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Abstract. We derive a Schwarz-Christoffel formula for the conformal map-
ping of an arbitrary n-connected domain D bounded by mutually disjoint
circles |z − ak| = rk, k = 1, 2, . . . , n, onto the exterior of mutually disjoint
polygons. The derivation is based on the exact solution to a Riemann-Hilbert
problem for D without any geometric restriction imposed upon the location of
the non-overlapping disks |z − ak| ≤ rk.
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1. Introduction

A Schwarz-Christoffel formula for multiply connected domains has recently been
discussed by many mathematicians [1, 2, 3, 4, 5, 6, 7, 8, 9]. In order to describe
the results consider a multiply connected circular domain D bounded by mutu-
ally disjoint circles Lk = {z ∈ C : |z − ak| = rk}, k = 1, 2, . . . , n, in the complex
plane C. The Schwarz-Christoffel formula was constructed as a conformal map-
ping of D onto a domain P bounded by n mutually disjoint polygons under the
following geometric restriction to the locations of the circles [8]:

(1) max
k 6=m

rk + rm
|ak − am|

<
1

(n− 1)1/4
.

Similar restrictions were imposed by many authors (see references in [11, 12,
13, 14, 15, 16]) to solve various boundary value problems in terms of absolutely
convergent series including the alternating method of Schwarz. The Schottky-
Klein prime function was used for such problems for arbitrary multiply connected
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domains [1, 2, 3, 4, 5]. However, explicit formulae for the Schottky-Klein prime
function are known only under the restriction (1).

In the present paper, we follow the method presented in [15] which is based on the
construction of the conformal mapping via exact solution of a Riemann-Hilbert
boundary value problem [11, 13, 14, 16] and on the uniformly convergent Poincaré
series [12] for the classical Schottky groups. As a result we explicitly obtain
the Schwarz-Christoffel formula for arbitrary domains D without any geometric
restriction. In order to construct the conformal mapping we solve the following
Riemann-Hilbert problem [8]

(2) Re[(t− ak)ψ(t)] = −1, |t− ak| = rk, k = 1, 2, . . . , n,

for the function ψ(z) analytic in D and continuous in D∪∂D except at the point
singularities on the boundary ∂D prescribed below.

2. Preliminaries

The clockwise orientation is taken on each Lk, hence the boundary ∂D =
⋃n
k=1 Lk

has the domain D to the left. First, we normalize the required conformal mapping
f : D→ P by the condition f(∞) =∞. Let the boundary of the domain P consist
of n mutually disjoint polygons Γk = f(Lk) with P lying to the left. Let the Mk

vertices of Γk be denoted by w`k, ` = 1, 2, . . . ,Mk, numbered clockwise around
Γk for each k = 1, 2, . . . , n. The corresponding vertex angles of the Γk at the
vertices w`k, measured from the exterior of P, are introduced as π(1+β`k), where
πβ`k is the turning of the tangent at w`k. The constants β`k satisfy the inequality
−1 < β`k ≤ 1 and the relations

(3)

Mk∑
`=1

β`k = 2, k = 1, 2, . . . , n.

The prevertices are denoted by z`k with f(z`k) = w`k.

Our study is based on the fact established in [8] that the preSchwarzian

(4) S(z) =
f ′′(z)

f ′(z)

is one of the solutions of the Riemann-Hilbert problem (2) in the class of func-
tions having prescribed singularities at the points z`k ∈ Lk, ` = 1, 2, . . . ,Mk,
k = 1, 2, . . . , n, where

(5) S(z) ∼ β`k
z − z`k

as z → z`k.

In order to recover f(z) from S(z) one can integrate twice the relation (4) since
S(z) = (ln f ′(z))′. The primitive function

(6) ω(z) =

∫ z

S(ζ) dζ
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yields the Schwarz-Christoffel integral

(7) f(z) =

∫ z

exp(ω(ζ)) dζ.

The preSchwarzian and exp(ω(ζ)) were constructed by DeLillo et al. [8] by infinite
sequences of iterated reflections that generate a series which absolutely converges
under the restriction (1) (for details see [8] and the next section)

(8) exp(ω(z)) =
n∏

m=1

Mm∏
`=1

 ∏
γo∈O′m

z − γo(z`m)

z − γo(am)

∏
γe∈E ′m

z − γe(z`m)

z − γe(am)

β`m .
In the present paper, we follow another method based on the Riemann-Hilbert
problem (2) in the class of functions satisfying the asymptotic formulae (5).
General solution ψ(z) of the problem (2) contains n arbitrary real constants [15],
say ξ1, . . . , ξn, i.e. ψ(z) = ψ(z; ξ1, . . . , ξn). In order to construct the required
functions S(z) and ω(z), we first construct the functions ψ(z; ξ1, . . . , ξn) and
Ω(z; ξ1, . . . , ξn). Further, the arbitrary constants ξ1, . . . , ξn are chosen in such a
way that ψ(z; ξ1, . . . , ξn) yields S(z) and Ω(z; ξ1, . . . , ξn) yields ω(z).

3. Schottky group

The inversion of z through the circle Lk is given by

z∗(k) =
rk

2

z − ak
+ ak.

It is known that if a function Φ(z) is analytic in the disk |z − ak| < rk and

continuous in its closure, then Φ(z∗(k)) is analytic in |z− ak| > rk and continuous

in |z − ak| ≥ rk.

Introduce the composition of successive inversions through the circles Lk1 , Lk2 ,
. . . , Lkp

(9) z∗(kpkp−1...k1)
:=
(
z∗(kp−1...k1)

)∗
(kp)

.

In the sequence k1, k2, . . . , kp no two neighboring numbers are equal. The num-
ber p is called the level of the mapping. When p is even, these are Möbius
transformations. If p is odd, we have anti-Möbius transformations, i.e., Möbius
transformations in z. Thus, these mappings can be written in the form

γj(z) =
ejz + bj
cjz + dj

for p ∈ 2Z,(10a)

γj(z) =
ejz + bj
cjz + dj

for p ∈ 2Z + 1,(10b)
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where ejdj − bjcj = 1, j = 0, 1, 2, . . .. Here

γ0(z) := z

(identical mapping with the level p = 0),

γ1(z) := z∗(1), . . . , γn(z) := z∗(n)

(n simple inversions, p = 1),

γn+1(z) := z∗(12), γn+2(z) := z∗(13), . . . , γn2(z) := z∗(n,n−1)

(n2 − n double inversions, p = 2),

γn2+1(z) := z∗(121), . . .

and so on.

The set of the subscripts j of γj is ordered in such a way that the level p is increas-
ing. The functions (10) generate a Schottky group K. Thus, each element of K
is presented in the form of the composition of inversions (9) or in the form of lin-
early ordered functions (10). Let Km be a subset of K such that the last inversion
of each element of Km is different from z∗(m), i.e. Km = {z∗(kpkp−1...k1)

: kp 6= m}.
The set K′m = {z∗(kpkp−1...k1)

: k1 6= m} is introduced similarly. All elements γj
of the even levels generate a subgroup E of the group K. The set of the ele-
ments γj of odd level K\E is denoted by O. Introduce the notation Em = E ∩Km,
Om = O ∩Km and E ′m = E ∩ K′m, O′m = O ∩K′m.

Let us fix an inversion z∗(m). Consider the transformation

γj(z) =
(
γ−1t (z)

)∗
(m)

from E , where γ−1t is the inverse transformation to γt ∈ O′m. Then from [15] we
have

(11)
ζ − γj(z)

ζ − γj(w)
=
z − γt(ζ∗(m))

w − γt(ζ∗(m))
· w − γt(am)

z − γt(am)
.

Consider now a transformation γj ∈ O and

γs(z) = γ−1j

(
z∗(m)

)
from E ′m. Then [15]

(12)

(
ζ − γj(w)

ζ − γj(z)

)
=
w − γs(ζ∗(m))

z − γs(ζ∗(m))
· z − γs(am)

w − γs(am)
.
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4. Reduction of the Riemann-Hilbert problem to
functional equations

It follows from [15] that the inhomogeneous Riemann-Hilbert problem (2) always
has solutions. The general solution amounts of a particular solution of the inho-
mogeneous problem and a linear combination of n solutions of the homogeneous
problem.

In order to solve the problem (2) rewrite it in the form of the R-linear problem

(t− ak)ψ(t) = (t− ak)ψk(t)− (t− ak)ψk(t)− 1 + iξk,(13)

|t− ak| = rk, k = 1, . . . , n.

Here, ξk are undetermined real constants, ψk(z) is analytic in |z − ak| < rk,
continuous in |z − ak| ≤ rk except the points z`k, where

(14) ψk(z) ∼ β`k
2(z − z`k)

as z → z`k.

It will be shown below in Lemma 1 that the asymptotics (14) and (5) for ψ(z)
are matched. Hence, the R-linear problem (13) must be stated in a class of
functions with prescribed singularities. It is convenient to describe this class by
introduction of the Banach spaces as follows.

Let G be a domain on the extended complex plane. Introduce the Banach space
C(∂G) of functions continuous on ∂G with the norm

‖F‖ = max
t∈∂G
|F (t)|.

Let us consider a closed subspace CA(G) of C(∂G) consisting of functions ana-
lytically continued into G. The Maximum Principle implies that convergence in
the space CA(G) is equivalent to uniform convergence in the closure of G. Let
a fixed function F0 have a finite number of singularities on the boundary ∂G.
Introduce the space

CA(G,F0) = {F : F − F0 ∈ CA(G)}
of functions endowed with the norm

‖F‖CA(G,F0) = max
t∈∂G
|F (t)− F0(t)|.

The spaces CA(G,F0) and CA(G) are isomorphic.

Introduce mutually disjointed disks

Dk = {z ∈ C : |z − ak| < rk}, k = 1, 2, . . . , n.

The multiply connected domain D complements all the closed disks Dk ∪ Lk to

the extended complex plane Ĉ = C ∪ {∞}, i.e.

D = Ĉ\
n⋃
k=1

(Dk ∪ Lk).
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Introduce the function

(15) Φ(z) =
n∑
k=1

Φk(z),

where

(16) Φk(z) =
1

2

Mk∑
`=1

β`k
z − z`k

.

Then ψ(z) ∈ CA(D, 2Φ) and ψk(z) ∈ CA(Dk,Φk). The problems (2) and (13) in
the classes considered are equivalent in the sense of the following result.

Lemma 1.

(i) If ψ(z) and ψk(z) are solutions of (13) in the class considered, then ψ(z)
satisfies (2).

(ii) If ψ(z) is a solution of (2), there exist functions ψk ∈ CA(Dk,Φk) and real
constants ξk such that the R-linear conditions (13) are fulfilled.

Proof. The proof of the first assertion is evident. It is sufficient to take the real
part of (13).

Conversely, let ψ(z) satisfy (2). The function

Ψk(z) =
iξk
2

+ (z − ak)ψk(z)

can be uniquely determined from the simple Schwarz problem for the disk Dk

[10, 16]

(17) 2 Im Ψk(t) = Im(t− ak)ψ(t), |t− ak| = rk.

It is assumed that the function Ψk(z) is continuous in |z − ak| ≤ rk except at
the points z`k, where the principal part β`k(z`k − ak)/[2(z − z`k)] of Ψk(z) is
determined by the right hand part of (17). The problem (17) for the function
Ψk(z) has a unique solution, since Re Ψk(ak) = 0. Therefore, the function
ψk(z) and the constant ξk are uniquely determined in terms of ψ(z) for each
k = 1, . . . , n. Direct calculations yields the asymptotic (14).

Hence the lemma is proved.

We now proceed to solve the R-linear problem (13) written in the form

(18) ψ(t) = ψk(t)−
(

rk
t− ak

)2

ψk(t)−
1− iξk
t− ak

, |t− ak| = rk, k = 1, . . . , n.



12 (2012), No. 2 Schwarz-Christoffel Formula for Multiply Connected Domains 455

Introduce the function

Φ̃(z) :=



ψk(z) +
∑
m6=k

(
rm

z − am

)2

ψm(z∗(m)) +
∑
m6=k

1− iξm
z − am

, |z − ak| ≤ rk,

ψ(z) +
n∑

m=1

(
rm

z − am

)2

ψm(z∗(m)) +
n∑

m=1

1− iξm
z − am

, z ∈ D.

Calculate its jump across the circle Lk

∆k := lim
z→t z∈D

Φ̃(z)− lim
z→t z∈Dk

Φ̃(z), t ∈ Lk.

Using (18) we get ∆k = 0. It follows from the Analytic Continuation Principle
that Φ̃ (z) is analytic in the extended complex plane except at the points z`k. A
straightforward calculation shows that Φ̃(z) has the same asymptotics as Φ(z)
from (15). Then the generalized Liouville theorem implies that Φ̃(z) coincides
with Φ(z). Here, the relation Φ̃(∞) = 0 is used. The definition (15) of Φ(z) in
|z − ak| ≤ rk yields the following system of functional equations

ψk(z) =
∑
m6=k

(
rm

z − am

)2

ψm

(
z∗(m)

)
−
∑
m6=k

1− iξm
z − am

+ Φ(z),(19)

|z − ak| ≤ rk, k = 1, . . . , n.

The general solution of the Riemann-Hilbert problem (2) is constructed via ψk(z)
(see the definition of Φ̃(z) in D)

ψ(z) = −
n∑

m=1

(
rm

z − am

)2

ψm

(
z∗(m)

)
−

n∑
m=1

1− iξm
z − am

+ Φ(z),(20)

z ∈ D ∪ ∂D.

The function ψ(z) is analytic in D except at the points z`k where its principal
part is β`k/(z − z`k).

5. Solution to functional equations

Lemma 2. The system of functional equations (19) has a unique solution in
CA(Dk,Φk) (k = 1, 2, . . . , n). This solution can be found by the method of suc-
cessive approximations.

Proof. The proof of the lemma follows from [16, Lem. 4.8, p. 167] and [14]
where functional equations had been solved in CA(Dk). Introduce the function χk
analytic in |z − ak| < rk and continuous in |z − ak| ≤ rk defined by

(21) χk(z) = ψk(z)− Φk(z),
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i.e. χk ∈ CA(Dk). Substitution of (21) into (19) yields the system of functional
equations in CA(Dk), k = 1, 2, . . . , n,

χk(z) = −
∑
m6=k

(
rm

z − am

)2

χm

(
z∗(m)

)
+ hk(z),(22)

|z − ak| ≤ rk, k = 1, . . . , n,

where

(23) hk(z) = −
∑
m6=k

1− iξm
z − am

+ Φ(z)− Φk(z)−
∑
m 6=k

(
rm

z − am

)2

Φm

(
z∗(m)

)
belongs to CA(Dk) (see (15) and (16)). It follows from [16, 14] that the system of
functional equations (22) has a unique solution in CA(Dk). This solution χk(z)
can be found by the method of uniformly convergent successive approximations.
Then (21) yields ψk(z) = Φk(z) + χk(z). Hence, ψk(z) can be found by the
method of successive approximations applied to (19). Convergence of the series

for ψk(z) is uniform in every compact subset of Dk ∪ ∂Dk\
⋃Mk

`=1{z`k}.
This completes the proof of the lemma.

It is possible to write ψk explicitly in the form of a series. But ultimately a
primitive of ψk is needed. In order to properly define it we fix a point w ∈ D\{∞}
and introduce the functions

(24) ϕm(z) =

∫ z

w∗
(m)

ψm(ζ) dζ + ϕm(w∗(m)), m = 1, 2, . . . , n,

and

Ω(z) =
n∑

m=1

[
ϕm

(
z∗(m)

)
− ϕm

(
w∗(m)

)]
(25)

−
n∑

m=1

(1− iξm) ln
am − z
am − w

+
1

2

n∑
m=1

Mm∑
`=1

β`m ln
z`m − z
z`m − w

,

where a single valued branch of the logarithm is fixed in such a way that all cuts
of

ln
am − z
am − w

, ln
z`m − z
z`m − w

lie in D ∪ Dm ∪ ∂Dm and lnx is real for positive x → +∞. In calculating the
integral (24), the following relation is used [16]

(26)
d

dz

[
ϕm

(
z∗(m)

)]
= −

(
rk

z − ak

)2
dϕm
dz

(
z∗(m)

)
, |z − ak| > rk.
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The functions Ω(z) and ϕm(z) belong to

CA

(
D,

n∑
m=1

Mm∑
`=1

β`m ln(z − z`m)

)
and to

CA

(
Dm,

1

2

Mm∑
`=1

β`m ln(z − zm`)

)
,

respectively. One can see from (24) that the function ϕm(z) is determined by
ψm(z) up to an additive constant which vanishes in (25). The function Ω(z)
vanishes at z = w.

Integrate each functional equation (19). Application of (24) yields functional
equations

ϕk(z) =
∑
m 6=k

[
ϕm

(
z∗(m)

)
− ϕm

(
w∗(m)

)]
−
∑
m 6=k

(1− iξm) ln
am − z
am − w

(27)

+
1

2

n∑
m=1

Mm∑
`=1

β`m ln
z − z`m
w − z`m

+ ck, |z − ak| ≤ rk, k = 1, . . . , n,

for the functions

ϕk ∈ CA

(
Dk,

1

2

Mk∑
`=1

β`k ln(z − z`k)

)
and undetermined constants ck.

Lemma 3. The system of functional equations (27) with fixed ck has a unique
solution in

CA

(
Dk,

1

2

Mk∑
`=1

β`k ln(z − z`k)

)
, k = 1, . . . , n.

This solution can be found by the method of successive approximations.

Proof. The proof follows from Lemma 2, since (27) is the result of the integral
operator

(28) F 7→
∫ z

w∗
(k)

F (t)dt

applied to (19). Convergence in

CA

(
Dk,

1

2

Mk∑
`=1

β`k ln(z − z`k)

)
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means uniform convergence in every compact subset of

(Dk ∪ ∂Dk)\
Mk⋃
`=1

{z`k}.

Therefore, the integral operator (28) can be applied term by term to the suc-
cessive approximations for (19). This yields the uniformly convergent successive
approximations for (28) in the compact subsets considered.

Equations (27) can be compactly written in the operator form

(29) X = AX + h,

where X(z) = ϕk(z) in |z− ak| ≤ rk, k = 1, . . . , n, the linear operator A and the
function h are defined by the right hand part of (27). Application of Lemma 3
yields the representation for X in the form of uniformly convergent series

(30) X =
∞∑
s=0

Ash.

Let
h = C1h1 + C2h2

with constants C1, C2 and

h1, h2 ∈ CA

(
Dk,

1

2

Mk∑
`=1

βk` ln(z − zk`)

)
for all k = 1, . . . , n.

Then

X = X1 +X2, where X1 = C1

∞∑
s=0

Ash1, X2 = C2

∞∑
s=0

Ash2,

i.e.

(31)
∞∑
s=0

Ash = C1

∞∑
s=0

Ash1 + C2

∞∑
s=0

Ash2.

The later equality in particular means that it is possible to change the order of
summation in (30) in such a way that summation keeps the increasing level in
each infinite sum. Uniqueness based on Lemma 3 yields the same results in the
left and right parts of (31). Therefore, one can take any linear combination of
(1 − iξm) ln(z − am), βmj ln(z − zmj) and compose the corresponding series for
the solution. This observation allows us to avoid additional conditions related
to unnecessary absolute convergence.

Applications of the successive approximations to (27) separately to the right
hand part terms

ck, β`m ln
z − z`m
w − z`m

, −
∑
m6=k

(1− iξm) ln
am − z
am − w
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and summation of the results obtained (including 1
2

∑n
m=1

∑Mm

`=1 for the second
term) yields

ϕk(z) = ck +
1

2

n∑
m=1

Mm∑
`=1

β`m

(
ln
z`m − z
z`m − w

+
∑
k1 6=k

ln
z`m − z∗(k1)
z`m − w∗(k1)

(32)

+
∑
k1 6=k

∑
k2 6=k1

ln
z`m − z∗(k2k1)
z`m − w∗(k2k1)

+
∑
k1 6=k

∑
k2 6=k1

∑
k3 6=k2

ln
z`m − z∗(k3k2k1)
z`m − w∗(k3k2k1)

+ · · ·
)

−
∑
k1 6=k

(1− iξk1) ln
ak1 − z
ak1 − w

−
∑
k1 6=k

∑
k2 6=k1

(1− iξk2) ln
ak2 − z∗(k1)
ak2 − w∗(k1)

−
∑
k1 6=k

∑
k2 6=k1

∑
k3 6=k2

(1− iξk3) ln
ak3 − z∗(k2k1)
ak3 − w∗(k2k1)

−
∑
k1 6=k

∑
k2 6=k1

∑
k3 6=k2

∑
k4 6=k3

(1− iξk4) ln
ak4 − z∗(k3k2k1)
ak4 − w∗(k3k2k1)

+ · · · ,

for |z − ak| ≤ rk.

6. Construction of f ′(z)

Substitute equation (32) for ϕk in (25) and write the result for the function
F (z; ξ1, ξ2, . . . , ξn) = exp(Ω(z)) in the form of the infinite product

F (z; ξ1, ξ2, . . . , ξn) =
n∏

m=1

Mm∏
`=1

{(
z`m − z
z`m − w

)β`m/2  n∏
k=1

(
z`m − z∗(k)
z`m − w∗(k)

)β`m/2
(33)

×

 n∏
k=1

∏
k1 6=k

(
z`m − z∗(k1k)
z`m − w∗(k1k)

)β`m/2
 · · ·}

×

[
n∏
k=1

(
ak − w
ak − z

)1−iξk
] n∏

k=1

∏
k1 6=k

(
ak1 − w∗(k)
ak1 − z∗(k)

)1−iξk1


×

 n∏
k=1

∏
k1 6=k

∏
k2 6=k1

(
ak2 − w∗(k1k)
ak2 − z∗(k1k)

)1−iξk2
 · · · .

This product converges uniformly in every compact subset of D\{∞}.
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Theorem 4. The function (33) yields exp(ω(z)) from the Schwarz-Christoffel
integral (7) when all ξm vanish. The function exp(ω(z)) has the form

exp(ω(z)) = F (z; 0, . . . , 0)(34)

=
n∏

m=1

Mm∏
j=1

{(
z`m − z
z`m − w

)β`m/2  n∏
k=1

(
z`m − z∗(k)
z`m − w∗(k)

)β`m/2


×

 n∏
k=1

∏
k1 6=k

(
z`m − z∗(k1k)
z`m − w∗(k1k)

)β`m/2
 · · ·}

×

(
n∏
k=1

ak − w
ak − z

)(
n∏
k=1

∏
k1 6=k

ak1 − w∗(k)
ak1 − z∗(k)

)

×

(
n∏
k=1

∏
k1 6=k

∏
k2 6=k1

ak2 − w∗(k1k)
ak2 − z∗(k1k)

)
· · · .

Proof. The function F (z; ξ1, ξ2, . . . , ξn) is constructed on the basis of the general
solution ψ(z) of the Riemann-Hilbert problem (2) which contains the singularity
function (4) as a particular solution. Therefore, F (z; ξ1, ξ2, . . . , ξn) contains the
function exp(ω(z)) for appropriate constants ξ1, ξ2, . . . , ξn. In order to prove
the theorem it is sufficient to check that all singular points of the function (33)
coincide to the singular points of the function exp(ω(z)) (including orders of the
singularities) if and only if all ξm are equal to zero.

DeLillo et al. [8] used the Schwarz Reflection Principle to prove that the asymp-
totic behavior of the analytic continuation of exp(ω(z)) near the singular points
is described by the relations

exp(ω(z)) ∼ (z − γj(z`m))β`m as z → γj(z`m),(35a)

exp(ω(z)) ∼ (z − γj(am))−2 as z → am(35b)

for γj ∈ E ′m and

exp(ω(z)) ∼ (z − γj(z`m))β`m as z → γj(z`m),(36a)

exp(ω(z)) ∼ (z − γj(am))−2 as z → am(36b)

for γj ∈ O′m.

After application of the formula (3) one can observe all these singularities in (8).
Though formula (8) does not hold in the general case, asymptotic formulae (35)
and (36) always valid for exp(ω(z)) [8].

We now investigate the question, for which parameters ξ1, ξ2, . . . , ξn the function
F (z; ξ1, ξ2, . . . , ξn) has the same asymptotic (35), (36). Let us fix am and consider
the term

µ(z) =
z`k − γe(z)

z`k − γe(w)
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from (33) where the last inversion of γe ∈ E is z∗(m), i.e. γe(z) can be written as

γe(z) = z∗(kpkp−1···k1m) with odd p. The relation (11) implies that

(37) µ(z) =
z − γt((z`k)∗(m))

w − γt((z`k)∗(m))

w − γt(am)

z − γt(am)
,

where γt(z) = z∗(k1k2···kp) belongs to O′m. One can see that (37) gives the required

first asymptotic (36) for F (z; ξ1, ξ2, . . . , ξn). It follows from (37) and (3) that the
multiplier from (33)

Mm∏
`=1

[µ(z)]β`m/2

contains the multiplier

Mm∏
`=1

[z − γt(am)]−β`m/2 = [z − γt(am)]−1.

Similar arguments can be applied to obtain the required first asymptotic (35) for
F (z; ξ1, ξ2, . . . , ξn) by use of

ν(z) =
z`k − γo(z)

z`k − γo(w)

where γo ∈ O. One can see also that the multiplier from (33)

Mm∏
`=1

[ν(z)]β`m/2

contains [z − γs(am)]−1 for some γs ∈ E ′m.

Therefore, the function F (z; ξ1, ξ2, . . . , ξn) contains the multiplier

[z − γs(am)]−2+iξm

for γs ∈ E ′m (the multiplier

[z − γt(am)]−2+iξm

for γt ∈ O′m) which determines its behavior near the singular point z = γs(am)
(z = γt(am)). One can see that F (z; ξ1, ξ2, . . . , ξn) has the same behavior as
exp(ω(z)) at these points if and only if ξm = 0.

The theorem is proved.

Remark 1. It follows from Theorem 4 that

S(z) = O(|z|−3) as z →∞

(see (3) and (15)–(16)) that corresponds to [8].
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We refer to the paper [15] for comparison of the general formula (34) with the
partial formula (8) by DeLillo et al. [8]. A similar discussion concerning Riemann-
Hilbert problems can be found in [11]–[14]. Here, we just note that (8) can be
established by the limit w → ∞ in (34), by using the arguments from [15]
and from the proof of Theorem 4. It is worth noting that the substitution
w =∞ is forbidden in the general case since it yields the integral

∫∞
z
· · · in (25)

after application of (24) and the substitution ζ = t∗(m). This integral over the

infinite path can produce a divergent series (for details see [15, Sect. 4] and
[16, Sec. 4.10]).
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