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R-LINEAR PROBLEM FOR MULTIPLY CONNECTED DOMAINS
AND ALTERNATING METHOD OF SCHWARZ

B. Bojarski and V. Mityushev UDC 517.54

Abstract. We study the R-linear conjugation problem for multiply connected domains by the method

of integral equations. The method differs from the classical method of potentials. It is related to the

generalized alternating method of Schwarz, which is based on the decomposition of the considered do-

main with complex geometry into simple domains and subsequent solution to boundary value problems

for simple domains. Convergence of the method of successive approximations is investigated.
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1. Introduction

The present paper is devoted to the R-linear conjugation problem for multiply connected domains.

We develop a method of integral equations closely related to the generalized alternating method

of Schwarz [12, 20], which is based on the decomposition of the considered domain with complex

geometry into simple domains and subsequent solution of boundary-value problems for simple domains.

In each step of the algorithm the boundary conditions for a simple domain are corrected by the

influence of the other simple domains computed at the precedent steps. This method is referred to

decomposition methods [32] frequently used in numerical computations and realized in the form of

alternating methods.

There are various versions of the alternating methods in literature. The classical alternating method

is applied to overlapping domains Ω1 and Ω2, when the solution to a boundary value problem for Ω1∩Ω2

or for Ω1∪Ω2 is constructed via a sequence of solutions to boundary value problems separately for Ω1

and for Ω2 (see Fig. 1(a)). Substructuring methods are addressed to domain decomposition methods

when the overlap between the subdomains Ω1 and Ω2 is reduced to the interface (see Fig. 1(b)). The

classical and substructuring methods always converge [12, 32].

The generalized alternating method of Schwarz is applied to nonoverlapping domains (see Fig. 1(c)).

This method is effective in the study of composites, when nonoverlapping inclusions are embedded in

a host material which occupies a domain Ω. Then the inclusions Ω1 and Ω2 interact with each other
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Fig. 1. Three cases of the geometry: (a) overlapping domains; (b) overlap reduced to

the interface; (c) nonoverlapping domains.

through the host material. In the previous works, the absolute convergence of the method was proved

under geometrical restrictions [20].

However, it was proved in [22, 27] for the case of circular multiply connected domains that a

modified method always uniformly converges, i.e., these geometrical restrictions are redundant. This

is an interesting example of the difference between absolute and uniform convergence which shows that

estimations on the absolute values or on the norm are too strong in comparison to the study of the

uniform convergence. This result leads to the conjecture that the generalized alternating method of

Schwarz for boundary value problems with zero winding number (index) always uniformly converges.

In the present paper, the method of Schwarz is modified by the integral equation method proposed

by Mikhajlov [19]. In the case of circular domains this method differs from the method of Schwarz by

addition of the constant term [27]. But this slight modification yields a convergent algorithm. In the

case of general domains, this modification corresponds to adding an integral term. This modification

also yields the convergence of the method for the R-linear problem with zero winding number. It is

worth noting that the recent results [33] obtained for the Riemann–Hilbert problem for an annulus

show that convergence fails for nonzero winding numbers.

The paper is organized as follows. In the next subsections, the R-linear problem is stated in various

forms and a survey devoted to the previous results is given. Section 2 is devoted to extension of [4] to

multiply connected domains. In Sec. 3, integral equations corresponding to the generalized alternating

method of Schwarz are deduced. It is proved that the method of successive approximations can be

applied to these equations in Sec. 4.

1.1. Statements of the problems. Let Dk be mutually disjoint simply connected domains in

the complex plane C bounded by smooth curves Lk (k = 1, 2, . . . , n), and D be the complement

of all closures of Dk to the extended complex plane C ∪ {∞}. Below, the domains Dk are called

inclusions. Denote by D+ the union of all inclusions Dk, i.e., the domain D+ consists of n connected

components. Let Lk be oriented in the counterclockwise direction. Let a(t), b(t), and c(t) be given

Hölder-continuous functions on the boundary L =
n⋃

k=1

Lk of D+ and let a(t) not vanish on L.

The R-linear conjugation problem is stated as follows: Find a function ϕ(z) that is analytic in

D and in all components of D+ and continuous in the closures of the considered domains with the

following conjugation condition:

ϕ+(t) = a(t)ϕ−(t) + b(t)ϕ−(t) + c(t), t ∈ L. (1)
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where ϕ±(t) denote the limit values of ϕ(z) as z tends to a point t ∈ L from D+ and from D,

respectively. Moreover, ϕ(z) vanishes at infinity.

The R-linear problem with constant on each Lk coefficients a(t), b(t) is equivalent to the transmission

problem

u+(t) = u−(t) + c1(t), (2)

λk
∂u+

∂n
(t) = λ

∂u−

∂n
(t) + c2(t), t ∈ Lk, k = 1, 2, . . . , n, (3)

where the real function u(z) is harmonic in D and in all components of D+ and continuously dif-

ferentiable in the closures of the considered domains, and ∂/∂n denotes the normal derivative. The

conjugation conditions (2)–(3) express the perfect contact between materials with different conduc-

tivities λ and λk (see [24]). Below, we demonstrate the equivalence of the problems (1) and (2)–(3) in

the considered case.

Let v(z) be a harmonic function conjugated to u(z) which is determined up to an additive constant

in each component of the complex plane. Using the Cauchy–Riemann equations on Lk [8], we can

rewrite relation (3) in the form

λk
∂v+

∂s
(t) = λ

∂v−

∂s
(t) + c2(t), t ∈ Lk, k = 1, 2, . . . , n, (4)

where ∂/∂s denotes the tangent derivative along Lk. Integration of (4) yields up to additive constants

λkv
+(t) = λv−(t) + C2(t), t ∈ Lk, k = 1, 2, . . . , n, (5)

where C2(t) =
∫
c2(t)ds. Two real equations (2) and (5) are equivalent to one complex equality

ϕ+(t) =
λk + λ

2λk
ϕ−(t) +

λk − λ

2λk
ϕ−(t) + c(t), t ∈ Lk, (6)

where

ϕ(z) = u(z) + iv(z), c(t) = c1(t) + iC2(t).

1.2. Bibliographic notes. In the case b(t) = 0, problem (1) becomes the C-linear conjugation

problem

ϕ+(t) = a(t)ϕ−(t) + c(t), t ∈ ∂D. (7)

Problem (7), the Riemann–Hilbert problem, and corresponding singular integral equations were sys-

tematically studied in the 20th Century by Gakhov [8], Muskhelishvili [29], Vekua [34], and by many

other mathematicians, including their disciples (see, e.g., [26, 27]).

Now we briefly describe the history of the R-linear problem (1). It is curious that for many years this

problem were independently discussed as two different problems (1) and (2)–(3) by various mathemati-

cians and also by the same mathematicians. In 1932, using the theory of potentials, Muskhelishvili [28]

(see also [30, p. 522]) reduced problem (2)–(3) to a Fredholm integral equation and proved that it has

a unique solution in the case of positive λ and λk, the most interesting in applications. In 1933, Vekua

and Ruhadze [35, 36] constructed a solution of (2)–3 in closed form for an annulus and an ellipse (see

also papers by Ruhadze quoted in [30]). Hence, [28] is the first result on the solvability of the R-linear

problem and [35, 36] are the first papers devoted to exact solutions of special cases of the R-linear

problem.

In 1946, Markushevich [17] again stated the R-linear problem in the form (1) and studied it in the

case a(t) = 0, b(t) = 1, and c(t) = 0 when (1) is not a Nöther problem. Later, Muskhelishvili [29] did

not determined whether (1) was his problem (2)–(3) discussed in 1932 in terms of harmonic functions.

In 1960, Bojarski [4] showed that in the case |b(t)| < |a(t)| with a(t) and b(t) belonging to the Hölder

class H1−ε with sufficiently small ε, the R-linear problem (1) is qualitatively similar to the C-linear
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problem (7) for simply connected domains. This result is precisely formulated in Theorem 1 in the

next section and it is proved for multiply connected domains. Later, Mikhailov [19] (first published

in 1961 in [18]) developed this result to continuous coefficients a(t) and b(t); c(t) ∈ Lp(L). The case

|b(t)| < |a(t)| (8)

was called the elliptic case. It corresponds to the partial case considered by Muskhelishvili [28].

Mikhajlov [19] reduced problem (1) to an integral equation and justified the absolute convergence of

the method of successive approximation for the latter equation in the space Lp(L) under the restrictions

windL a(t) = 0 and

(1 + Sp)|b(t)| < 2|a(t)|, (9)

where Sp is the norm of the singular integral in Lp(L) and windL a(t) is the winding number (index)

of a(t) along L.

In the case |a(t)| ≡ |b(t)|, problem (1) is reduced to the Riemann–Hilbert problem. One can find the

solution of the latter problem for simply connected domains in [8, 29]. The Riemann–Hilbert problem

for multiply connected domains was discussed in Bojarski’s supplement to the book [34]. In the case

a(t) ≡ b(t) ≡ 1, problem (1) is reduced to n Schwarz problems for the simply connected domains Dk

(k = 1, 2, . . . , n)

Imϕ+(t) = Im c(t), t ∈ Lk, (10)

and to the problem for the multiply connected domain D

2Reϕ−(t) = Re[c(t)− ϕ+(t)], t ∈ L. (11)

It is worth noting that the Schwarz problem and the classic Dirichlet problems are equivalent for

simply connected domains and closely related to each other for multiply connected domains [20].

Another independent study of the R-linear problem (1) began in 1934 from Golusin’s papers [9–

11], where he reduced the Dirichlet problem for multiply connected circular domains to a system of

functional equations and applied the method of successive approximations to obtain its solution under

some geometrical restrictions. These restrictions correspond to the condition of absolute convergence of

the generalized method of Schwarz (of the Poincaré series for circular domains [31]) and are equivalent

to Mikhajlov’s restriction (9). Golusin’s approach was developed in [1, 6, 37].

In 1994–1998, the Riemann–Hilbert problem was explicitly solved [21, 23] for arbitrary multiply

connected circular domain. This result were based first on the standard factorization method [8,

29], which allows one to reduce the Riemann–Hilbert problem to the Schwarz problem. The latter

problem were reduced to functional equations, a modification of Golusin’s equations. Then, the

uniform convergence of the successive approximations for the functional equations was justified by

using the result [4]. The series that arose actually coincided with the Poincaré series. This also

gave the proof of the uniform convergence of the Poincaré series for any multiply connected circular

domain [22].

Problems (1) and (2)–(3) with partial coefficients for special domains were considered by many

mathematicians as related to applied problems of a continuum. One can find corresponding references

in [16, 24, 26, 27]. Dzhuraev [7] and Komyak [13, 14] investigated a relation between the R-linear

problem and two-dimensional singular integral equations. Litvinchuk and Spitkovsky [16] studied the

R-linear problem for a circle by reducting it to a two-dimensional C-linear problem.

2. Multiply Connected Domains

Theorem 1 (Bojarski [4]). Let |b(t)| < |a(t)|. If κ = wind∂D a(t) ≥ 0, then problem (1) is solvable

and the homogeneous problem (1) (c(t) = 0) has 2κ R-linearly independent solutions vanishing at
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infinity. If κ < 0, then problem (1) has a unique solution if and only if |2κ| R-linearly independent

conditions on c(t) are fulfilled.

Proof. This theorem was proved for simply connected domain in [4]. Now we prove it for multiply

connected domains.

First, represent the coefficient a(t) in the form [8]

a(t) = tκ
χ+(t)

χ−(t)
, (12)

where the function χ(z) is analytic in the domains D+ and D and Hölder-continuous in the closures

of the considered domains, χ(z) 	= 0 for all z. Then (1) becomes

φ+(t) = tκφ−(t)− ρ(t)φ−(t) + c1(t), t ∈ L, (13)

where

φ(z) =
ϕ(z)

χ(z)
, z ∈ D+, z ∈ D,

c1(t) =
c(t)

χ+(t)
, ρ(t) = −b(t)χ

−(t)
χ+(t)

, t ∈ L.

Let κ ≥ 0. Introduce the function

ψ−(z) = zκφ−(z)− Pκ−1(z), (14)

where

Pκ−1(z) =
n∑

k=0

Pkz
k

is a polynomial such that ψ−(z) vanishes at infinity. Then (13) takes the form

φ+(t) = ψ−(t)− ρ(t)ψ−(t) + c2(t), t ∈ L, (15)

where the function

c2(t) = c1(t) + Pκ−1(t) + t−κρ(t)Pκ−1(t)

R-linearly depends on κ complex constants P0, P1, . . . , Pκ−1, i.e., linearly depends on 2κ real constants

ReP0,ReP1, . . . ,RePκ−1 and ImP0, ImP1, . . . , ImPκ−1. The coefficient ρ(t) satisfies the inequality

|ρ(t)| =
∣
∣
∣
∣
∣

b(t)χ−(t)
χ+(t)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
b(t)

a(t)

∣
∣
∣
∣ < 1, t ∈ L.

This implies that the Noetherian R-linear problem (15) has zero winding number. Hence, � − p = 0,

where � is the number of R-linear independent solutions of (15) and p is the number of R-linear

independent solvability conditions on c2(t). Consider the C-linear problem

φ+(t) = A(t)ψ−(t), t ∈ L, (16)

where

A(t) = 1− ρ(t)
ψ−(t)
ψ−(t)

.

Problem (16) has only zero solution vanishing at infinity, since windLA(t) = 0. Therefore, � = p = 0

and the inhomogeneous problem (15) has a unique solution for each fixed c2(t). Then 2κ arbitrary

real constants ReP0,ReP1, . . . ,RePκ−1 and ImP0, ImP1, . . . , ImPκ−1 in c2(t) produce 2κ real linear

independent solutions of (13).

Now let κ < 0. Introduce the function

ψ(z) = zκφ(z) (17)
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with zero at least of order −(κ+ 1) at infinity. Then (13) takes the form

φ+(t) = ψ−(t)− ρ(t)ψ−(t) + c1(t), t ∈ L. (18)

As follows from the above, this problem has a unique solution. Having solved it, we must impose the

condition that ψ(z) has zero at least of order −(κ+1) at infinity. This condition yields 2κ real linear

independent conditions on c1(t). The theorem is proved.

Denote by H(Γ) the class of Hölder continuous functions on a smooth curve Γ.

Applying Theorem 1 to (6), we obtain the following result.

Corollary 2. Let λk and λ be positive. Then problem (6) has a unique solution for any function

f ∈ H(L).

3. Integral Equations

There are two different methods of solving integral equations associated with boundary-value prob-

lems. The first method is known as the method of potentials. In complex analysis, it is equivalent

to the method of singular integral equations [8, 29, 30, 34]. The other method of Schwarz can be

presented as a method of integral equations of another type [19, 20]. In the present section, problem

(6) is written in such a form.

Introduce the space H(D+) consisting of functions that are analytic in D+ =
n⋃

k=1

Dk and Hölder-

continuous in the closure of D+ endowed with the norm

‖ω‖ = inf
t∈L

|ω(t)|+ inf
t1,2∈L

|ω(t1)| − ω(t2)|
|t1 − t2|α , (19)

where 0 < α ≤ 1. The space H(D+) is a Banach space since the norm in H(D+) coincides with the

norm of functions that are Hölder-continuous on L (inf on D+ ∪ L in (19) is equal to inf on L). The

Harnack theorem implies that convergence in the space H(D+) implies uniform convergence in the

closure of D+.

For fixed m, introduce the operator

Amf(z) =
1

2πi

∫

Lm

f(t)dt

t− z
, z ∈ Dm. (20)

By the Sokhotsky formulas,

Amf(ζ) = lim
z→ζ

Amf(z) =
1

2
f(ζ) +

1

2πi

∫

Lm

f(t)dt

t− ζ
, ζ ∈ Lm. (21)

Equations (20)–(21) determine the operator Am in the space H(Dm).

Lemma 3. The linear operator Am is bounded in the space H(Dm).

The proof is based on the definition of the bounded operator, ‖Amf‖ ≤ C‖f‖, and the fact that

the norm in H(Dm) is equal to the norm of functions Hölder-continuous on Lm. The estimate of the

latter norm follows from the boundness of operator (21) in the Hölder’s space [8].

The conjugation condition (15) can be written in the form

φk(t)− φ−(t) = ρ(t)φk(t) + c2(t), t ∈ Lk, k = 1, 2, . . . , n, (22)
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where φk(z) = ψ(z) in Dk∪Lk. The difference of functions analytic in D
+ and in D is in the left-hand

siade of the last relation. Applying the Sokhotsky formulas, we have

φk(z) =
n∑

m=1

1

2πi

∫

Lm

ρ(t)φm(t)

t− z
dt+ fk(z), z ∈ Dk, k = 1, 2, . . . , n, (23)

where the function

fk(z) =
1

2πi

n∑

m=1

∫

Lm

c2(t)

t− z
dt

is analytic in Dk and Hölder-continuous in its closure. The integral equations (23) can be continued

to Lk as follows:

φk(z) =
n∑

m=1

⎡

⎣ρ(z)φk(z)

2
+

1

2πi

∫

Lm

ρ(t)φm(t)

t− z
dt

⎤

⎦+ fk(z), z ∈ Lk, k = 1, 2, . . . , n. (24)

One can consider Eqs. (23) and (24) as an equation with linear bounded operator in the space H(D+).

Equations (23) and (24) correspond to the generalized method of Schwarz. Write, for instance,

Eq. (23) in the form

φk(z)− 1

2πi

∫

Lk

ρ(t)φk(t)

t− z
dt =

∑

m �=k

1

2πi

∫

Lm

ρ(t)ϕm(t)

t− z
dt+ fk(z), z ∈ Dk, k = 1, 2, . . . , n. (25)

At the zeroth approximation, we arrive at the problem for the single inclusion Dk, k = 1, 2, . . . , n:

φk(z)− 1

2πi

∫

Lk

ρ(t)φk(t)

t− z
dt = fk(z), z ∈ Dk. (26)

Let problem (26) be solved. Further, its solution is substituted into the right-hand side of (25).

Then we arrive at the first-order problem, etc. Therefore, the generalized method of Schwarz can be

considered as a method of implicit iterations applied to the integral equations (23) and (24).

The method of integral equations was proposed in [27, Chap. 4] for the Dirichlet problem. The

converging method of direct iterations for these equations coincides with the modified method of

Schwarz. However, the integral terms of this method contain Green’s functions of the domains Dk

which should be constructed. One can obtain similar equations applying the operator S−1
k to both

sides of (25), where the operator Sk solves Eq. (26).

4. Method of Successive Approximations

We use the following general result from [15].

Theorem 4. Let A be a linear bounded operator in a Banach space B. If for any element f ∈ B and

for any complex number ν satisfying the inequality |ν| ≤ 1, the equation

x = νAx+ f (27)

has a unique solution, then a unique solution of the equation

x = Ax+ f (28)

can be found by the method of successive approximations. The approximations converge in B to the

solution

x =
∞∑

k=0

Akf. (29)
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Theorem 4 can be applied to Eqs. (23) and (24).

Theorem 5. Let |ρk| < 1. Then the system of Eqs. (23) and (24) has a unique solution. This solution

can be found by the method of successive approximations convergent in the space H(D+).

Proof. Let |ν| ≤ 1. In H(D+), consider the equations

φk(z) = ν
n∑

m=1

1

2πi

∫

Lm

ρ(t)φm(t)

t− z
dt+ fk(z), z ∈ Dk, k = 1, 2, . . . , n. (30)

Equations on Lk have a form similar to (24).

Let φk(z) be a solution of (30). Introduce the function φ(z) analytic in D and Hölder-continuous

in its closure as follows:

φ(z) = ν
n∑

m=1

1

2πi

∫

Lm

ρ(t)φm(t)

t− z
dt, z ∈ D. (31)

The expression in the right-hand side of (31) can be considered as Cauchy’s integral

Φ(z) =
1

2πi

∫

L

μ(t)

t− z
dt

along L =
n⋃

m=1
Lm with the density μ(t) = ρ(t)φk(t) on Lk. Using the property of Cauchy’s integral

Φ+(t)− Φ−(t) = μ(t)

on L and (30), we arrive at the R-linear conjugation relation on each fixed curve Lk:

φk(t)− fk(t)− φ(t) = ρ(t)φk(t), t ∈ Lk. (32)

Here

Φ+(t) = φk(t)− fk(t), Φ−(t) = φ(t).

In accordance with the Corollary 2 of Theorem 1, the R-linear problem (31) has a unique solution.

This unique solution is the unique solution of the system (30).

Theorem 4 yields the convergence of the method of successive approximations applied to system (30).

The theorem is proved.

5. Conclusion

Although the method of integral equations discussed in Sec. 4 is rather a numerical method, ap-

plication of the residues for special forms of inclusions transforms integral terms into compositions of

functions. Therefore, at least for boundaries expressed by algebraic functions, one should arrive at

functional equations. An example concerning elliptical inclusions is presented in [25]. This approach

can be considered as a generalization of Grave’s method reviewed in [2] to multiply connected domains.

In order to understand the place of the convergence results obtained in this paper, we return

to Sec. 1.2. It was established in the previous works that for |b(t)| < |a(t)|, the problem has a

unique solution. If the stronger condition (9) is fulfilled (always Sp ≥ 1), this unique solution can

be constructed by the absolutely converging method of successive approximations. The absolute

convergence implies geometrical restrictions on geometry which can be roughly presented as follows.

Each inclusion Dk is sufficiently far away from other inclusions Dm (m 	= k). Only after the results

presented in the present paper does the situation become clear and simplify. In the case (8), the method

of successive approximations can be also applied, but absolute convergence is replaced by uniform

convergence. The same situation with convergence repeats for other methods and problems. In all
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previous works, beginning from Poincaré’s investigations, the Schwarz operator, the Poincaré series,

the Riemann–Hilbert problem, the modified alternating Schwarz method, the Schwarz–Christoffel

map [5], etc., were studied by absolutely convergent methods under geometrical restrictions. The main

result of the present paper is based on the modification of these methods and studying the problems

by uniformly convergent methods. This replacement of the absolute convergence by the uniform

convergence abandons all previous geometrical restrictions and yields a solution to the problems and

convergence of the methods for an arbitrary location of the nonoverlapping inclusions.

For engineers, it is interesting to get exact and approximate formulas for the effective conductivity

tensor. One can find a description of such formulas based on the solution to the problems discussed

in the present paper in the review [26].
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