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Abstract

The Poincaré α–series (α ∈ Rn) for classical Schottky groups
is introduced and used to solve Riemann–Hilbert problems for n–
connected circular domains. The classical Poincaré θ2–series can be
obtained from the α–series by the substitution α = 0. The real Ja-
cobi inversion problem and its generalisations are investigated via the
Poincaré α–series. In particular, it is shown that the Riemann theta–
function coincides with the Poincaré α–series. Relations to conformal
mappings to slit domains and the Schottky–Klein prime function are
established. A fast algorithm to compute Poincaré series for disks
close to each other is outlined.

1 Introduction

The θ2–series of Poincaré associated to the classical Schottky groups is used
in the constructive theory of analytic functions in multiply connected do-
mains. Such objects of multiply connected domains as the harmonic mea-
sures [23, 26, 27], the Abelian functions [1, 4, 7, 8], the canonical conformal
mappings [9, 11, 16, 28], the Christoffel–Schwarz formula [13, 14, 15, 17, 31],
the Bergman kernel [20] can be constructed by the Poincaré series. These
objects can be also considered in the equivalent form on the Schottky dou-
ble. The Poincaré series have applications to extremal polynomials [5], to
the generalized alternating method of Schwarz [24, 22, 37] and to composites
[29]. The above objects are ultimately constructed for all circular multiply
connected domains [27, 28, 31, 20] via the uniformly convergent θ2–series
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of Poincaré [25]. The method of construction is based on Riemann–Hilbert
problems and functional equations (without integral terms) [23, 26, 27]. It
is worth noting that investigations based on the absolute convergence have
geometrical restrictions on the location of the circular holes [36].

A method of functional equations [23, 26] gives more general series than
the classical θ2–series of Poincaré. In the present paper, such series, called
the Poincaré α–series (shortly, the α–series), are systematically discussed.
Here, α is a constant vector from Rn. If α = 0, we arrive at the classical
Poincaré series. We solve Riemann–Hilbert problems in terms of the α–series
and apply the results to the generalized Jacobi inversion problem. In order to
simplify the presentation we consider the special Riemann–Hilbert problem
with the winding number equal to the connectivity of the domain. A fast
algorithm to compute Poincaré series is presented.
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Figure 1: Multiply connected domain D with circular inclusions Dk.

2 Poincaré series for classical Schottky groups

Consider mutually disjointed disks Dk = {z ∈ C : |z − ak| < rk} in the
complex plane C and the multiply connected domain D, the complement of
the closed disks |z − ak| ≤ rk to the extended complex plane Ĉ = C ∪ {∞}
(see Fig.1). Consider the inversion with respect to the circle |z − ak| = rk

z∗(k) =
r2k

z − ak
+ ak.
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Introduce the composition of successive inversions with respect to the circles

z∗(kpkp−1...k1)
:=

(
z∗(kp−1...k1)

)∗

(kp)
. (2.1)

In the sequence k1, k2, ..., kp no two neighboring numbers are equal. The
number p is called the level of the mapping. When p is even, these are
Möbius transformations. If p is odd, we have anti-Möbius transformations,
i.e., Möbius transformations in z. Thus, these mappings can be written in
the form

γj(z) = (ejz + bj) / (cjz + dj) , p ∈ 2Z, (2.2)

γj(z) = (ejz + bj) / (cjz + dj) , p ∈ 2Z+ 1,

where ejdj − bjcj = 1. Here γ0(z) := z (identical mapping with the level p =
0), γ1(z) := z∗(1) , ..., γn(z) := z∗(n) (n simple inversions, p = 1), γn+1(z) :=

z∗(12), γn+2(z) := z∗(13),..., γn2(z) := z∗(n,n−1) (n
2 −n pairs of inversions, p = 2),

γn2+1(z) := z∗(121), ... and so on. The set of the subscripts j of γj is ordered

in such a way that the level p is increasing. The functions (2.2) generate a
Schottky group K. Thus, each element of K is presented in the form of the
composition of inversions (2.1) or in the form of linearly ordered functions
(2.2). All elements γj of the even levels generate a subgroup E of the group
K. The set of the elements γj of odd level K\E is denoted by O.

LetH(z) be a rational function. This following series is called the Poincaré
θ2–series

θ2(z) :=
∑
γj∈E

H[γj(z)](cjz + dj)
−2 (2.3)

associated with the subgroup E . It was proved in [25] that the series (2.3)
converges uniformly in every compact subset not containing the limit points
of K and poles of H(γj(z)). Moreover, it is an automorphic function:

θ2(z) = θ2[γj(z)](cjz + dj)
−2. (2.4)

Using the inversions (2.1) instead of (2.2) we write (2.3) in the extended
form. First, following [25] introduce the series

Θ
(1)
2 (z) = H(z)−

n∑
k=1

H[z∗(k)](z
∗
(k))

′ +
n∑

k=1

∑
k1 ̸=k

H[z∗(k1k)](z
∗
(k1k)

)′− (2.5)

n∑
k=1

∑
k1 ̸=k

∑
k2 ̸=k1

H[z∗(k2k1k)](z
∗
(k2k1k)

)′ + . . .
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and

Θ
(2)
2 (z) = H(z) +

n∑
k=1

H[z∗(k)](z
∗
(k))

′ +
n∑

k=1

∑
k1 ̸=k

H[z∗(k1k)](z
∗
(k1k)

)′+ (2.6)

n∑
k=1

∑
k1 ̸=k

∑
k2 ̸=k1

H[z∗(k2k1k)](z
∗
(k2k1k)

)′ + . . .

The Poincaré θ2–series (2.3) can be written in the form

θ2(z) =
1

2

(
Θ

(1)
2 (z) + Θ

(2)
2 (z)

)
. (2.7)

Let αk (k = 1, 2, . . . , n) be real numbers from the segment [0, 2π). Intro-
duce the multi–index α = (α1, α2, . . . , αn) and the series

Θ
(1)
2 (z;α) = H(z)−

n∑
k=1

e2iαkH[z∗(k)](z
∗
(k))

′+
n∑

k=1

∑
k1 ̸=k

e2i(αk−αk1
)H[z∗(k1k)](z

∗
(k1k)

)′−

(2.8)
n∑

k=1

∑
k1 ̸=k

∑
k2 ̸=k1

e2i(αk−αk1
+αk2

)H[z∗(k2k1k)](z
∗
(k2k1k)

)′ + . . . ,

Θ
(2)
2 (z;α) = H(z)+

n∑
k=1

e2iαkH[z∗(k)](z
∗
(k))

′+
n∑

k=1

∑
k1 ̸=k

e2i(αk−αk1
)H[z∗(k1k)](z

∗
(k1k)

)′+

(2.9)
n∑

k=1

∑
k1 ̸=k

∑
k2 ̸=k1

e2i(αk−αk1
+αk2

)H[z∗(k2k1k)](z
∗
(k2k1k)

)′ + . . .

and

θ2(z;α) =
1

2

[
Θ

(1)
2 (z;α) +Θ

(2)
2 (z;α)

]
. (2.10)

We call the series (2.8)–(2.10) by the α–series. The series (2.8)–(2.10) uni-
formly converge in every compact subset not containing the limit points of
K and poles of H[γj(z)] [30]. If α = (0, 0, . . . , 0), we arrive at the classic
Poincaré series (2.3).

Similar formulae take place for the Schottky–Klein prime function dis-
cussed in [1, 7, 8, 9, 10, 11]. Let ζ and w be fixed points of (D ∪ ∂D)\{∞}.
The following functions was introduced in [27, 28] (see formulae (40) and
(41) in [28])

ω0(z, ζ, w) = ln
∞∏
j=1

µj(z, ζ, w), (2.11)
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where

µj(z, ζ, w) =


ζ−γj(z)

ζ−γj(w)
, if γj ∈ E ,

ζ−γj(w)

ζ−γj(z)
, if γj ∈ O.

(2.12)

The multipliers µj(z, ζ, w) in (2.11) are arranged in accordance with the
increasing level of γj. The infinite product (2.11) converges uniformly in z
in every compact subset of (D ∪ ∂D)\({∞}, {ζ}, {w}). The justification of
these assertions is based on the application of Lemma 3.1 from Sec.3 to the
functional equations following [25, 27, 28]

φk(z) = −
∑
m ̸=k

[
φm

(
z∗(m)

)
− φm

(
w∗

(m)

)]
+ln

z − ζ

w − ζ
, |z−ak| ≤ rk, k = 1, . . . , n.

(2.13)
Instead of (2.13) we can apply Lemma 3.1 to the following functional

equations

φk(z) =
∑
m̸=k

[
φm

(
z∗(m)

)
− φm

(
w∗

(m)

)]
+ln

z − ζ

w − ζ
, |z−ak| ≤ rk, k = 1, . . . , n.

(2.14)
This justifies introduction of the function

ω1(z, ζ, w) = ln
∞∏
j=1

νj(z, ζ, w), (2.15)

where

νj(z, ζ, w) =


ζ−γj(z)

ζ−γj(w)
, if γj ∈ E ,

ζ−γj(z)

ζ−γj(w)
, if γj ∈ O.

(2.16)

Similar to (2.10) we introduce the function

ω(z, ζ, w) =
1

2
[ω0(z, ζ, w) + ω1(z, ζ, w)] =

1

2
ln

∏
γj∈E\{γ0}

ζ − γj(z)

ζ − γj(w)
. (2.17)

Hence, the following infinite product is correctly defined for z not equal to
ζ, w and infinity

Ω(z, ζ, w) =
∏

γj∈E\{γ0}

ζ − γj(z)

ζ − γj(w)
. (2.18)
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Therefore, we can introduce the function of two variables

S(z, ζ) = (ζ − z)Ω(ζ, z, z)Ω(z, ζ, ζ) = (ζ − z)
∏

γj∈E\{γ0}

z − γj(ζ)

z − γj(z)

ζ − γj(z)

ζ − γj(ζ)
.

(2.19)
This is the famous Schottky–Klein function presented in the form of uni-
formly convergent product. More precisely, the uniform convergence is proved
for Ω(ζ, z, z) in the variable ζ in every compact subset of (D∪∂D)\({z}, {∞})
and for Ω(z, ζ, ζ) in the variable z in every compact subset of (D∪∂D)\({ζ}, {∞}).
The uniform convergence in the variable (z, ζ) in subsets of C2 could be
proved by refined investigations of the corresponding functional equations.

Similar to (2.8)–(2.10) one can introduce α–prime functions

S(z, ζ,α) = (ζ − z)
∏

γj∈E\{γ0}

e2isj(α) z − γj(ζ)

z − γj(z)

ζ − γj(z)

ζ − γj(ζ)
. (2.20)

where for odd p

sj(α) := αk − αk1 + . . .+ αkp−1 − αkp . (2.21)

The correspondence between j and (kp, kp−1, . . . k1, k) in (2.21) is estab-
lished via the numeration of the elements of E , i.e., via the relation γj(z) =
z∗(kpkp−1...k1k)

.

3 Riemann–Hilbert problem

To find a function ψ(z) analytic in D and continuously differentiable in D ∪
∂D with the following Riemann–Hilbert boundary condition [27]

Im

[
e−iαk

t− ak
rk

ψ(t)

]
= 0, |t− ak| = rk, k = 1, 2, . . . , n. (3.1)

It is assumed that the function ψ(z) is normalized at infinity

ψ(∞) = 1. (3.2)

Let function φ(z) be a primitive of ψ(z), i.e., φ′(z) = ψ(z). Then φ(z)
satisfies the Riemann–Hilbert boundary condition

Re [e−iαkφ(t)] = ck, |t− ak| = rk, k = 1, 2, . . . , n, (3.3)
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where ck are undetermined constants. In order to prove it, we consider the
parametrisation of the circle |t − ak| = rk with the natural arc parameter
s ∈ [0, 2πrk)

t(s) = ak + rk exp

(
is

rk

)
. (3.4)

One can see that the derivative can be written in the form

t′(s) = i
t− ak
rk

. (3.5)

Differentiation (3.3) on s yields

Re [e−iαkψ(t)t′(s)] = 0, |t− ak| = rk, k = 1, 2, . . . , n. (3.6)

Using (3.5) we arrive at the boundary value problem (3.1).
It follows from (3.2) that φ(z) is analytic in D except at the infinite point

where it satisfies the hydrodynamic normalization at infinity [21]

φ(z) = z + φ0 +
φ1

z
+
φ2

z2
+ . . . . (3.7)

The function φ(z) is multi-valued in D. More precisely, it is represented in
the form [27]

φ(z) = z + φ0(z) +
n∑

k=1

eiαkAk ln(z − ak), (3.8)

where φ0(z) is single-valued analytic in D and Ak are undetermined real
constants. The logarithm ln(z−ak) is defined in such a way that it is analytic
in the complex plane except a cut connecting the points z = ak and infinity.
It is assumed that the cut does not cross |z− am| ≤ rm for m ̸= k. The term
eiαkAk has such a form since the increment of the function Re [e−iαkφ(t)]
along |t − ak| = rk must vanish because of (3.3). The problem (3.3) is
discussed for multi-valued functions as well as for single-valued functions
when all Ak = 0.

We use the Banach spaceHµ(L) consisting of functions Hölder continuous
on Lyapunov’s curve L endowed the norm

||ω|| = sup
t∈L

|ω(t)|+ sup
t1,2∈L

|ω(t1)| − ω(t2)|
|t1 − t2|µ

, (3.9)

where 0 < µ ≤ 1. Analytic functions considered in the present paper can
be continuous or continuously differentiable in the closures of the analyticity
domains. The space H(k,µ)(L) consists of those functions which have Hölder
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continuous derivative of the kth order belonging to Hµ(L). Let ∂Ω be the
boundary of a domain Ω not necessary connected. Introduce a space Hµ

A(Ω)
consisting of functions analytic in Ω and Hölder continuous in the closure of
Ω endowed the norm (3.9). The space Hµ

A(Ω) is Banach, since the maximum
principle for analytic functions implies that the norm in Hµ

A(Ω) coincides
with the norm in Hµ(∂Ω). One can consider Hµ

A(Ω) as a closed subspace of

Hµ(∂Ω). The space H(k,µ)
A (Ω) is introduced in the same way as a subspace

of H(k,µ)(Ω). Therefore, the boundary value problems (3.1) and (3.3) are

considered in the spaces H(µ)
A (D) and H(1,µ)

A (D), respectively.

Lemma 3.1 ([12]). The problem (3.3), (3.7) for single-valued functions has
a unique solution up to an arbitrary additive constant.

Let ζ = u+ iv denotes a complex variable on the complex plane with slits
Γk (k = 1, 2, . . . , n) lying on the lines

− sinαk u+ cosαk v = ck, (3.10)

where ck are the same as in (3.1). Let D′ denote the complement of all the

segments Γk to Ĉ. The conformal mapping φ̃(z) = u(z) + iv(z) from D onto
D′ satisfies the boundary value problem (3.3), (3.7). It follows from Lemma
3.1 that the conformal mapping φ̃(z) coincides with the unique solution φ(z)
of the problem (3.3), (3.7) up to an additive constant.

Lemma 3.2. The problem (3.3), (3.7) for multi-valued functions represented
in the form (3.8) has (n+ 1) R–linear independent solutions.

Proof. One independent solution is a constant and other n independent
solutions are produced by the terms eiαkAk ln(z − ak) in the representation
(3.8). Another proof follows from the relation between the problems (3.3),
(3.7) and (3.1), (3.2). The winding number (index) of the problem (3.1),
(3.2) is equal to n. Hence, it has n R–linear independent solutions. The
(n+ 1)th solution is a constant obtained by integration of (3.1).

Remark 3.3. According to [18] the winding number κ of the problem (3.1) is
equal to (n + 1). The number of R–linear independent solutions is equal to
κ and the inhomogeneous problem corresponding to (3.1) is always solvable.
The condition (3.2) reduces the number of R–linear independent solutions to
n that is in agree with the above conclusion.

The problem (3.3) for multi–valued functions can be reduced to the R–
linear problem [28]

φ(t) = φk(t)− e2iαkφk(t) + eiαkck + eiαkξk ln
t−ak
rk
,

|t− ak| = rk, k = 1, 2, . . . , n,
(3.11)
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where φk(z) is analytic in |z − ak| < rk and continuously differentiable in
|z − ak| ≤ rk, real constants ξk are undetermined.

Lemma 3.4. (i) Let φ(z) and φk(z) be solutions of (3.11) with arbitrarily
fixed real constants ξk. Then φ(z) satisfies (3.3).

(ii) Let φ(z) be a solution of (3.3) and real constants ξk are arbitrarily
fixed. Then there exist such functions φk(z) that for each k = 1, . . . , n the
R–linear conditions (3.11) are fulfilled.

Proof of the first assertion is evident. It is sufficient to multiply (3.11) by
e−iαk and to take the real part.

Conversely, let φ(z) satisfies (3.3) and a real constant ξk is fixed. The
function e−iαkφk(z) can be uniquely determined up to an additive real con-
stant from the simple Schwarz problem for the disk |z − ak| < rk [18], [27]

2Im
[
e−iαkφk(t)

]
= Im

[
e−iαkφ(t)− ξk ln

t− ak
rk

]
, |t− ak| = rk. (3.12)

It follows from the later boundary condition that the function φk(z) belongs

to the spaces H(1,α)
A (D) except at the point z = ak where Im ln(t − ak) =

arg(t− ak) has a discontinuity.
The lemma is proved.

Differentiate (3.11) on s along the circles |t − ak| = rk and divide the
results by t′(s) calculated with (3.5)

ψ(t) = ψk(t)+e
2iαk

(
rk

t− ak

)2

ψk(t)+
eiαkξk
t− ak

, |t−ak| = rk, k = 1, 2, . . . , n,

(3.13)
where ψ(z) = φ′(z) and ψk(z) = φ′

k(z). Therefore, the Riemann–Hilbert
problem (3.1) is reduced to the R–linear problem (3.13).

4 Functional equations

The R–linear problem (3.13) can be reduced to functional equations. Fol-
lowing [27, 28] introduce the function

Φ(z) :=


ψk(z)−

∑
m̸=k e

2iαm

(
rm

z−am

)2

ψm

(
z∗(m)

)
−
∑

m̸=k
eiαmξm
z−am

,

|z − ak| ≤ rk, k = 1, 2, . . . , n,

ψ(z)−
∑n

m=1 e
2iαm

(
rm

z−am

)2

ψm

(
z∗(m)

)
−
∑n

m=1
eiαmξm
z−am

, z ∈ D
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analytic in |z − ak| < rk (k = 1, 2, . . . , n) and D. Calculate the jump across
the circle |t− ak| = rk

∆k := Φ+(t)− Φ−(t), |t− ak| = rk,

where Φ+ (t) := limz→t z∈D Φ (z) , Φ− (t) := limz→t z∈Dk
Φ (z). Application of

(3.13) gives ∆k = 0. It follows from the principle of analytic continuation
that Φ(z) is analytic in the extended complex plane. Moreover, ψ(∞) = 1
yields Φ(∞) = 1. Then Liouville’s theorem implies that Φ(z) ≡ 1. The
definition of Φ(z) in |z − ak| ≤ rk yields the following system of functional
equations

ψk(z) =
∑
m̸=k

e2iαm

(
rm

z−am

)2

ψm

(
z∗(m)

)
+ 1 +

∑
m̸=k

eiαmξm
z−am

,

|z − ak| ≤ rk, k = 1, 2, . . . , n.
(4.1)

Let ψk(z) (k = 1, 2, . . . , n) be a solution of (4.1). Then the function ψ(z)
can be found from the definition of Φ(z) in D

ψ(z) =
n∑

m=1

e2iαm

(
rm

z − am

)2

ψm

(
z∗(m)

)
+1+

n∑
m=1

eiαmξm
z − am

, z ∈ D∪∂D. (4.2)

Consider inhomogeneous functional equations with any given element f ∈
HA(∪n

k=1Dk)

ψk(z) =
∑
m̸=k

e2iαm

(
rm

z − am

)2

ψm

(
z∗(m)

)
+f(z), |z−ak| ≤ rk, k = 1, 2, . . . , n.

(4.3)

Theorem 4.1 ([27]). The system (4.3) has a unique solution for any circu-
lar multiply connected domain D. This solution can be found by the method
of successive approximations convergent in the space HA(∪n

k=1Dk), i.e., uni-
formly convergent in every disk |z − ak| ≤ rk.

The system of functional equations (4.1) can be decomposed onto (n+1)
systems

ψ
(1)
k (z) =

∑
m̸=k

e2iαm

(
rm

z − am

)2

ψ
(1)
m

(
z∗(m)

)
+1, |z−ak| ≤ rk, k = 1, 2, . . . , n.

(4.4)
and

Ψ
(ℓ)
k (z) =

∑
m̸=k

e2iαm

(
rm

z−am

)2

Ψ
(ℓ)
m

(
z∗(m)

)
+ eiαℓ

z−aℓ
δ′ℓk, |z − ak| ≤ rk,

k = 1, 2, . . . , n,
(4.5)

10



where δ′ℓk = 1− δℓk and δℓk is the Kronecker symbol. The unique solution of
(4.1) can be represented in the form

ψk(z) = ψ
(1)
k (z) +

n∑
ℓ=1

ξℓ Ψ
(ℓ)
k (z). (4.6)

The functions ψk(z) can be constructed by two methods. First, they can
be constructed by iterations applied to (4.1); second, by iterations applied
separately to (4.4) and to (4.5) and further their linear combination (4.6).
For any fixed ψk(z), these iterations yield a series (in general conditionally
convergent) with two different orders of summations. It follows from Theorem
4.1 that the result will be the same since we construct the same unique
solution of (4.1) by two different methods. It is worth noting that (4.6) is a
C–linear combination of the basic functions because ξℓ ∈ R for ℓ = 1, 2, . . . , n.

We now apply Theorem 4.1 to (4.4). Let w ∈ D be a fixed point not
equal to infinity. Introduce the functions

ϕm(z) =

∫ z

w∗
(m)

ψ(1)
m (t)dt+ϕm(w

∗
(m)), |z−am| ≤ rm, m = 1, 2, . . . , n, (4.7)

and

ω(z) = −
n∑

m=1

e2iαm

[
ϕm

(
z∗(m)

)
− ϕm

(
w∗

(m)

)]
. (4.8)

The functions ω(z) and ϕm(z) analytic in D and in Dm, respectively, and
continuously differentiable in the closures of the domains considered. One
can see from (4.7) that the function ϕm(z) is determined by ψm(z) up to
an additive constant which vanishes in (4.8). The function ω(z) vanishes at
z = w. Investigate the function ω(z) on the boundary of D. It follows from
(4.8) and t = t∗(k) (|t− ak| = rk) for each fixed k that

ω(t) = −e2iαk

[
ϕk (t)− ϕk

(
w∗

(k)

)]
−Ψk(t), (4.9)

where

Ψk(z) =
∑
m̸=k

e2iαm

[
ϕm

(
z∗(m)

)
− ϕm

(
w∗

(m)

)]
. (4.10)

Using the relation [27]

d

dz

[
ϕm

(
z∗(m)

)]
= −

(
rm

z − am

)2

ϕ′
m

(
z∗(m)

)
, |z − am| > rm, (4.11)
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calculate the derivative

Ψ′
k(z) = −

n∑
m=1

e2iαm

(
rm

z − am

)2

ψ
(1)
m

(
z∗(m)

)
. (4.12)

Application of (4.1) yields

Ψ′
k(z) = 1− ψ

(1)
k (z). (4.13)

Then (4.9) and (4.7) implies that

e−iαkω(t) = −eiαk

[
ϕk (t)− ϕk

(
w∗

(k)

)]
+ e−iαk [ϕk(t)− t+ dk], |t− ak| = rk,

(4.14)
where dk is a constant of integration. Calculation of the real part of (4.14)
gives

Re [e−iαk(ω(t) + t)] = pk, |t− ak| = rk, (4.15)

where pk is a constant. Comparing (4.15) with (3.3) and using Lemma 3.1
we conclude that the conformal mapping D onto D′ has the form

φ̃(z) = z + ω(z) + constant, (4.16)

where ω(z) is calculated by (4.8).
Application of the method of successive approximations to (4.4) and in-

tegration terms by terms of the obtained uniformly convergent series yields
the exact formula

φk(z) = qk+z−
∑
k1 ̸=k

e2iαk1 (z∗(k1) − w∗
(k1)

)+
∑
k1 ̸=k

∑
k2 ̸=k1

e2i(αk1
−αk2

)(z∗(k2k1)−w
∗
(k2k1)

)−

(4.17)∑
k1 ̸=k

∑
k2 ̸=k1

∑
k3 ̸=k2

e2i(αk1
−αk2

+αk3
)(z∗(k3k2k1) − w∗

(k3k2k1)
) + . . . , |z − ak| ≤ rk.

Using (4.8) and (4.17) we write the function (4.16) up to an arbitrary additive
constant in the form

φ̃(z) = z−
n∑

k=1

e2iαk(z∗(k) − w∗
(k))+

n∑
k=1

∑
k1 ̸=k

e2i(αk−αk1
)(z∗(k1k)−w

∗
(k1k)

)− (4.18)

n∑
k=1

∑
k1 ̸=k

∑
k2 ̸=k1

e2i(αk−αk1
+αk2

)(z∗(k2k1k) − w∗
(k2k1k)

) + . . .
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Differentiation of the latter uniformly convergent series term by term yields
the α– series (2.8) with H(z) = 1

ψ(1)(z) = 1−
n∑

k=1

e2iαk(z∗(k))
′ +

n∑
k=1

∑
k1 ̸=k

e2i(αk−αk1
)(z∗(k1k))

′− (4.19)

n∑
k=1

∑
k1 ̸=k

∑
k2 ̸=k1

e2i(αk−αk1
+αk2

)(z∗(k2k1k))
′ + . . .

A similar method can be used to construct Ψ
(ℓ)
k (z) satisfying (4.5) and to

construct

Ψ(ℓ)(z) =
n∑

m=1

e2iαm

(
rm

z − am

)2

Ψ
(ℓ)
m

(
z∗(m)

)
+

eiαℓ

z − aℓ
, z ∈ D ∪ ∂D. (4.20)

We have

Ψ(ℓ)(z) =
eiαℓ

z − aℓ
−e−iαℓ

n∑
k=1

e2iαk

z∗(k) − ak
(z∗(k))

′+eiαℓ

n∑
k=1

∑
k1 ̸=k

e2i(αk−αk1
)

z∗(k1k) − ak1
(z∗(k1k))

′+

(4.21)

−e−iαℓ

n∑
k=1

∑
k1 ̸=k

∑
k2 ̸=k1

e2i(αk−αk1
+αk2

)

z∗(k2k1k) − ak2
(z∗(k2k1k))

′ + . . .

Therefore, the general solution of the Riemann–Hilbert problem (3.1) has
the form

ψ(z) = ψ(1)(z) +
n∑

ℓ=1

ξℓ Ψ
(ℓ)(z), (4.22)

where ψ(1)(z) is given by (4.19) and Ψ(ℓ)(z) by (4.21).
Integration of (4.22) from w to z yields

φ(z) = φ̃(z) +
n∑

ℓ=1

ξℓ φ̃
(ℓ)(z) + constant, (4.23)

where φ̃(z) has the form (4.18). The function φ̃(ℓ)(z) is written explicitly

φ̃(ℓ)(z) = eiαℓ ln
z − aℓ
w − aℓ

− e−iαℓ

n∑
k=1

e2iαk ln
z∗(k) − ak

w∗
(k) − ak

(4.24)

+eiαℓ

n∑
k=1

∑
k1 ̸=k

e2i(αk−αk1
) ln

z∗(k1k) − ak1

z∗(k1k) − ak1
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−e−iαℓ

n∑
k=1

∑
k1 ̸=k

∑
k2 ̸=k1

e2i(αk−αk1
+αk2

) ln
z∗(k2k1k) − ak2

w∗
(k2k1k)

− ak2
+ . . .

It is worth noting that that separation of the terms with z and w in (4.24)
can fail to converge [28].

In order to compare (4.23) and (3.8) we note that the conformal mapping
φ̃(z) coincides with z + φ0(z) up to an additive constant. Hence,

n∑
k=1

eiαkAk ln(z − ak) =
n∑

ℓ=1

ξℓ φ̃
(ℓ)(z), z ∈ D. (4.25)

Substitution of (4.24) into (4.25) can yield relations between the constants
Ak and ξℓ.

5 Schottky double

The Schottky double S is obtained from two equal multiply connected do-
mains D and D̃ ≡ D glued along the circles |t − ak| = rk (k = 1, 2, . . . , n).
Analytic functions in a domain of S are those functions which are analytic
on D ∪ ∂D in z and analytic on D̃ ∪ ∂D̃ in z with the condition Φ(t) = Φ̃(t)
on the joint part of ∂D. Hence, the Schottky double S is a compact Rie-
mann surface of genus (n − 1) [40]. Let tk be a fixed point on the circle
|t − ak| = rk and a′ ⊂ D be a simple smooth curve connecting the points

tn and tk (k = 1, 2, . . . , n − 1). Introduce the symmetric curve ã′
k ⊂ D̃

connecting the points tk and tn and the closed curve ak = a′ ∪ ã′
k on S.

Let bk denote the clockwise oriented circle |t− ak| = rk. The curves ak and
bk (k = 1, 2, . . . , n − 1) form a homology basis for S and any cycle on S is
homologous to a linear combination of ak and bk with integer coefficients.

The harmonic measure ωℓ(z) of the circle |t − aℓ| = rℓ relative to the
multiply connected domain D is a function harmonic in D continuous in
D ∪ ∂D which satisfies the Dirichlet problem

ωℓ(t) = δℓk, |t− ak| = rk (k = 1, 2, . . . , n), (5.1)

where δℓk stands for the Kronecker symbol. The harmonic measures were
constructed in [23, 26, 27] in terms of the Poincaré θ2–series (2.3). Let ω̃ℓ(z)
be a multi–valued function harmonically conjugated to ωℓ(z). The functions
wℓ(z) = ωℓ(z) + iω̃ℓ(z) (ℓ = 1, 2, . . . , n − 1) analytic in D are called the
normalized Abelian integrals of first kind in D. The differentials dwℓ(z)
generate the linear space of the Abelian differentials of first kind and dwℓ(z)
(ℓ = 1, 2, . . . , n − 1) form the basis of this space. Each differential dwℓ(z)
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takes pure imaginary values on ∂D. Hence, it can be analytically continued
into D̃ in the topology of the Schottky double by the symmetry principle.
Moreover, dwℓ(z) is single–valued on S.

The periods of the Abelian differentials∫
ak

dwm(t) = 2

∫
a′
k

dwm(t), Bkm =

∫
bk

dwm(t) (k = 1, 2, . . . , n− 1)

form two matrix. The second one has the form iB, where B = {Bkm} is a
real negatively determined matrix. Following [40] we consider the real Jacobi
inversion problem. Let w−

k (t) denote the limit values of the Abelian integral
on the curve a′

k when z tends to t ∈ a′
k from the right side of the curve a′

k.
The function w−

k (t) is multi–valued. We fix any its branch in the simply
connected domain D\

(
∪n−1

k=1a
′
k

)
where it is single–valued. Given constants

ek (k = 1, 2, . . . , n−1). To find the points zm (m = 1, 2, . . . , n−1) in D∪∂D
satisfying the relation

n−1∑
m=1

Im wk(zm) ≡ ek −
1

2
Bkk +

n−1∑
m̸=k

Im

∫
a′
k

w−
k (t)dwm(t), (k = 1, 2, . . . , n− 1).

(5.2)
Here, ≡ means equality modulo B–periods. The generalized real Jacobi
inversion problem has the form [40]

n−1∑
m=1

Im wk(zm) ≡
1

2πi

∫
∂D

γ(t)dwm(t), (k = 1, 2, . . . , n− 1), (5.3)

where γ(t) is a given Hölder continuous function except at a finite number
of points where finite step discontinuities are possible.

Let λ(t) be a given Hölder continuous function on ∂D satisfying the con-
dition |λ(t)| = 1. The Riemann–Hilbert problem

Im [λ(t)ψ(t)] = 0, t ∈ ∂D, (5.4)

was solved in terms of the α–series [23, 26, 27]. Let the functions λ(t) from
(5.4) and γ(t) from (5.3) are related by formula

λ(t) = exp[iγ(t)]. (5.5)

We now consider the particular case (3.1) of the problem (5.4) and the cor-
responding generalized Jacobi inversion problem (5.3). We have

λ(t) =
eiαkrk
t− ak

, γ(t) = αk − arg
t− ak
rk

, |t− ak| = rk, (k = 1, 2, . . . , n). (5.6)
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The branch of the argument corresponds to the chosen branch of the loga-
rithm ln(t − ak) from Sec.3. Each non–trivial solution of the problem (3.1)
has exactly n − 1 zeros zm (m = 1, 2, . . . , n − 1) in D ∪ ∂D which solve
the generalized Jacobi inversion problem (5.3) with γ(t) given by (5.6). The
α–series (4.19) is a solution of (3.1).

The conditions ξk = 0 by (4.25) implies that all Ak = 0 in the represen-
tation (3.8). Hence, this case corresponds to the problem (3.3), (3.7) in a
class of single–valued functions. The unique solution of this problem is given
by (4.18). This function is the conformal mapping of the domain D onto
the slit domain D′ with the normalisation (3.7). The function ψ(1)(z) given
by (4.19) is the derivative of this conformal mapping. Hence, it cannot have
zeros in the domain D. Therefore, all the zeros zm (m = 1, 2, . . . , n − 1) of
ψ(z) which solve the generalized Jacobi inversion problem (5.3), lie on the
boundary ∂D. This observation can be useful to numerical solution of the
Jacobi inversion problem on the Schottky double.

6 Fast algorithm

Though the complete solution of the Riemann–Hilbert problem for an arbi-
trary circular multiply connected domain was written explicitly in terms of
the α–series, many mathematicians apply the standard absolutely conver-
gent scheme to the Poincaré series and use direct methods of computation to
the Poincaré series [36]. Perhaps, it is related to the fact that even absolutely
convergent Poincaré series are slowly convergent for closely spaced disks. We
suppose that modifications of the iterative functional equations can increase
the convergence. In the present section, we discuss such a modification pro-
posed in [32] to construct a basic solution of the problem (3.1). For brevity,
we consider the classical Poincaré series when αk = 0 (k = 1, 2, 3) for three
equal disks (rk = r).

Consider an auxiliary problem for two disks. Let the domain G be the
complement of two disjoint disks |z − ak| ≤ r (k = 1, 2) to the extended
complex plane. The quadratic equation z∗(1) = z∗(2) with respect to z has two
roots

z12 =
a1 + a2

2
− a2 − a1

2

√
1− 2

r21 + r22
|a2 − a1|2

, (6.1)

z21 =
a1 + a2

2
+
a2 − a1

2

√
1− 2

r21 + r22
|a2 − a1|2

,
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The complex potential

Ψ12(z) =
1

z − z12
− 1

z − z21
(6.2)

describes the flux between the disks when the difference u1 − u2 of the po-
tentials on the boundaries of the disks is equal to

u1 − u2 = ln
1−

√
1− 4r2

|a2−a1|2

1 +
√
1− 4r2

|a2−a1|2

. (6.3)

The main idea of the fast method is based on the decomposition of the
complex flux ψ(z) onto ψδ(z) and ψ0(z) where the singular function ψδ(z)
has the form

ψδ(z) = Ψ12(z) + Ψ13(z), (6.4)

where Ψ13(z) is introduced similar to (6.2) (the subscript 2 is replaced by 3).
A solution of the boundary value problem (3.1) for n = 3 is looked for in the
form

ψ(z) = ψ0(z) + ψδ(z), z ∈ D, (6.5)

where ψδ(z) is given by (6.4). The boundary value problem (3.1) becomes

Im
t− ak
r

[ψ0(t) + ψδ(t)] = 0, |t− ak| = r, k = 1, 2, 3. (6.6)

Introduce the functions analytic in |z − ak| < r

fk(z) =


0 for k = 1

Ψ13(z) for k = 2

Ψ12(z) for k = 3.

(6.7)

One can see that

Im
t− am
r

Ψ12(t) = 0, |t− am| = r (m = 1, 2)

and

Im
t− am
r

Ψ13(t) = 0, |t− am| = r (m = 1, 3).

Then (6.6) can be written in the form

Im
t− ak
r

[ψ0(t) + fk(t)] = 0, |t− ak| = r, k = 1, 2, 3. (6.8)
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The boundary value problem (6.8) is reduced to the R–linear problem

ψ0(t) = ψk(t) +

(
r

t− ak

)2

ψk(t)− fk(t), |t− ak| = r, k = 1, 2, 3. (6.9)

The problem (6.9) can be reduced to the following system of functional equa-
tions [27]

ψk(z) =
∑
m̸=k

(
rm

z − am

)2

ψm

(
z∗(m)

)
+ fk(z). (6.10)

The iteration method can be applied to solve the system (4.1) [27]

ψ
(0)
k (z) = fk(z), (6.11)

ψ
(p)
k (z) =

∑
m̸=k

(
rm

z − am

)2

ψ
(p−1)
m

(
z∗(m)

)
+ fk(z), p = 1, 2, . . . . (6.12)

The p-th approximation of the complex flux is calculated by formula

ψ(p)(z) =
∑

m=1,2,3

(
rm

z − am

)2

ψ
(p)
m

(
z∗(m)

)
+ ψδ(z), z ∈ D, (6.13)

where ψδ(z) is given by (6.4).
Fig.2 describes the flux around three closely placed disks. It follows from

computations that 6 iterations is sufficient to obtain an accessible result (the
respective error on the boundary is 2%).

7 Discussion

In the present paper, we introduce the Poincaré α–series. First time, the
α–series were used in [23] without their deep discussion to solve Riemann–
Hilbert problems for an arbitrary circular multiply connected domain. The
main difference in the methods [39] and [23, 30] applied to Riemann–Hilbert
problems is that [39] is based on the Jacobi inversion problem and [23, 30] is
not. But [23, 30] includes the α–series that coincide with the theta-function
of Riemann. Hence, the solution of the Jacobi inversion problem is ulti-
mately constructed in terms of the α–series. It is worth noting that solution
to Riemann–Hilbert problems in [39] and later investigations by this scheme
are not completed. First of all, it was assumed in [39] that the Abelian in-
tegrals of first kind were known. Substitution of the Abelian integrals into
the multidimensional theta–series yielded the theta–function of Riemann.
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Figure 2: Streamlines of the complex flux ψ(z) computed in the sixth order

approximation around three disks with the centres at a1 = 1√
3
, a2 = 1√

3
e

2
3
πi,

a3 =
1√
3
e−

2
3
πi of the radius 0.49.

The latter function was applied to investigate the Jacobi inversion prob-
lem. After this the Schwarz operator was applied to get the solution of the
Riemann–Hilbert problem. Construction of the Abelian integrals (harmonic
measures) and the Schwarz operator in terms of the classical θ2–series of
Poincaré [23, 30] could make this complicated scheme effective. However,
the Jacobi inversion problem cannot be avoided in the scheme [39] .

Application of the α–series simplifies solution to Riemann–Hilbert prob-
lems by elimination of the Jacobi inversion problem and produces directly
the theta–function of Riemann. Moreover, the scheme [23, 30] allows to con-
structively solve the Jacobi inversion problem as a separately stated problem.
Bojarski’s linear algebraic system (see Bojarski’s addition to [38]) which de-
scribes solvability of the Riemann–Hilbert problem is explicitly written in
terms of the α–series. The constructive method [23, 30] is valid for the
Schottky double. It is interesting to extend it to the general compact Rie-
mann surfaces.

Crowdy [8] stated open problems of the constructive theory of functions in
multiply connected domains. In particular, Crowdy wrote [8] about Schwarz–
Christoffel type conformal mappings: ”The history of this particular problem
also presents a paradigm for a key message of this paper: that, given modern
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advances in computational capability and in light of modern applications,
many topics in classical geometric function theory can (and should!) be re-
visited and reappraised”. I think that this phrase should concern the whole
constructive theory of functions in multiply connected domains. In this pa-
per, we answer some questions stated by Crowdy [8]. It is worth noting that
these answers are not complete and require further investigations.

Question 1 of Crowdy addressed to the infinite product representation
(2.19) which is always uniformly convergent.

Question 2 of Crowdy concerned effective computational methods. Such
a fast method is presented in Sec.6.

Question 3 of Crowdy concerned the complicated scheme by Zverovich
[39] used by many authors for Riemann-Hilbert problems. It is explained
above in this section that the method [30] based on α–series is constructive
and simpler than the method [39].

Crowdy in Question 4 paid attention to an alternative class of canoni-
cal multiply connected domains introduced by Bell [2, 3, 6, 35]. It can be
add to this that Bell’s domains have applications to neutral inclusions [19].
The latter problem is related to eigenvalue problems, Courant’s nodal do-
main theorem and non–linear Riemann–Hilbert problems discussed in [33].
It is interesting to relate Bell’s domains to eigenvalue problems for R–linear
conjugation condition [33, 34].

Question 5 of Crowdy addressed to the Riemann-Hilbert problem (3.3)
and eventual use of the classical prime function. As it follows from the result
of this paper, the α–prime function (2.20) can be applied to (3.3) and it is
rather impossible to solve the problem (3.3) in terms of the classical prime
function (2.19).
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