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a b s t r a c t

We study the effective conductivity of equal unidirectional infinite circular cylinders randomly distributed
in a uniform host (disks on the plane). The problem is reduced to a boundary value problem for the two-
dimensional Laplace equation. A symbolic–numerical algorithm was proposed in the previous papers to
solve the boundary value problem with arbitrary deterministic locations of disks. Application of the Monte
Carlo method for the uniform non-overlapping distribution of disks yields the effective conductivity of
random composites. The expected value of the effective conductivity is written exactly in the form of a
power series in the concentration. This formula is valid for all concentrations.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

An important area of materials science is the study of effective
dielectric, thermal and electrical properties of two phase compos-
ites. The conductivity of two-dimensional arrays of disks regularly
distributed in the periodicity cell is sufficiently well studied.
Rayleigh [26] reduced the problem to an infinite system of linear
algebraic equations. McPhedran et al. [15,16] extended Rayleigh’s
method and obtained approximate formulae for the effective con-
ductivity k̂ of the square and hexagonal arrays of disks. Mityushev
[18,19,25] obtained an exact formula for the effective conductivity
of the square array of disks in the form of power series in Berg-
man’s contrast parameter q. One can find other numerical and ana-
lytical results devoted to regular arrays in [27] and paper cited
therein. A constructive algorithm and approximate analytical
formulae for non-overlapping disks were obtained by Berlyand
and Mityushev, [8] Mityushev [20,21] and Szczepkowski et al. [28].

Many composites can be considered as materials when inclu-
sions are randomly distributed in the host. Application of the prob-
abilistic methods begun from [5] and were proceeded by many
authors (see references in [6,7,17,29]). The homogenization theory
of random composites were developed by Golden and Papanico-
laou [10] and by Jikov et al. [12]. Constructive results including ex-
act and approximate formulae for the effective conductivity are
systematically described by Torquato [29]. This fundamental book
contains perhaps all essential results on random heterogeneous
media obtained before 2002 year. The statistical analysis of

complex three-dimensional fracture structures and advanced
numerical tools to solve transport equations are presented by Adler
and Thovert [3].

In the present paper, we discuss the effective conductivity of
two-dimensional composites with randomly distributed non-over-
lapping equal disks. This is one of the central problem discussed by
Torquato [29] by use of the correlation functions (see, for instance,
the three-point approximation (20.83), the four-point bounds
(21.41)–(21.46) in [29]). These exact formulae were based on con-
trast expansions of the effective conductivity, in particular, on the
weak-contrast expansion (see (20.1) in [29]). Improved bounds for
effective transport properties of random non-percolated compos-
ites were developed by means of the security-spheres approach
in [2].

Andrianov et al. [1] deduced an approximate analytical formula
for the effective conductivity by matching Garnett’s formula and
the percolation threshold approximation. The ‘‘shaking’’ model in
which disks can move randomly inside the periodicity cell accord-
ing certain uniform distribution was worked out in [8]. The review
[30] describes the diversity of jammed configurations and their
macroscopic properties. A theory and applications of the two-point
correlation functions are presented in [11].

This paper is based on the method of R-linear problem and
functional equations applied to doubly periodic problems [23,22].
The same method can be applied to non-periodic problems [20].
However, it is easier to discuss formally periodic problems with
arbitrarily distributed disks the number of which is also arbitrary
(symbol N below, so one can substitute any number into N). This
approach is justified theoretically for composites with invariant
distributions of inclusions under translations [10,12]. Practically,
we always have finite samples of composites in our disposal.
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The paper is organized as follows. The problem and the main re-
sult are presented in Section 2. Following [8,21,28] we describe a
constructive algorithm to calculate the effective conductivity of
composites with arbitrary located inclusions in Section 3. Section 4
is devoted to computation of the generalized Eisenstein–Rayleigh
sums by the Monte Carlo method and to optimization of the sim-
ulation parameters. Analytical formulae for the effective conduc-
tivity are deduced in Section 5 and compared to the
corresponding formulae obtained by Torquato [29]. Concluding re-
marks and relations to the theory of representative volume ele-
ments are presented in Section 6. Appendix contains formulae for
Eisenstein’s functions and the generalized Eisenstein–Rayleigh
sums systematically used in the main text.

2. Random location of disks

Let x1 and x2 be the fundamental pair of periods on the com-
plex plane C such that Im x2

x1
> 0. The fundamental parallelogram

Q is defined by its vertices �x1
2 and �x2

2 . Without loss of generality
the area of Q can be normalized to one. The points m1x1 + m2x2

(m1;m2 2 Z) generates a doubly periodic lattice Q. Here, Z stands
for the set of integer numbers. Let i denote the imaginary unit. In

the case x1 ¼
ffiffi
4
3

4
q

and x2 ¼
ffiffi
4
3

4
q

e
pi
3 , the cell Q becomes a rhombus

with an angle 60� and the array Q is called the hexagonal lattice
(the equilateral triangular lattice). Further, our numerical compu-
tations are performed only for the hexagonal lattice. This assump-
tion does not restrict our investigation since the number of
inclusions per cell can be taken arbitrary large, hence, the shape
of the cell does not impact on the final result.

Consider N non-overlapping circular disks Dk of radius r with
the centers ak 2 Q (see Fig. 1). Let D0 be the complement of all
closure disks jz � akj 6 r to the domain Q. We study conductivity of
the doubly periodic composite when the host [m1 ;m2 ðD0 þm1x1þ
m2x2Þ and the inclusions Dk + m1x1 + m2x2 are occupied by
materials of conductivities k and k1, respectively (m1;m2 2 Z).
Without loss of generality the conductivity of the host can be

normalized to unit, i.e., k = 1. Introduce Bergman’s contrast param-
eter [6,7]

q ¼ k� 1
kþ 1

; ð1Þ

and the concentration of the inclusions m = Npr2.
The centers ak are considered as random variables distributed in

such a way that the disks Dk ¼ fz 2 C : jz� akj < rg generate a set
of uniformly distributed non-overlapping disks. Theoretically this
distribution can be introduced as the distribution of the variable
a = (a1, a2, � � � ,aN) 2 QN with the restrictions jam � akj > 2r for
m – k (m, k = 1,2, . . . ,N). More formally, consider the probabilistic
space (X, B, P) where the set of events X consists of the locations
a in QN, B is the Borel set of all subset of X. Let x be a measurable
subset of B. Then P(x) is introduced as the volume of x in CN . The
random variable a 2 CN has the probability density function equal
to a constant q, if a belongs to the set Q ¼
QN n [m–kfjam � akj > 2rg. Here, q is taken as the volume of Q.
The probability density function is equal to zero, if (a1, a2, . . . ,aN)
does not belong to Q. The introduced above distribution of the ran-
dom value a is denoted by U . According to [31], 0 6 m 6 pffiffiffiffi

12
p where

pffiffiffiffi
12
p is the maximal concentration attained for the hexagonal array.
It is worth noting that the disks Dk belong to Q in the torus topol-
ogy when the opposite sides of Q are glued by pairs.

The formal definition of the random variable a has to be statis-
tically realized for large N to get numerical results. The following
two constructive ways are considered in the present paper.

Method I (Sequence location [9,14]). Let the random point a1 is
uniformly distributed in Q, i.e., a1 belong to a measurable set G � Q
of the area jGj with the probability jGj (the area of Q holds 1). Next,
the random point a2 is uniformly distributed in QnG1, where G1 de-
note the disk jz � a1j 6 2r. Hence, the distribution of the random
point a2 is conditional and depends on the random point a1. Next,
the random point a3 is uniformly distributed in Qn(G1 [ G2), where
the disk G2 ¼ fz 2 C :j z� a2 j6 2rg can overlap the disk G1 and so
on. The last random point aN is uniformly distributed in
Q n ð[N�1

m¼1GmÞ. This joint random variable (a1, a2, . . . ,aN) correctly

Fig. 1. Doubly periodic composite with inclusions Dk + m1 x1 + m2x2 where m1;m2 2 Z.
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determines U if only m does not exceed the critical value
pffiffiffiffiffiffi
108
p � 0:302 equal to the rarest concentration of disks [31], i.e.,
such a concentration for which it is impossible to add a disk not
overlapped others. The above restriction on m follows from the
observation that for any fixed concentration m > pffiffiffiffiffiffi

108
p there exists

a location of N � 1 disks with sufficiently large number N such that
it is impossible to add the N-th disk not overlapped others. In the
same time, the distribution U assumes that exactly N non-overlap-
ping disks belong to Q. Computer simulations yield the critical con-
centrations from 0.481 to 0.5773. Hence, the distribution U can be
constructively described by this method for concentrations higher
than 0.302 (see Table 1).

Method II (Random walk). The second way to describe U is based
on random walks. Put the centers ak onto the nodes of the
hexagonal array. Take a positive number d less than
mink–mjak � amj � 2r. Let each ak moves in a randomly chosen
direction /k 2 [0, 2p) with the step d in the torus topology of Q
(see Fig. 2). Then, each center obtains new complex coordinate
a0k ¼ ak þ dei/k . This move is repeated with renewed coordinates
for each k = 1,2, . . . ,N if ja0k � amjP 2r (for all m = k + 1,
k + 2, . . . ,N). If ja0k � amj < 2r for some m, the point ak does not move
at this step, and we say that it is blocked. After sufficiently large
number of the walks the obtained location of the centers can be
considered as a statistical realization of the distribution U. This
method can be applied for arbitrary concentrations 0 < m < pffiffiffiffi

12
p

� �
.

In all computer simulations, we take

d ¼ 1
5

x1ffiffiffiffi
N
p � 2r
� �

: ð2Þ

This is the maximal reasonable value of d for which computa-
tions are not too frequently blocked for m not closed to pffiffiffiffi

12
p . Less va-

lue of d decrease the velocity of walking, hence, increase the
computation time. However for higher concentrations about pffiffiffiffi

12
p ,

computations are frequently blocked for any choice of d. To over-
come this difficulty we introduce the maximal number of random
choices of the angle /k, denoted below by P.

After a number of experiments we have taken the following
parameters to optimize computations in precision and in time.
For each fixed N and m we calculate r, d and introduce P = 1, 2 or
3. Every center ak has P attempts to move to a0k with a randomly
chosen direction in each attempt. If it is done for all k = 1,2, . . . ,N,
we say that a cycle is performed. The minimal number of cycles
is taken as 80 in all simulations. More precisely, we begin with
the hexagonal array and take the first location of a = (a1,
a2, . . . ,aN) after 80 steps. The second location is taken after 160
steps, the third after 240 and so forth. The total number of loca-
tions is denoted by M.

Stochastic principle of symmetry implies that the distribution U
yields composites isotropic in macroscale, i.e., the effective
conductivity is expressed by a scalar k̂.

3. Effective conductivity of deterministic composites

We study the conductivity of doubly periodic composites, when
the domain D + m1x1 + im2x2 is occupied by material of the
normalized unit conductivity. The respective conductivity of inclu-
sions Dk + m1x1 + im2x2 is denoted by k. The potentials u(z) and
uk(z) are harmonic in D and Dk (k = 1,2, . . . ,N) and satisfies the con-
jugation conditions

u ¼ uk;
@u
@n
¼ k

@uk

@n
on jz� akj ¼ r; k ¼ 1;2; . . . ;N; ð3Þ

where @/@n is the outward normal derivative. The external field is
given by the following conditions

uðzþx1Þ ¼ uðzÞ þx1; uðzþx2Þ ¼ uðzÞ: ð4Þ

Following [23] we introduce the complex potentials

wkðzÞ ¼
kþ 1

2
@uk

@x
� i

@uk

@y

� �
jz� akj 6 r; k ¼ 1;2; . . . ;N: ð5Þ

The effective conductivity can be calculated by the formula [23]

k̂ ¼ 1þ 2qm
1
N

XN

k¼1

wkðakÞ: ð6Þ

Formula (6) corresponds to Rayleigh’s formula [26,15,16] for
regular arrays when N = 1. The Eisenstein–Rayleigh sums and the
Eisenstein functions are used for N > 1 (see Appendix).

Theorem 1 (8,21,28). The effective conductivity k̂ of macroscopically
isotropic composite has the form

k̂ ¼ 1þ 2qmþ 2qm
X1
k¼1

Akmk: ð7Þ

Few first coefficients Ak can be calculated by the following formulae

A1 ¼
q
p

e2; A2 ¼
q2

p2 e22; A3 ¼
1
p3 ½�2q2e33 þ q3e222�;

A4 ¼
1
p4 ½3q2e44 � 2q3ðe332 þ e233Þ þ q4e2222�;

A5 ¼
1
p5 ½�4q2e55 þ 3q3ðe442 þ 2e343 þ e244Þ

� 2q4ðe3322 þ e2332 þ e2233Þ þ q5e22222�;

A6 ¼
1
p6 ½5q2e66 � 4q3ðe255 þ 3e354 þ 3e453 þ e552Þ

þ q4ð3e2244 þ 6e2343 þ 4e3333 þ 3e2442 þ 6e3432 þ 3e4422Þ
� 2q5ðe22233 þ e22332 þ e23322 þ e33222Þ þ q6e222222�;

ð8Þ

where em1 ...mq has the form (33).

Table 1
Averaged critical concentration hmi for Method I estimated by straightforward
simulations for various r.

r 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2
hmi 0.5199 0.5325 0.5372 0.5372 0.5154 0.5443 0.5195 0.5152

Fig. 2. Illustration of Method II (random walk). The point a3 moves onto a3 � id and
the disk D3 goes out of the periodicity cell. However, D3 lies in Q (by parts) in the
torus topology.
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A constructive algorithm to symbolically calculate the next Ak

(k > 6) is described in [8,21,28]. It will be seen later that approxi-
mations of (7) up to O(m7) give good results for all concentrations
m < pffiffiffiffi

12
p . So, below only coefficients Ak (k 6 5) are evaluated. Formu-

lae (8) are valid for arbitrary location of ak (k = 1,2, . . . ,N).
Consider the normalized effective conductivity as a function

k̂ ¼ k̂ðqÞ of q. It follows from Keller’s identity [13] that

k̂ðqÞk̂ð�qÞ ¼ 1: ð9Þ

Substitute (7) and (8) into (9) and compare the coefficients on
mm (m = 0,1, . . . ,6). Equations obtained by the coefficients on m0, m1

and m3 are identities. The coefficients on m2, m4, m5 and m6 yield

e2 ¼ p; e222 ¼ 2pe22 � p3; e233 þ e332

¼ 2pe33; e244 þ e343 þ e442 ¼ 2pe44: ð10Þ

This implies that the coefficient A3, A4 and A5 from (8) can be
simplified and the normalized effective conductivity k̂ can be cal-
culated up to O(m7) by formula

k̂ ¼ 1þ 2qmþ 2q2m2 � 2q4m4 þ 4q6m6

þ 2q3m3

p2 ð1þ 2qm� 4q3m3Þe22
�

þ q3m3

p2 e2
22 �

2m
p
ð1þ 2qmÞe33

þ 3m2

p2 ð1þ 2qmÞe44þ
q2m2

p2 ð1þ 2qmÞe2222 �
4m3

p3 e55

�2q2m3

p3 ðe2332 þ 2Re e3322Þ
�
þ Oðm7Þ: ð11Þ

The real part Re of (11) arises in the later formula after simpli-
fications based on Lemma 1.

In the present paper, formula (11) is considered with random
locations of the centers described in Section 2. Denote the mathe-
matical expectation of the random function f(a) by E[f(a)] where
the random variable a obeys the distribution U . The expected effec-
tive conductivity of the considered random composite is obtained
by the averaged formula (11)

E½k̂� ¼ 1þ 2qmþ 2q2m2 � 2q4m4 þ 4q6m6 þ lðm;qÞ þ Oðm7Þ; ð12Þ

where

lðm;qÞ ¼ 2q3m3

p2 ð1þ 2qm� 4q3m3ÞE½e22� þ
q3m3

p2 E½e22�2
	

� 2m
p
ð1þ 2qmÞE½e33� þ

3m2

p2 ð1þ 2qmÞE½e44�

þ q2m2

p2 ð1þ 2qmÞE½e2222� �
4m3

p3 E½e55��
2q2m3

p3 ðE½e2332�

þ2Re E½e3322�Þ�: ð13Þ

4. Computation of Eisenstein–Rayleigh sums

The method of Monte Carlo is used to calculate the effective
conductivity (12) through the expected values E[ � ] from the right
hand part of (13). More precisely, a set of the centers a satisfying
the distribution U is numerically simulated and the corresponding
sum is computed. This is one numerical experiment in the method
of Monte Carlo. Such computations are performed M times and the
mean value of the results is taken as an approximation of the cor-
responding expected value. The statistically estimated value E[X]
of a random value X is denoted by hXi.

4.1. Computation of e2

In order to numerically apply the method of Monte Carlo it is
worth to numerically check the relation following from the first
Eq. (10)

E½e2� ¼ p: ð14Þ

We need to estimate the number N of inclusions per cell and the
number of the realizations M of the random value a to investigate
the question, for which N and M the statistical average he2i is
closed to the theoretical value (14). Here, he2i is equal to the mean
value of (e2)m calculated for a generated in the mth numerical
experiment, more precisely:

he2i ¼
1
M

XM

m¼1

ðe2Þm: ð15Þ

Further, it is assumed that the approximation hXi � E[X] is va-
lid, if the respective approximation does not exceed 2%, i.e.,

hXi � E½X�
E½X�










 < 0:02: ð16Þ

It is necessary also to perform such computations for the ran-
dom value a simulated by the both methods described in Section
2. It is clear that Method I realizes U for small m and Method II for
large m. It is important to justify numerically that these methods
are matched for moderate m when the number of inclusions per
periodicity cell N or the number of the numerical experiments
M is sufficiently large. We have to numerically determine
which N and M can be taken as sufficiently large to match the
both methods, i.e., to compare the sums computed by the first
(sequence locations) he2iI and by the second (random walk)
methods he2iII.

The results for N = 64 and 1 < M < 6000 are presented in Fig. 3.
Computations for m = 0.4 and M = 6000 yield

he2iI � 3:14035� 0:00156569i;

he2iII � 3:13979� 0:00505772i; ð17Þ

with the respective error 0.0011. The imaginary parts also show the
absolute errors of computations. Therefore, he2iI and he2iII have al-
most the same computed values and further are not separated.
One can see that he2i does not depend on m. The result he2i � p with
error 2% by (16) is achieved for N = 64 and M > 1000 for all not
small m. This observation suggests that the expected values in (12)
can be statistically estimated with the same N and M.

Remark. The declared error refers to the concentrations greater
than 0.05. The average deviation of the Esenstein–Rayleigh sums
for m less than 0.05 is very high since the distances between the
centers are small. The singularity of the Eisenstein functions at the
point z = 0 implies that their oscillations near zero are high.
Fortunately, the Clausius–Mossotti approximation

ke �
1þ qm
1� qm

1000 2000 3000 4000 5000 6000
M

3.12

3.16

3.19

e2

π

Fig. 3. Sums computed by the first he2iI and by the second methods he2iII for N = 64,
m = 0.4 and P = 2.
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gives excellent results for dilute composites. Actually, he2i is taken
here equal to p and the higher order Esenstein–Rayleigh sums are
not used in this approximation.

4.2. Computation of Esenstein–Rayleigh sums of higher orders

It is established in the previous section that computations of
he2i are satisfactory for N = 64 and M > 1000. Now, we compute
he22i, he33i, he44i, he55i, he2222i, he2332i and hRe e3322i to optimize
the parameters N, M and P. First, put N = 64 and investigate the
dependence of computations on M. Consider the following cases:
(a) m = 0.2, P = 1, (b) m = 0.45, P = 2 and (c) m = 0.7, P = 3. The results
are summarized in Tables 2–7 and Figs. 4–9. One can observe that
errors do not exceed 2% for M = 1500.

We now proceed to investigate the dependence of computa-
tions on N. Consider the following cases: (a) N = 4, 9, 25, 36, 49,
64, 100 and (a.1) P = 1, m = 0.2, (a.2) P = 2, m = 0.45, (a.3) P = 3,
m = 0.7; (b) N = 64,100 and (b.1) P = 2,3, m = 0.2, (b.2) P = 1,3,
m = 0.45, (b.3) P = 1,2, m = 0.7 with M corresponding to N in accor-
dance with Table 2.

The results are presented in Figs. 7–9 and Tables 3 and 4. One
can see that the error 3% is achieved for N = 64 and the correspond-
ing M from Table 2. The worst computations take place for e44 for
high m (see Fig. 9) when the error slightly exceed 2%.

It follows from computations that the optimal parameter P
depends on the concentration m as follows: P = 1 for m 6 0.3, P = 2
for 0.3 < m 6 0.6, P = 3 for m P 0.65.

Actually, the computations were performed for wide range of
the parameters to select the optimal values. In particular, we
checked the case P = 10 and other formulae for d (the coefficient
1
5 is optimal in (2)) for all concentrations.

5. Effective conductivity

The results of computations for he22i, he33i, he44i, he55i, he2332i,
he3322i and h e2222i with the optimal parameters found in the
previous section are gathered in Tables 8 and 9. These values are
computed with formulae (36) and (38).

The value l(m, q) is computed by (13) at the points (m, q). The
structure of the coefficients Ak described in Theorem 3 and (12)
and (13) imply that l(m, q) has the form

lðm;qÞ ¼ q3m3ðb1ðqÞ þ b2ðqÞmþ b3ðqÞm2 þ b4ðqÞm3Þ; ð18Þ

where bj(q) are third power polynomials in q. Coefficients of these
polynomials are computed by the method of least squares. The final
formula for the effective conductivity (12) and (13) has the form

k̂ðm;qÞ ¼ 1þ 2mqþ 2m2q2 þ 4:9843m3q3 � 6:829m4q3

þ 4:2139m5q3 � 0:3462m6q3 � 0:0688m3q4

þ 7:3652m4q4 � 12:4218m5q4 þ 7:0868m6q4

� 0:1463m3q5 þ 6:3079m4q5 � 10:4599m5q5

þ 6:7108m6q5 � 0:7996m3q6 þ 4:517m4q6

� 7:8602m5q6 þ 5:9897m6q6: ð19Þ

Fig. 10 demonstrate the results of computations with (19).
Consider the limit case of perfectly conducting inclusions when

k tends to infinity. Then (1) implies that q = 1. In this case, the

effective conductivity tends to infinity as the concentration m tends
to the maximal value pffiffiffiffi

12
p achieved for the hexagonal array. This

physical effect can be observed in formula (19) by substitution
q = 1 and application of Padé approximations. We have

Table 2
Choice of M for each N.

N 4 9 16 25 36 49 64 81 100
M 6000 5000 4000 3000 2500 2000 1500 1500 1500

Table 3
Computed values he22i for various parameters.

N P = 1, m = 0.2 P = 2, m = 0.45 P = 3, m = 0.7

4 16.8903 10.7185 9.8935
9 17.7393 11.4631 9.9885
16 18.0750 11.5222 10.0216
25 18.1191 11.5276 10.0440
36 18.1236 11.5276 10.0485
49 18.1481 11.5290 10.0608
64 18.2159 11.5527 10.0566
81 18.1874 11.5531 10.0508
100 18.1954 11.5249 10.0599

Table 4
Computed values he44i for various parameters.

N P = 1, m = 0.2 P = 2, m = 0.45 P = 3, m = 0.7

4 64.5058 7.5137 0.3422
9 72.4801 7.9055 0.7710
16 75.1789 7.8997 0.9270
25 76.0096 7.9246 0.9837
36 76.7844 7.9559 1.0265
49 76.8793 7.9656 1.0569
64 76.7296 7.9377 1.0751
81 77.3498 7.9647 1.0853
100 77.5732 7.9885 1.0939

Table 5
Computed values he22i, h e33i, he2222i, Re (he55i), he2332i, he44i, he55i for P = 1, m = 0.2.

N = 64 N = 100 Respective error

he22i 18.21590 18.19538 0.00113
he33i �23.25810 �23.36730 0.00467
he222i 576.09200 575.24150 0.00148
Re (he3322i) �573.46100 �576.06877 0.00453
he2332i �591.86700 �592.80760 0.00159
he44i 76.72960 77.57321 0.01087
he55i �252.174000 �256.51035 0.01691

Table 6
Computed values he22i, he33i, he2222i, Re (he55i), he2332i, he44i, he55i for P = 2, m = 0.45.

N = 64 N = 100 Respective error

he22i 11.55270 11.52493 0.00241
he33i �3.49796 �3.50618 0.00234
he222i 161.76800 161.13483 0.00393
Re (he3322i) �41.88310 �41.85512 0.00067
he2332i �48.51970 �48.40682 0.00233
he44i 7.93768 7.98846 0.00636
he55i �15.78050 �15.77928 0.00008

Table 7
Computed values he22i, h e33i, he2222i, Re (h e55i), he2332i, h e44i, he55i for P = 3, m = 0.7.

N = 64 N = 100 Respective error

he22i 10.05659 10.05990 0.00033
he33i �0.40234 �0.40832 0.01464
he222i 103.82047 103.93200 0.00107
Re (he3322i) �3.64061 �3.68913 0.01315
he2332i �5.11471 �5.17244 0.01116
he44i 1.07512 1.09393 0.01719
he55i �3.85177 �3.85965 0.00204
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k̂ðm;1Þ ¼ 1þ 2mþ 2m2 þ 3:9696m3 þ 11:3611m4 � 26:528m5

þ 19:4411m6 þ Oðm7Þ: ð20Þ

Padé approximation for (20) of order (2, 4) has the form

k̂ðm;1Þ � 3:299
m� 1:241

� 3:313
m� 0:9095

þ 0:014mþ 0:001
m2 þ 0:26mþ 0:076

: ð21Þ

One can see that the function (21) has a pole at the point
m = 0.9095 which is close to pffiffiffiffi

12
p � 0:9069 (the respective error is

equal to 0.002867). The results of computations are shown in
Fig. 11. The Padé approximation for (20) with the fixed pole at
pffiffiffiffi
12
p � 0:9069 yields

k̂ðm;1Þ � 3:223
m� 1:247

� 3:237
m� 0:9069

þ 0:014mþ 0:001
m2 þ 0:261mþ 0:076

: ð22Þ

Formulae (21) and (22) give numerically the same results.
We now proceed to compare our formula (19) with formula

(20.77) by Torquato (see [29, p. 526]) written in our designations

k̂ ¼ 1þ 2a1q
1� q

þ 4a2q2

ð1� qÞ2
þ 8a3q3

ð1� qÞ3
þ 16a4q4

ð1� qÞ4
; ð23Þ

where

a1 ¼ m;

a2 ¼ �
m� m2

2
;

a3 ¼
mð1� mÞ

4
ð1� mþ fÞ;

a4 ¼
1
8
ð�12a3 þ 2mþ 8a3m� 5m2 þ 4m3 � m4Þ:

ð24Þ

The parameter f is given in Table 22.1 (see [29, p. 599], column
‘‘Identical hard cylinders’’). Formulae (19) and (23) give the same
results for q < 0.45. The difference between these formulae is dem-
onstrated in Fig. 12.

6. Discussion

The main result of the present paper is extension of Torquato’s
formula (23) to high values of the contrast parameter q. We deduce
formula (19) which is valid for the uniformly distributed non-over-
lapping disks. The introduced distribution U is a probabilistic distri-
bution, i.e., an ideal mathematical object which can be realized by
various statistical methods (see [29] and further discussion devoted
to this point in [30]). In the present paper, we use two special meth-
ods (sequence location and random walk) which theoretically con-
verge to the distribution U . The number of computational
experiments is optimally chosen and should not be increased. It is
checked that it is sufficient in the framework of the described rules
of simulation. But the rules can be changed and extended. Method II
is based on random walks beginning from the hexagonal array.
Other initial positions for the random walks such as rectangular ar-
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Fig. 4. Computational error in hepi when p runs over the set 22, 33, 44, 55, 2222,
2332, 3322 in case (a).

1000 2000 3000 4000 5000 6000
M

0.01

0.02

0.03

0.04

0.05

0.06

Fig. 5. Computational error in hepi when p runs over the set 22, 33, 44, 55, 2222,
2332, 3322 in case (b).
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Fig. 6. Computational error in hepi when p runs over the set 22, 33, 44, 55, 2222,
2332, 3322 in case (c).
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Fig. 7. Results for he22i i h e2222i in case (a.1).
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rays were considered. It is established that after 80 cycles of steps
the Eisenstein–Rayleigh sums do not practically change, hence,
the inclusions are intimately stirred and their centers can be taken
as representative results of the Monte Carlo experiments. Such a
model certainly holds for random composites obtained from regu-
lar arrays. May be, other rules of simulations can yield other values
of the Eisenstein–Rayleigh sums. It is interesting to investigate such
configurations of disks that can be transformed into the hexagonal
array by random walks with very small probabilities. If the proba-
bilistic measure of such subsets of configurations is not small in
U, the Eisenstein–Rayleigh sums, hence formulae (21) and (22)
can be changed. It is not clear now how such configurations can
be simulated to get representative elements since the most appro-
priate candidates, disordered jammed packings are ill-defined and
depend on the protocol used to produce the packings [11].

In the limit case of high contrast parameter, we deduce formu-
lae (21) and (22) which are valid for all concentrations. The first
formula (21) is obtained from (19) by substitution q = 1 and use
of the Padé approximation of order (2,4). The singularity at the
point m = 0.9095 confirms that the accuracy O(m7) is sufficient to
get the theoretical singularity at m = 0.9069 and that the order of
the Padé approximation is properly chosen. The second formula
(22) is obtained by the Padé approximation with the fixed pole
at m = 0.9069.

The n-point correlation functions are not formally used in our
method. However, they are implicitly presented in (21) and (22)
According to [29] the n-point correlation functions, as a pure geo-
metric object, are used to solve the corresponding boundary value
problem and to estimate the effective conductivity by an appropri-
ate averaging. In our formulae one can observe these averaged cor-
relation functions. The coefficients Ak are presented as linear
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Fig. 8. Results for he55i i h e2332i in case (a.2).
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Fig. 9. Results for he33i i h e44i in case (a.3).

Table 8
Computed values he22,i, he33,i, he44,i and he55,i for various concentrations m. Compu-
tations are performed for the optimal choice of the parameters including N = 64.

m he22i he33i he44i he55i

0.05 54.4562 �382.333 4190.05 �50427.7
0.1 30.3341 �94.6858 554.766 �3416.08
0.15 22.346 �41.9403 174.956 �739.574
0.2 18.2159 �23.2581 76.7296 �252.174
0.25 15.7966 �14.6562 41.6043 �114.382
0.3 14.2628 �9.88543 25.2077 �61.0286
0.35 12.8822 �6.46391 15.3884 �33.213
0.4 12.1174 �4.69994 10.8078 �22.0623
0.45 11.5527 �3.49796 7.93768 �15.7805
0.5 11.0934 �2.57665 5.94659 �11.9023
0.55 10.766 �1.90511 4.49997 �9.38056
0.6 10.4837 �1.38498 3.38179 �7.58524
0.65 10.2755 �0.911354 2.37488 �6.06037
0.7 10.0566 �0.402342 1.07512 �3.85177
0.75 9.96082 �0.198966 0.52554 �2.16478
0.8 9.90916 �0.0839384 0.216754 �0.982389
0.85 9.8814 �0.0222027 0.0588841 �0.267471
0.9 9.86974 �0.00031838 0.000867687 �0.0038436

Table 9
Continuation of the previous table.

m he2222i Re (he3322i) he2332i

0.05 9643.33 �66675.3 �64221.9
0.1 2135.82 �5660.96 �5548.78
0.15 974.611 �1463.18 �1476.22
0.2 576.092 �573.461 �591.867
0.25 395.838 �286.93 �303.729
0.3 297.019 �163.827 �178.244
0.35 223.286 �91.9693 �102.209
0.4 186.765 �60.5965 �68.9144
0.45 161.768 �41.8831 �48.5197
0.5 142.964 �28.9071 �34.1006
0.55 129.983 �20.3632 �24.4439
0.6 119.44 �14.1216 �17.1713
0.65 111.759 �8.97626 �11.1578
0.7 103.82 �3.64061 �5.11471
0.75 100.567 �1.72926 �2.54225
0.8 98.7614 �0.71325 �1.07474
0.85 97.7665 �0.187318 �0.284677
0.9 97.414 �0.00267407 �0.0040697
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combinations of the Eisenstein–Rayleigh sums (33) with coeffi-
cients containing q. Every sum (33) depends only on the distances
jak � amj. This is the result of the averaging of n-point correlation
functions. Thus, the effective conductivity is decomposed onto
the sum (21) in which the pure geometric terms (33), the contrast
parameter q and the concentration m are explicitly presented. In
the present paper, the terms (33) are computed for the distribution
U which describes the uniform non-overlapping location of inclu-
sions. It is possible to define another distribution and to determine
the effective conductivity tensor by (33).

One can consider the set fem1 ...mq ;mj ¼ 2; 3; . . .g as a basis in the
space of the deterministic or random locations of inclusions. This

observation was used in [24] to create a constructive theory of rep-
resentative volume elements. The results presented in Tables 8 and
9 can be considered as the characteristic parameters of the distri-
bution U in the following way. Let a set of the centers of inclusions
be measured in a sample with two-dimensional geometry and the
sums em1 ...mq are computed for the measured data. If e2 � p, the
considered composite is rather isotropic. This assertion is true at
least for not high concentrations. If the rest sums em1 ...mq are closed
to the values from Tables 8 and 9, one can assign this composite to
the class of composites U obtained by stirring of the hard inclu-
sions in a host. Let us consider another case when the values
em1 ...mq coincide with the theoretical values from Tables 8 and 9
but for higher concentrations than in the sample. This means that
the sample could be obtained from a periodic structure by pertur-
bations modelled by random walks in Method II. These perturba-
tions can be restricted, for instance in time. Hence, the hard
inclusions are not intimately stirred. To the best of our knowledge
no such experimental investigations have been carried out.

Appendix A

Following [22,24] we present constructive formulae for the
Einstein–Rayleigh sums Sm and the Einstein functions Em(z) corre-
sponding to the lattice Q.

The Einstein–Rayleigh lattice sums Sm are defined as

Sm ¼
X

m1 ;m2

ðm1 þ im2Þ�m
; m ¼ 2;3; . . . ; ð25Þ

where m1, m2 run over all integers except m1 = m2 = 0. The sums
(25) are slowly convergent. They can be easily calculated through
the rapidly convergent series

S2 ¼
p
x1

� �2 1
3
� 8

X1
m¼1

mq2m

1� q2m

 !
; q ¼ exp pi

x2

x1

� �
; ð26Þ

S4 ¼ 60
p
x1

� �4 4
3
þ 320

X1
m¼1

m3q2m

1� q2m

 !
; ð27Þ

S6 ¼ 1400
p
x1

� �6 8
27
� 448

3

X1
m¼1

m5q2m

1� q2m

 !
: ð28Þ

S2n (n P 4) can be calculated by the recurrent formula

S2n ¼
3

ð2nþ 1Þð2n� 1Þðn� 3Þ
Xn�2

m¼2

ð2m� 1Þð2n� 2m� 1ÞS2mS2ðn�mÞ:

ð29Þ

The rest sums vanish. For the hexagonal array, S2 = p, S4 = 0,
S6 = 3.80815.

The Einstein functions are related to the Weierstrass function }

(z) [4] by the identities [32]

0.4

0.65

0.8

0.9

1.

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

λ

Fig. 10. Effective conductivity (19) for various q. Dots correspond to the values
form Tables 8 and 9.

Fig. 11. Effective conductivity as function of m. Data are for: dotted line (20); broken
line: (21); solid line (22).

Fig. 12. Effective conductivity as function of m. Data are for: solid line (19); dotted line (23).
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E2ðzÞ ¼ }ðzÞþS2; EmðzÞ¼
ð�1Þm

ðm� 1Þ!
dm�2

}ðzÞ
dzm�2 ; m ¼ 3;4; . . . : ð30Þ

Every function (30) is doubly periodic and has a pole of order m
at z = 0. The Eisenstein functions of the even order E2m(z) can be
presented in the form of the series [32]

E2mðzÞ ¼
1

z2m þ
X1
k¼1

rðmÞk z2ðk�1Þ; ð31Þ

where

rðmÞk ¼ ð2mþ 2k� 3Þ!
ð2m� 1Þ!ð2k� 2Þ! S2ðmþk�1Þ: ð32Þ

We follow [24] to introduce the generalized Eisenstein–Ray-
leigh sums. Let ak (k = 1,2, . . . ,N) be a set of points. Let q be a posi-
tive integer; kt runs over 1 to N; mj = 2, 3, . . .. Let C be the operator
of complex conjugation. Introduce the following sum of multi-or-
der (m1, . . . ,mq)

em1 ...mq :¼ N�½1þ
1
2ðm1þ���þmqÞ�

X
k0k1 ...kq

Em1 ðak0
� ak1

Þ

� Em2 ðak1 � ak2 Þ . . . CqEmq ðakq�1 � akq Þ: ð33Þ

Here, it is assumed for convenience that

Emð0Þ :¼ Sm: ð34Þ

According to (33) and (34), em becomes the classical Eisenstein–
Rayleigh sum Sm in the case N = 1.

The number of sums in formula (33) is equalt to (q + 1) and can
be reduced as follows. Introduce the function

FpðzÞ ¼
1
N

XN

k¼1

Epðz� akÞ: ð35Þ

Then the sum epp can be written in the form

epp ¼
1

Np

X
k0 ;k1

Epðak0
� ak1

ÞFpðak1
Þ ¼ ð�1Þp

Np�1

X
k1

Fpðak1
ÞFpðak1

Þ

¼ ð�1Þp

Npþ1

XN

m¼1

XN

k¼1

Epðam � akÞ













2

: ð36Þ

Here, it is used that Ep(�z) = (�1)pEp(z).
In order to transform e2222 introduce the function

G2ðzÞ ¼
1

N2

X
k1 ;k2

E2ðz� ak1
ÞE2ðak1

� ak2
Þ: ð37Þ

Then the sum e2222 can be transformed similar to (36)

e2222 ¼
1
N

XN

k¼1

jG2ðakÞj2: ð38Þ

Formulae (36) and (38) contain one sum on N less than the def-
inition (33) that is important in computations.

Lemma. Let a ¼
Pq

j¼1mj. Then

em1 ...mq ¼ ð�1ÞaCqemq ...m1 : ð39Þ

Proof. In view of (33) we have

em1 ...mq ¼ N�ð1þ
1
2aÞ
X

k0k1 ...kq

Em1 ð�ðak1
� ak0

ÞÞ

� Em2 ð�ðak2
� ak1

ÞÞ . . . CqEmq ð�ðakq � akq�1
ÞÞ: ð40Þ

It follows from (36) that right-hand part of (40) is of the form

ð�1ÞaN�ð1þ
1
2aÞ
X

k0k1 ...kq

CqEmq ðakq � akq�1
Þ . . . Em2 ðak2

� ak1
ÞEm1 ðak1

� ak0
Þ

which is equal to ð�1Þaemq ...m1 or ð�1Þaemq ...m1 since q is odd or even
respectively. The lemma is proved. h
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