inclusions symmetrically generated by 13 in- 

clusions in marked triangle. The coordinates of 13 inclusions are given by (S13) in 

Supplementary. 
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omponents of the strain tensor are given by 

xx = 

∂u 

∂x 
, εyy = 

∂v 
∂y 

, 2 εxy = 

∂v 
∂x 

+ 

∂u 

∂y 
. (31)

et n circular inclusions lie in the rectangle Q n = { x + iy ∈ C : − a 
2 <

 < 

a 
2 , − b 

2 < y < 

b 
2 } (see Fig. 1 ) whose area | Q n | = ab. 

We define the macroscopic bulk and shear moduli of this rect-

ngle as follows 

(n ) 
e = 

〈 σxx − σyy 〉 n 
2 〈 εxx − εyy 〉 n , (32) 

 

(n ) 
e = 

〈 σxx + σyy 〉 n 
2 〈 εxx + εyy 〉 n , (33) 

here the average 〈·〉 n = 

1 
| Q n | 

∫ ∫ 
Q n 

·d xd y . Denote by D 0 the comple-

ent of the closed disks D k to the rectangle Q n . 

emma 1. Let a function g ( z ) be analytic in Q 

′ 
n the complement of

 n ∪ ∂Q n to the extended complex plane ̂ C = C ∪ {∞} . Then, 

lim 

 →∞ 

→∞ 

1 

ab 

∫ 
∂Q n 

g(t) d t = 0 (34) 
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roof. It follows from the estimation 

1 

ab 

∫ 
∂Q n 

g(t) d t 

∣∣∣∣ ≤ max 
t∈ ∂Q n 

| g(t) | 2(a + b) 

ab 
(35) 

nd boundness of | g ( z )| in Q 

′ 
n . �

The deformations and stresses are related to the complex po-

entials by formulae ( Muskhelishvili, 1966 ) 

xx + εyy = 

{
κ1 −1 
μ1 

Re ϕ 

′ 
k 
(z) , z ∈ D k , 

κ−1 
μ Re ϕ 

′ 
0 (z) , z ∈ D, 

(36) 

xx + σyy = 

{
4 Re ϕ 

′ 
k 
(z) , z ∈ D k , 

4 Re ϕ 

′ 
0 (z) , z ∈ D, 

(37) 

xx − εyy = 

{− 1 
μ1 

Re 
(
z ϕ 

′′ 
k 
(z) + ψ 

′ 
k 
(z) 

)
, z ∈ D k , 

− 1 
μ Re 

(
z ϕ 

′′ 
0 (z) + ψ 

′ 
0 (z) 

)
, z ∈ D, 

(38) 

xx − σyy = 

{
−2 Re 

(
z ϕ 

′′ 
k 
(z) + ψ 

′ 
k 
(z) 

)
, z ∈ D k , 

−2 Re 
(
z ϕ 

′′ 
0 (z) + ψ 

′ 
0 (z) 

)
, z ∈ D. 

(39) 

alculate the integral 

1 

| Q| 
(∫ ∫ 

D 0 

∂ 

∂z 
(B 0 z) d xd y 

)
= B 0 

(
1 − nπ r 2 

| Q| 
)

. (40) 

We shall apply Green’s formula in complex form to calculate

he integrals from (32) and (33) 
 

D 

∂w (z) 

∂z 
d xd y = − 1 

2 i 

∫ 
∂D 

w (t) d t . (41)

he differential d t on each circle can be transformed as follows 

 t = d 

(
r 2 

t − a k 
+ a k 

)
= −

(
r 

t − a k 

)2 

dt, | t − a k | = r. (42)

sing (40) –(42) we get 

 σxx + σyy 〉 n = 4 Re 

{
B 0 

(
1 − nπ r 2 

| Q| 
)

− 1 

2 i | Q| 

×
n ∑ 

k =1 

∫ 
∂D k 

[
(ϕ(z) − ϕ k (z)) 

(
r 

z − a k 

)2 
]

dz 

} 

+ O n 

(43) 

nd 

 εxx + εyy 〉 n = Re 

{
κ − 1 

μ
B 0 

(
1 − nπ r 2 

| Q| 
)

− 1 

2 i | Q| 
n ∑ 

k =1 

∫ 
∂D k 

×
[(

κ − 1 

μ
ϕ(z) −κ1 − 1 

μ1 

ϕ k (z) 
)(

r 

z −a k 

)2 
]

dz 

}
+ O n . 

(44) 

ere, the integrals over ∂Q n vanishing in the limit n → ∞ (see

emma 1 ) are denoted by O n for shortness. 

Along similar lines we calculate 〈 σxx − σyy 〉 n and 〈 εxx − εyy 〉 n 
see formulae (S7), (S8) in Supplementary). After substitution of

18) and (19) and (26) –(29) into the integrals (43) and (44) and

S7) and (S8) these integral can be easily calculated by residues.

he ultimate results hold the accuracy O ( r 6 ). The explicit formulae

S9)–(S12) are written in Supplementary. 

. Passage to composites represented by RVE 

.1. General 

The asymptotic analytical formulae for the averaged stresses

nd deformations are written in the previous section for a finite
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number of inclusions n in the plane. Direct computation of the ef-

fective constants by these formulae gives the effective properties of

clusters ( Mityushev and Adler, 2002; Mityushev and Rylko, 2013 )

consisting of n inclusions diluted in the plane. These formulae hold

for any number n given in symbolic form. Therefore, one can pass

to the limit n → ∞ but this passage must be properly justified. 

First, consider the pure geometrical sums arisen in the above

formulae 

e 2 (n ) = 

1 

n 

2 

n ∑ 

k =1 

∑ 

m � = k 

1 

(a k − a m 

) 2 
, (45)

e (1) 
3 

(n ) = 

1 

n 

2 

n ∑ 

k =1 

∑ 

m � = k 

a k − a m 

(a k − a m 

) 3 
, (46)

e 22 (n ) = 

1 

n 

3 

n ∑ 

k =1 

∑ 

m � = k 

∑ 

l � = m 

1 

(a k − a m 

) 2 
1 

( a m 

− a l ) 2 
, (47)

 e 22 (n ) = 

1 

n 

3 

n ∑ 

k =1 

∑ 

m � = k 

∑ 

l � = m 

1 

(a k − a m 

) 2 
1 

( a m 

− a l ) 2 
, (48)

e (1) 
33 

(n ) = 

1 

n 

3 

n ∑ 

k =1 

∑ 

m � = k 

∑ 

l � = m 

a k − a m 

(a k − a m 

) 3 
a m 

− a l 
( a m 

− a l ) 3 
. (49)

Consider infinite number of the mutually disjoint disks D k =
{ z ∈ C : | z − a k | < r} ( k = 1 , 2 , . . . ) on the complex plane. Let the

centers a k are ordered in such a way that 

| a 1 | ≤ | a 2 | ≤ | a 3 | ≤ . . . . (50)

Let D be the complement of the closed disks | z − a k | ≤ r ( k =
1 , 2 , . . . ) to the complex plane. As above let Q n denote a rectan-

gle containing first n disks D 1 , D 2 , ..., D n ; F n = Q n \ ∪ 

n 
k =1 

( D k ∪ ∂D k )
and | Q n | its area (see Fig. 1 ). Let the finitely connected domains

F n tend to D as n → ∞ , i.e., ∂Q n tends to the infinite point. The

concentration of inclusions is introduced as the limit 1 

f = lim 

n →∞ 

nπ r 2 

| Q n | = Nπ r 2 , (51)

where N is the average number of inclusions per unit area, i.e.,

| Q n | ∼ n 
N as n → ∞ . This is equivalent to introduction of a dimen-

sionless length scale. 

The conditional convergence of (45) and (46) , as n → ∞ , is

the principal difficulty to constructively apply the MMM princi-

ple by Hashin and to deduce analytical formulae for the effec-

tive constants. The limit (45) was first theoretically investigated in

Mityushev (1999) where the question of the conditional conver-

gence was resolved and the results were applied to calculation of

the effective conductivity. 

It follows from the homogenization theory outlined in

Section 2 that it is not necessary to study general structures with

infinite number of inclusions on the plane as it was done in

Mityushev (1999) . Because investigation of the statistically homo-

geneous composites can be reduced to investigation of the RVE. We

follow these lines in the next sections and consider a doubly peri-

odic composite with a finite number of inclusion N per periodicity

cell. The area of the periodicity cell is normalized to unity that is

agree with (51) . This number N is kept in symbolic form that gives

the possibility to apply an arbitrary probabilistic distribution of N

disks in the representative cell. 
1 It is assumed that this limit exists. s
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.2. The limit of e 2 ( n ) 

Introduce the limit of (45) 

 2 := lim 

n →∞ 

e 2 (n ) = lim 

n →∞ 

1 

n 

2 

n ∑ 

k =1 

∑ 

m � = k 

1 

(a k − a m 

) 2 
. (52)

n the next Section 5.2.1 , we investigate this limit for regular com-

osites following Rayleigh (1892) by use of the Eisenstein summa-

ion ( Weil, 1976 ). In Section 5.2.2 , we investigate the limit (52) for

tatistically homogeneous composites reduced to doubly periodic

nes. 

.2.1. Regular composites 

In the partial case, when the centers a k form a regular lat-

ice, formula (52) can be treated as Rayleigh’s formula ( Rayleigh,

892 ). For instance, let the centers a k generate the square array

 = 

{ 

p √ 

N 
+ 

iq √ 

N 
: p, q ∈ Z 

} 

. Then, the average number of disks per

ell N = 1 and (52) becomes 

 2 = 

e ∑ 

p,q ∈ Z \ { 0 } 

1 

( p + iq ) 
2 
. (53)

he series (53) is conditionally convergent, hence, its value de-

ends on the order of summation. Here, the order is fixed by using

f the Eisenstein summation ( Weil, 1976 ) 

e 
 

p,q 

:= lim 

M 2 → + ∞ 

lim 

M 1 → + ∞ 

M 2 ∑ 

q = −M 2 

M 1 ∑ 

p= −M 1 

. (54)

he iterated limit in (54) means that the rectangle of summation

hown in Fig. 1 , first, is extended along the x -axis and after along

he y -axis. 

The case N = 1 yields the famous Eisenstein–Rayleigh lattice

um 

 2 = 

e ∑ 

p,q ∈ Z \ { 0 } 

1 

( p + iq ) 
2 
. (55)

ayleigh (1892) applied the Eisenstein summation (54) having con-

idered the conductivity problem for the square lattice 2 and found

 2 = π . The inner limit in the x -direction in (54) corresponds to

he direction of external flux. A physical justification of (54) based

n the polarization effect was presented in McPhedran and McKen-

ie (1978) and Perrins et al. (1979) . The complete mathematical in-

estigation of the Eisenstein-Rayleigh with different orders of sum-

ations can be found in Mityushev (1997a ). 

.2.2. Statistically homogeneous composites 

As it was noted at the end of Section 5.1 the passage to the

imit in (52) for statistically homogeneous composites is reduced

o doubly periodic composites. In order to describe such a com-

osite and further to deduce constructive formulae we consider a

attice G which is defined by two translation vectors expressed by

omplex numbers ω 1 , ω 2 . Without loss of generality we assume

hat ω 1 > 0 and Im 

ω 2 
ω 1 

> 0 . Introduce the zero-th cell 

 (0 , 0) := 

{ 

z = t 1 ω 1 + t 2 ω 2 ∈ C : −1 

2 

< t 1 , t 2 < 

1 

2 

} 

. 

et the area of G (0 , 0) be normalized to unity, hence 

 1 Im ω 2 = 1 . (56)
2 Rayleigh (1892) did not cite Eisenstein’s result (1847) and addressed to Weier- 

trass’ investigations (1856). Perhaps, it is related to that Eisenstein treated formally 

his series without uniform convergence ( Weil, 1976 ). 
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ntroduce the numbers P = pω 1 + qω 2 for integer p and q and the

 -cell 

 (p,q ) := G (0 , 0) + P = 

{
z ∈ C : z − P ∈ G (0 , 0) 

}
. 

Let D k denote mutually disjoint disks | z − a k | < r ( k =
 , 2 , . . . , N) whose centers a k are located in the zeroth cell G (0 , 0) .

he location of inclusions in other cells periodically repeats the

ocation in G (0 , 0) in the torus topology. The normalization (56) is

onsistent with the definition of concentration (51) . Introduce the

ultiply connected domain D 0 = G (0 , 0) \ ⋃ N 
k =1 (D k ∪ ∂D k ) obtained

y removing of the inclusions from the zero-th cell. We say that

he set of centers 

 = { a k + P, k = 1 , 2 , . . . , N; P = pω 1 + qω 2 , p, q ∈ Z } (57)

enerate a double periodic structure. This set A can be reordered

n accordance with (50) . It is worth noting that the set A in gen-

ral does not form a lattice, since the points a k ( k = 1 , 2 , . . . , N)

atisfy only the non-overlapping condition | a k − a m 

| ≥ 2 r ( m � = k )

nd arbitrarily located in the zero cell. The number N can be

aken arbitrarily large what gives a possibility to consider the set

 a k , k = 1 , 2 , . . . , N} as a statistically random set of points satisfying

ny desired probabilistic non-overlapping distribution. 

Let the doubly periodic host domain D 0 + P be occupied by an

sotropic elastic material with the shear modulus μ and the bulk

odulus k . Let the inclusions D k + P be occupied by an isotropic

lastic material characterized by the shear modulus μ1 and the

ulk modulus k 1 . 

It was shown in Mityushev (1999) , Mityushev and Rylko

2012) and Mityushev and Rylko (2013) that for macroscopically

ideally isotropic) composites 

 2 = π. (58) 

his formula generalizes Rayleigh’s equation S 2 = π to random

omposites. 

.3. The limit of e (1) 
3 

(n ) 

We now proceed to investigate the limit formula (46) for

acroscopically isotropic composites represented by doubly peri-

dic structures. Let a structure is determined by the centers set

57) . First, consider the conditionally lattice sum 

 

( 1 ) 
3 

= 

e ∑ 

P � =0 

P̄ 

P 3 
, (59) 

here 
∑ e 

P � =0 stands for the Eisenstein summation over the integer

umbers p and q except the term p = q = 0 . Consider the function

ntroduced by Natanzon (1935) and developed by Grigolyuk and

il’shtinskij (1992) 3 

 

′ 
1 (z) = −2 

∑ 

P � =0 

(
P 

(z − P ) 3 
+ 

P 

P 3 

)
, (60)

here we follow the notations ( Grigolyuk and Fil’shtinskij, 1992 ).

he series (60) is absolutely convergent. Using the Eisenstein sum-

ation we introduce the function 

 

( 1 ) 
3 ( z ) = 

e ∑ 

P 

z − P 

( z − P ) 
3 
. (61) 

he functions (60) and (61) are related by equation 

 

(1) 
3 

(z) = −1 

z ℘ ′ (z) + 

1 

℘ ′ 1 (z) + S (1) 
3 

, (62)

2 2 

3 See the review Filshtinsky and Mityushev (2014) with an extended list of refer- 

nces. 
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here ℘( z ) denotes the Weierstrass elliptic function ( Weil, 1976 ).

rigolyuk and Fil’shtinskij (1992) expressed Natanzon’s function

 

′ 
1 
(z) in terms of elliptic functions 

℘ ′ 1 (z) = 

1 

3 

℘ ′′ (z) + [ ζ (z) − (S 2 − π) z] ℘ ′ (z) 

− 2(S 2 − π) ℘(z) − 10 S 4 , (63) 

here the following lattice sum are used 

 2 = 

∑ 

P � =0 

1 

P 2 
, S 4 = 

∑ 

P � =0 

1 

P 4 
. (64)

ormula (63) is obtained from Filshtinsky’s formulae (15) and (25)

rom Appendix 2 of Grigolyuk and Fil’shtinskij (1992) by using of

56) , Legendre’s identity and formula S 2 = 

2 
ω 1 

ζ
(ω 1 

2 

)
deduced in

ityushev (1997b ). Substitution of (63) and (64) into (62) yields 

 

(1) 
3 

(z) = −1 

2 

z ℘ ′ (z) + 

1 

6 π
℘ ′′ (z) + 

1 

2 

[
ζ (z) 

π
−

(
S 2 
π

− 1 

)
z 

]
℘ ′ (z) 

−
(

S 2 
π

− 1 

)
℘(z) − 5 

π
S 4 + S (1) 

3 
. (65) 

he latter formula is simplified for the hexagonal cell when S 2 = π
nd S 4 = 0 ( Akhiezer, 1990 ) 

 

(1) 
3 

(z) = −1 

2 

z ℘ ′ (z) + 

1 

6 π
℘ ′′ (z) + 

1 

2 π
ζ (z) ℘ ′ (z) + S (1) 

3 
. (66)

Introduce the designation 

 F (z) 〉 = 

1 

N 

2 

N ∑ 

k =1 

N ∑ 

m =1 

F (a k − a m 

) , (67)

he limit for doubly periodic structures can be calculated by for-

ula 

 

(1) 
3 

= lim 

n →∞ 

e (1) 
3 

(n ) = 〈 E (1) 
3 

(z) 〉 , (68)

here it is assumed that E (1) 
3 

(0) := S (1) 
3 

. It was proved in

akubovich and Mityushev (2016) that S (1) 
3 

= 

π
2 for the hexagonal

attice. 

.4. The limit of e (1) 
33 

(n ) 

Let k be a natural number and j = 0 , 1 . Introduce the func-

ions 

 

( j ) 
k 

( z ) = 

e ∑ 

P 

(
z − P 

) j 

( z − P ) 
k 
. (69) 

he superscript j for j = 0 will be omitted below, i.e., we write

 

(0) 
k 

(z) = E k (z) for shortness. Calculate the limit for the doubly pe-

iodic structures 

 22 = lim 

n →∞ 

e 22 ( n ) = 

1 

N 

3 

N ∑ 

k =1 

N ∑ 

m =1 

N ∑ 

l=1 

E 2 ( a k − a m 

) E 2 ( a m 

− a l ) (70) 

nalogously 

˜ 
 22 = lim 

n →∞ 

˜ e 22 ( n ) = 

1 

N 

3 

N ∑ 

k =1 

N ∑ 

m =1 

N ∑ 

l=1 

E 2 ( a k − a m 

) E 2 ( a m 

− a l ) (71) 

nd 

 

( 1 ) 
33 

= lim 

n →∞ 

e ( 
1 ) 

33 ( n ) = 

1 

N 

3 

N ∑ 

k =1 

N ∑ 

m =1 

N ∑ 

l=1 

E ( 
1 ) 

3 ( a k − a m 

) E 
( 1 ) 
3 ( a m 

− a l ) . (72) 

. Effective constants 

For simplicity, we consider a macroscopically isotropic material

escribed by two effective constants μe and k e . 
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6.1. Effective constants up to O ( f 3 ) 

Consider the limit relation (32) with (S11) and (S12) up to O ( f 3 )

terms from Supplementary, as n tends to infinity. We have 

μe 

μ
= 1 + (1 + κ) M 1 f + (1 + κ) M 2 f 

2 + O ( f 3 ) , (73)

where 

M 1 = 

�1 

�4 

= 

μ1 

μ − 1 

κ μ1 

μ + 1 

, (74)

M 2 = M 

2 
1 

(
κ + 

2 e (1) 
3 

π


0 


0 

)
+ 2 M 1 K 1 

B 0 


0 

e 2 
π

, (75)

K 1 = 

(κ − 1) μ1 

μ − (κ1 − 1) 

κ1 − 1 + 2 

μ1 

μ

. (76)

The limit of (33) with (S9) and (S10) from Supplementary yields 

k e 

k 
= 1 + (κ + 1) 

K 1 

κ − 1 

f + (κ + 1) K 2 f 
2 + O ( f 3 ) , (77)

where 

K 2 = 

K 1 

κ − 1 

[
2 

(
K 1 

κ − 1 

)
+ M 1 

κ1 + 

μ1 

μ

1 + κ1 


0 

B 0 

e 2 
π

+ M 1 

1 − μ1 

μ

1 + κ1 


0 

B 0 

e 2 
π

]
. 

(78)

Using the relation k = 

2 μ
κ−1 we arrive at the same first order coeffi-

cients M 1 and K 1 as in (1) . 

The coefficients M 2 and K 2 formally depend on B 0 and 
0 

which are expressed in terms of the stresses at infinity by formulae

(8) . Moreover, M 2 and K 2 formally depend on the complex values

e (1) 
3 

and e 22 . However, the homogenization theory implies that the

coefficients M 2 and K 2 must be real numbers and do not depend

on the choice of B 0 and 
0 . This illusory contradiction is based

on the conditional convergence of the sums e 2 and e (1) 
3 

. Consider

the sum e (1) 
3 

defined by (68) and (66) . It follows from (66) that

the conditionally convergent part of e (1) 
3 

is the sum S (1) 
3 

defined by

(59) where the Eisenstein summation is used. 

We shall check that 
B 0 

0 

S 2 and 


0 

0 

S (1) 
3 

are invariant under change

of B 0 and 
0 . The invariance for S 2 was proved in Mityushev

(1997a ) in terms of conductivity. We now demonstrate the invari-

ance for few stress states at infinity. The complete proof is long

and follows the lines of Mityushev (1997a ). Compare two states (1)

σ∞ 

xx = 1 , σ∞ 

yy = σ∞ 

xy = 0 and (2) σ∞ 

yy = 1 , σ∞ 

xx = σ∞ 

xy = 0 . The second

state can be obtained from the first one by rotation about the an-

gle π
2 . Let ω 

(1) 
1 

and ω 

(1) 
2 

be two fundamental vectors. It is conve-

nient to compare these states through rotation of the fundamen-

tal vectors ω 

(2) 
1 

= ω 

(1) 
1 

exp ( iπ2 ) and ω 

(2) 
2 

= ω 

(1) 
2 

exp ( iπ2 ) where the

superscript corresponds to the number of states. It follows from

(64) with P = pω 

( j) 
1 

+ qω 

( j) 
2 

( j = 1 , 2) that 

S 2 (ω 

(2) 
1 

, ω 

(2) 
2 

) = [ ω 

(2) 
1 

] −2 S 2 (1 , τ ) = −S 2 (ω 

(1) 
1 

, ω 

(1) 
2 

) 

and from (59) that 

S (1) 
3 

(ω 

(2) 
1 

, ω 

(2) 
2 

) = ω 

(2) 
1 

[ ω 

(2) 
1 

] −3 S (1) 
3 

(1 , τ ) = S (1) 
3 

(ω 

(1) 
1 

, ω 

(1) 
2 

) , 

where τ = 

ω (1) 
2 

ω (1) 
1 

= 

ω (2) 
2 

ω (2) 
1 

. One can see that 

B 

(2) 
0 


(2) 
0 

S 2 (ω 

(2) 
1 

, ω 

(2) 
2 

) = 

B 

(1) 
0 


(1) 
0 

S 2 (ω 

(1) 
1 

, ω 

(1) 
2 

) (79)

and 


(2) 
0 


(2) 
0 

S (1) 
3 

(ω 

(2) 
1 

, ω 

(2) 
2 

) = 


(1) 
0 


(1) 
0 

S (1) 
3 

(ω 

(1) 
1 

, ω 

(1) 
2 

) . (80)
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Consider now the stress states 3) σ∞ 

xx = σ∞ 

yy = 0 , σ∞ 

xy = 1 , i.e.,

 0 = 0 , 
0 = i and 4) σ∞ 

yy = 1 , σ∞ 

xx = −1 , σ∞ 

xy = 0 , i.e., B 0 = 0 , 
0 =
 . The state 4) is obtained from 3) by rotation about the angle −π

4 .

hen, the relation (79) is trivial (equivalent to 0 = 0 ) and 

 

(1) 
3 

(ω 

(2) 
1 

, ω 

(2) 
2 

) = −S (1) 
3 

(ω 

(1) 
1 

, ω 

(1) 
2 

) . 

ne can check that the relations (80) is fulfilled also in this case.

ther stress states can be obtained by linear combinations of the

onsidered four states. 

This result enable us to take any pair B 0 and 
0 . We will take

 0 = 0 , 
0 = i and B 0 = 1 , 
0 = 0 for convenience. 

.2. Effective constants up to O ( f 4 ) 

In the present section, we consider the hexagonal represen-

ative cell when ω 1 = 

4 

√ 

4 
3 and ω 2 = 

4 

√ 

4 
3 e 

π i 
3 and the considered

andom structure is macroscopically isotropic. Then, e 2 = π and

 

(1) 
3 

= 

π
2 . 

Let B 0 = 0 , 
0 = i . Then, the coefficient (75) becomes 

 2 = M 

2 
1 ( κ − 1 ) . (81)

he next approximation yields 

μe 

μ
= 1 + (1 + κ) M 1 f + (1 + κ) M 2 f 

2 + (1 + κ) M 3 f 
3 + O ( f 4 ) , 

(82)

here 

M 3 = M 

2 
1 

(
κ2 M 1 − 2 κM 1 + 6 

e 4 
π2 

− K 1 ̃

 e 22 

π2 
+ 4 M 1 

e (1) 
33 

π2 
+ K 1 

e 22 

π2 

)
(83)

Let B 0 = 1 , 
0 = 0 . Then, the coefficient (78) becomes 

 2 = 2 

(
K 1 

κ − 1 

)2 

nd 

k e 

k 
= 1 + 

κ + 1 

κ − 1 

K 1 f + (κ + 1) K 2 f 
2 + (κ + 1) K 3 f 

3 + O ( f 4 ) , (84)

here 

 3 = 4 

(
K 1 

κ − 1 

)3 

+ 2 

M 1 K 

2 
1 

κ − 1 

e 22 

π2 
. (85)

ne can see that μe and k e do not depend on locations of inclu-

ions up to O ( f 3 ) and the coefficients M 3 and K 3 do depend. 

Consider two numerical examples. 

1. Take 13 disks of radius r = 0 . 022 located at the basic triangle as

displayed in Fig. 2 . Their numerical coordinates are written in

Supplementary (see formula (S13)). Other triangles are obtained

by symmetries with respect to the sides of the basic and gener-

ated triangles. As a result we obtain the hexagonal periodicity

cell containing 104 disks. The constructed structure has three

lines of symmetry (dashed lines in Fig. 2 ). This implies that it is

macroscopically isotropic. The e -sums of the considered struc-

ture take the values: e 2 = π, e 4 = 0 , e (1) 
3 

= 

π
2 , e 22 = 55 . 1009 ,˜ e 22 = 9 . 869604 , e (1) 

33 
= 60 . 9421 . Their substitution into (82) and
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Fig. 3. The hexagonal cell with 1296 inclusions symmetrically generated by 27 in- 

clusions in marked triangle. The coordinates of 27 inclusions are given by (S14) in 

Supplementary. 
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Fig. 4. The dependencies of μe 

μ on the concentration f for the composites pre- 

sented in Figs 2 and 3 when μ1 

μ = 15 , k 1 
k 

= 

8 
7 

. Solid lines correspond to the Hashin–

Shtrikman bounds (3) - (5) ; dashed and dotted lines corresponds to (87) and (86) , 

respectively. 
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M  
(84) yields up to O ( f 4 ) 

μe 

μ
= 1 + 

2 μ(k + μ)(μ1 − μ) 

2 μμ1 + k (μ + μ1 ) 
f + 

4 μ2 (k + μ)(μ − μ1 ) 
2 

2 μμ1 + k (μ + μ1 ) 2 
f 2 

+ 2 μ
(
μ

k 
+ 1 

)
( 

5 . 58289(μ − μ1 ) 
2 
(
μ1 

(
2 μ
k 

+ 1 

)
− 2 μμ1 

k 1 
− μ1 

)(
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)2 ( 2 μμ1 

k 1 
+ 2 μ1 

)
+ 

(μ − μ1 ) 
2 
(
−μ1 

(
2 μ
k 

+ 1 

)
+ 

2 μμ1 

k 1 
+ μ1 

)(
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)2 ( 2 μμ1 

k 1 
+ 2 μ1 

)
−

(
2 μ
k 

+ 1 

)2 
(μ − μ1 ) 

3 (
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)3 
+ 

2 

(
2 μ
k 

+ 1 

)
(μ − μ1 ) 

3 (
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)3 

− 24 . 6989(μ − μ1 ) 
3 (

μ1 

(
2 μ
k 

+ 1 

)
+ μ

)3 

) 

f 3 . (86) 

2. In order to get a macroscopically isotropic composite take 27

disks of radius r = 0 . 003642 randomly located at the basic tri-

angle (see Fig. 3 ) 4 . One of the statistical realization is shown

in Fig. 3 . Their numerical coordinates are written in Supple-

mentary (see formula (S14)). Other 47 triangles are obtained

by symmetries with respect to the sides of the basic and gen-

erated triangles. As a result we obtain the hexagonal period-

icity cell containing 1296 disks. The constructed structure has

three lines of symmetry (dashed lines in Fig. 3 ). This implies

that it is macroscopically isotropic. The e -sums of the consid-

ered structure take the values: e 2 = π, e 4 = 0 , e (1) 
3 

= 

π
2 , e 22 =

83 . 393648 , ̃  e 22 = 9 . 869604 , e (1) 
33 

= 79 . 375512 . Their substitution

into (82) and (84) yields up to O ( f 4 ) 

μe 

μ
= 1 + 

2 μ(k + μ)(μ1 − μ) 

2 μμ1 + k (μ + μ1 ) 
f + 

4 μ2 (k + μ)(μ − μ1 ) 
2 

2 μμ1 + k (μ + μ1 ) 2 
f 2 

+ 2 μ
(
μ

k 
+ 1 

)
×
( 

8 . 44954(μ − μ1 ) 
2 
(
μ1 

(
2 μ
k 

+ 1 

)
− 2 μμ1 

k 1 
− μ1 

)(
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)2 ( 2 μμ1 

k 1 
+ 2 μ1 

)
+ 

(μ − μ1 ) 
2 
(
−μ1 

(
2 μ
k 

+ 1 

)
+ 

2 μμ1 

k 1 
+ μ1 

)(
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)2 ( 2 μμ1 

k 1 
+ 2 μ1 

)

4 Here, randomly means the uniform non-overlapping distribution in the consid- 

red triangle 

s  

(  

S  

r  
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−
(

2 μ
k 

+ 1 

)2 
(μ − μ1 ) 

3 (
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)3 
+ 

2 

(
2 μ
k 

+ 1 

)
(μ − μ1 ) 

3 (
μ1 

(
2 μ
k 

+ 1 

)
+ μ

)3 

− 32 . 1697(μ − μ1 ) 
3 (

μ1 

(
2 μ
k 

+ 1 

)
+ μ

)3 

) 

f 3 . (87) 

The dependencies of μe 
μ on the concentration are displayed in

ig. 4 . The concentration is restricted by f = 0 . 2 in order to prevent

verlapping of disks with fixed centers. 

. Conclusion 

Analytical formulae (82) and (85) for the effective constants are

educed up to O ( f 4 ) for an arbitrary 2D macroscopically isotropic

omposite with circular inclusions. The principal step is the proper

efinition of the convergent series arisen in the second order terms

 ( f 2 ). The calculated terms O ( f 2 ) do not depend on the location of

nclusions whilst the third order terms do. In particular, formu-

ae (82) and (85) imply that any SCM is valid only up to O ( f 3 )

or macroscopically isotropic composites. The following logic ar-

uments were given in Section 5 of Mityushev and Rylko (2013) .

ny SCM for random composites is based on the consideration of

he averaged structures and introduction of the unknown effective

ensor C e without any precise description of the geometry. Usually,

t is just said that a random composite is considered. However, a

andom composite is determined by the corresponding probabilis-

ic geometric distribution, say P . Therefore, C e = C e (P ) . In the case

f disks, C e ( P ) depends on the distribution P of the centers a k (the

et { a k } k ∈J can be treated as a random variable here). Any known

nal formula of the SCM is independent on (a k − a m 

) . Therefore,

he SCM must yield universal formulae valid for any P . One can

ee from (82) –(85) that this universality ends on the term f 2 for

acroscopically isotropic composites. The third order terms de-

end on the e -sums which in turn depend on (a k − a m 

) . 

There are modifications of the SCM taking into account 2-, 3-,

nd n - particles interactions. In this case, a finite set of (a k − a m 

)

ight be taken into account. However, this finite set does not

roduce high order formulae since actually it is equivalent to

axwell’s approach applied to dilute clusters containing n inclu-

ions. Hence, it gives only first order approximation for clusters

see Mityushev and Adler (2002) ). Of course, combinations of the

CM with other methods can increase the precision when the cor-

esponding manipulations can be made within the justified preci-
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sion. It can be also seen that any SCM holds up to O ( f 2 ) for general

anisotropic composites. 

In the present paper, first, we determine the local elastic field

for a finite number n of inclusions on the plane by means of

the functional Eqs. (12) and (13) . The series method is outlined

to analytically solve these equations with a prescribed precision

in the powers of r 2 . For any finite n , the obtained solution can

give formulae for the effective constants only for the disk clusters

within the first order concentration Mityushev and Adler (2002) ;

Mityushev and Rylko (2013) . In order to discuss higher concen-

trated random composites we investigate the limit n → ∞ by the

Eisenstein summation method of the conditionally convergent se-

ries. 

Though, the final formulae (82) and (85) are written up to

O ( f 4 ) the method does not have any restriction to get more pre-

cise formulae. We include an approximate analytical formula for

the hexagonal array valid up to O ( f 9 ) (see Sec.3 of Supplement).

The main computational difficulty for general composites is a con-

venient presentation of long analytical formulae. Another compu-

tational difficulty is related to the number of inclusions per cell,

N , which has to be taken sufficiently large 5 . As an example, we

calculate the effective constants for the composite displayed in

Figs. 2 and 3 . General investigation of random composites can

be performed by the Monte Carlo method following Czapla et al.

(2012) and Mityushev and Nawalaniec (2015) . These questions will

be discussed in a separate paper by advanced symbolic-numerical

computations. 
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