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Neutral coated inclusions of finite conductivity
BY PAWEl/ JARCZYK AND VLADIMIR MITYUSHEV*

Department of Computer Sciences and Computer Methods, Pedagogical
University, ul. Podchorazych 2, Krakow 30-084, Poland

We discuss the conductivity of two-dimensional media with coated neutral inclusions
of finite conductivity. Such an inclusion, when inserted in a matrix, does not disturb
the uniform external field. We are looking for shapes of the core and coating in terms
of the conformal mapping u(z) of the unit disc onto coated inclusions. The considered
inverse problem is reduced to an eigenvalue problem for an integral equation containing
singular integrals over a closed curve L1 on the transformed complex plane. The conformal
mapping u(z) is constructed via eigenfunctions of the integral equation. For each fixed
curve L1, the boundary of the core is given by the curve u(L1). The boundary of the
coating is obtained by the mapping of the unit circle. It is justified that any shaped
inclusion with a smooth boundary can be made neutral by surrounding it with an
appropriate coating. Shapes of the neutral inclusions are obtained in analytical form
when L1 is an ellipse.

Keywords: coated neutral inclusion; conformal mapping; boundary value problem
1. Introduction

Mathematical models of invisibility are of considerable interest in a number of
recent publications. One can find the theoretical foundations and results devoted
to various approaches of invisibility due to Kerker (1975), Ammari & Kang (2004,
2007), Alu & Engheta (2005), Milton & Nicorovici (2006), Milton et al. (2006),
Farhat et al. (2008), Greenleaf et al. (2009), Guenneau et al. (2010), Liu (2010)
and Ammari et al. (2011). In this paper, we investigate this problem in the context
of conductivity of two-dimensional media with coated neutral inclusions. When
the conductivity s0 of an isotropic matrix is chosen appropriately, one can insert
a coated cylinder or sphere, with core conductivity s1 and coating conductivity
s, into the medium without disturbing the surrounding unidirectional external
field. This effect is described in some detail by Milton (2000). Hashin (1962)
constructed infinite packings of the plane by such coated cylinders of various
sizes, also without disturbing the surrounding field. Hashin & Shtrikman (1962)
established that the effective conductivity of such packings satisfy the famous
Clausius–Mossoti approximation. These results were extended to coated ellipses
and ellipsoids by Milton (1980, 1981). One can find an extended review with
corresponding citations devoted to this problem in the book by Milton (2000)
and in the paper by Milton & Serkov (2001).
*Author for correspondence (vmityushev@gmail.com).
Received 12 April 2011
Accepted 19 October 2011 This journal is © 2011 The Royal Society1

mailto:vmityushev@gmail.com
http://rspa.royalsocietypublishing.org/


2 P. Jarczyk and V. Mityushev

 on November 16, 2011rspa.royalsocietypublishing.orgDownloaded from 
(a) (b)

Figure 1. (a) Domains on the physical plane z. (b) Transformed domains on the plane z .

Milton & Serkov (2001) have posed the question of whether there are neutral
coated inclusions other than single and multi-coated circles, spheres, ellipses
and ellipsoids. By having used the assumption that the coating surrounds a
hole or a perfect conductor, Milton & Serkov (2001) solved the problem for
two-dimensional geometry. They discovered many possible shapes of the neutral
inclusions. This result was obtained by use of the conformal mapping of the
doubly connected coated domain onto a circular annulus. As a result, a boundary
value problem for analytic functions arises. The latter problem was solved by the
use of Laurent’s series. It is worth noting that such problems were discussed by
Schiffer (1959) and by Mityushev (1992) as well as Mityushev & Rogosin (1999)
in the context of pure mathematical problems.

Our work is motivated by the question posed by Milton & Serkov (2001),
which concerns a core of finite conductivity. Milton & Serkov (2001) noted that
their analysis does not fit to this case, since they used a conformal mapping of
the coating domain. Thus, the core domain cannot be taken into account apart
from its boundary effects. Milton & Serkov (2001) tried to solve this problem
approximately by small perturbations of the coated circles.

In this paper, the result of Milton & Serkov (2001) is extended to coated
inclusions of finite conductivity represented in figure 1, where G1, G, G2 denote
core, coating and the exterior domain; curve G1 divides G1 and G; curve G2 divides
G and G2. We also apply the method of conformal mappings, but, contrary to
Milton & Serkov (2001), a conformal mapping z �→ z of the simply connected
domain bounded by the exterior coated boundary G2 onto the unit disc is used.
This conformal mapping yields a boundary value problem that does not have an
easier form than the original one. However, the unknown boundary G2 transforms
onto the known unit circle.

One of the main results of this paper is that the neutral inclusion problem is
reduced to an eigenvalue R-linear problem on the auxiliary plane z (see §2b). In §3,
the integral equation (3.12) corresponding to the eigenvalue problem is deduced.
The solution of this problem depends on the curve L1 dividing the transformed
coated and core domains on the plane of variable z . It is worth noting that
this eigenvalue problem has solutions for any Hölder continuous curve L1. This
Proc. R. Soc. A
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observation implies that any shaped inclusion with a smooth boundary can be
made neutral by surrounding it with an appropriate coating. Shapes of the neutral
inclusions are obtained in analytical form in §§4 and 5 when L1 is an ellipse.

2. Eigenvalue R-linear problem

In this section, the problem of neutral inclusion is stated as an inverse boundary
value problem for analytic functions with an unknown curve. This problem is
reduced to an eigenvalue problem for an integral equation.

(a) Statement of the problem and reduction to R-linear problem

Let the plane of complex variable z = x + iy be divided onto domains G1, G, G2
(figure 1) by simple closed smooth curves G1 and G2 oriented in counter-clockwise
directions.

For definiteness, it is assumed that the origin belongs to G1 and the domain
G2 contains the infinite point. The domains G1 and G2 are simply connected, G
doubly connected; G1, G and G2 are, respectively, the core, coated and exterior
domains occupied by materials with scalar conductivities s1, s and s0. The
potentials u1(x , y), u(x , y) satisfy Laplace’s equation in G1, G and continuously
differentiable in the closures of these domains. It is assumed that the potential
u2(x , y) in the matrix G2 is a linear function of the form

u2(x , y) = −e1x − e2y, (2.1)

where e0 = (e1, e2) is the uniform field outside the coated inclusion. Since u1(x , y)
satisfies Laplace’s equation in the simply connected domain G1, it is represented
as the real part of a function analytic in G1

u1(x , y) = 2s

s + s1
Re f1(z), z ∈ G1, (2.2)

where the coefficient in (2.2) is introduced for convenience. The potential in the
doubly connected domain G is represented in the form

u(x , y) = Re f(z) = Re [̃f(z) + A ln z], z ∈ G, (2.3)

where the function f̃(z) is analytic and single-valued in G, and A is a real
constant. It will be shown later that A = 0. Physically, this comes about because
there is no net charge in the inclusion. The potential (2.1) can be also written in
the complex form

u2(x , y) = −Re e0z, (2.4)

where the vector e0 is represented as the complex number e0 = e1 + ie2; the bar
denotes the complex conjugation.

Let n be the unit outward normal vector to the curve G2, and let v/vn be the
outward normal derivative. Then the perfect contact between materials along the
curve G2 is described by equations

u = u2, s
vu
vn

= s0
vu2

vn
on G2. (2.5)
Proc. R. Soc. A
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Along similar lines

u = u1, s
vu
vn

= s1
vu1

vn
on G1. (2.6)

Following Mityushev & Rogosin (1999), we transform the real conditions (2.5)
and (2.6) into complex. Using (2.3) and (2.4), we rewrite the first relation (2.5)
in the form

Re f(z) = −Re e0z, z ∈ G2. (2.7)

Let s be the natural parameter of the curve G2 and v/vs denote the corresponding
derivative along G2. Using the Cauchy–Riemann equation vu2/vn = vv2/vs, we
rewrite the second equation (2.5) in the form of svv/vs = s0vv2/vs on G2 and
integrate it along G2 on s

sv = s0v2 on G2. (2.8)

The integration constant in (2.8) is taken to be zero, since the imaginary part of
the complex potential is defined up to an arbitrary additive constant. It follows
from (2.4) that the imaginary part v2(x , y) = −Ime0z. Then (2.8) yields

sImf(z) = −s0Ime0z, z ∈ G2. (2.9)

The two real equations (2.7) and (2.9) can be written in the form of one
complex relation:

f(z) = −s0 + s

2s0
e0z − s0 − s

2s0
e0z, z ∈ G2. (2.10)

The same arguments applied to (2.6) yield

f(z) = f1(z) − 9f1(z), z ∈ G1, (2.11)

where the contrast Bergman parameter is introduced as follows:

9 = (s1 − s)(s1 + s)−1. (2.12)

This parameter satisfies inequality |9| < 1 for finite positive s1 and s.
In order to prove that A = 0 in the representation (2.3), we calculate the

increment [f]G1 of the function f(z) along the closed curve G1. It follows from (2.3)
that [f]G1 = 2piA. On the other hand, [f]G1 calculated by (2.11) yields zero.
Hence, A = 0 in the representation (2.3) and f̃(z) = f(z) is a single valued function
analytic in the doubly connected domain G.

Thus, we arrive at the boundary value problem (2.10)–(2.11) with unknown
curve G2 with respect to the complex potentials f(z), f1(z) analytic in G, G1 and
continuously differentiable in the closures of the domains considered.

(b) Reduction to eigenvalue problem

The simply connected domain G1 ∪ G1 ∪ G can be conformally mapped onto
the unit disc U . Let

z = − 2s0

(s0 − s)e0
u(z) (2.13)
Proc. R. Soc. A
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denote the inverse conformal mapping of U onto G1 ∪ G1 ∪ G. The coefficient
in (2.13) is introduced for convenience. Let this conformal mapping be normalized
by the condition u(0) = 0. The unit circle L2 transforms, as the boundary of U ,
onto the curve G2, a simple closed curve L1 ⊂ U onto G1 (figure 1).

The domains D1 and D are transformed by (2.13) onto G1 and G, respectively,
the point z = 0 belongs to D1. Introduce the complex potentials analytic in the
considered domains D1 and D

41(z) = f1(z) and 4(z) = f(z), (2.14)

where the variables z and z are related by (2.13). The conjugation
conditions (2.10) and (2.11) become

4(t) = u(t) − lu(t), |t| = 1 (2.15)

and
4(t) = 41(t) − 941(t), t ∈ L1, (2.16)

where
l = (s + s0)(s − s0)−1. (2.17)

One can see that l−1 is equal to the second contrast parameter and |l| > 1.
It is convenient to introduce the function 42(z) := u(z−1) for |z | ≥ 1 analytic in

|z | > 1 and continuously differentiable in |z | ≥ 1. The function 42(z) vanishes at
infinity, since u(0) = 0. Then (2.15)–(2.16) takes the form of the standard R-linear
condition (Mityushev & Rogosin 1999)

4(t) = 42(t) − l42(t), |t| = 1 (2.18)

and
4(t) = 41(t) − 941(t), t ∈ L1. (2.19)

It is necessary to find a curve L1 for which the problem (2.18)–(2.19) has a
non-trivial solution. Then the non-zero function

u(z) = 42(z−1), |z | ≤ 1 (2.20)

can be a candidate for the conformal mapping. The function (2.20) besides being
analytic must be a one-to-one map of U onto G1 ∪ L1 ∪ G.

Following Milton & Serkov (2001), it is more convenient to treat the above
problem as an eigenvalue problem, with respect to the unknown constant l and
a fixed curve L1 as follows: to find non-trivial functions 4(z), 41(z) and 42(z)
analytic in D, D1 and D2, respectively, and continuously differentiable in the
closures of the domains considered with the R-linear conjugation conditions (2.18)
and (2.19). The constant l has to be determined. Moreover, 42(z) vanishes
at infinity. The contrast parameter 9 is supposed to be fixed in such a way
that |9| < 1.

3. Integral equation

In the present section, the R-linear problem (2.18) and (2.19) is reduced to an
integral equation. Let D2 be the exterior of the unit circle. Let the curve L1 and the
unit circle L2 be oriented in the counter-clockwise direction. Then the boundaries
Proc. R. Soc. A
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of the open domains D1, D and D2 are expressed by the relations vD1 = L1,
vD2 = −L2 and vD = L2 ∪ (−L1). Let J+(z) and J−(z) be functions analytic
in the domains D and D− = D1 ∪ D2, respectively, and Hölder continuous in their
closures. Then, Cauchy’s integral formula implies the following relations described
by Gakhov (1966):

1
2pi

∫
vD

J+(t)
t − z

dt =
{

J+(z) for z ∈ D

0 for z ∈ D−,
(3.1a)

1
2pi

∫
L2

J−(t)
t − z

dt =
{

J−(∞) − J−(z) for |z | > 1

J−(∞) for |z | < 1
(3.1b)

and
1

2pi

∫
L1

J−(t)
t − z

dt =
{

J−(z) for z ∈ D1

0 for z ∈ D ∪ L1 ∪ D2.
(3.1c)

Let the function m(t) be Hölder continuous on vD. The Cauchy-type integral

J(z) = 1
2pi

∫
vD

m(t)
t − z

dt (3.2)

represents a function analytic in the domains D, D− and it satisfies the jump
condition (Gakhov 1966)

J+(t) − J−(t) = m(t), t ∈ vD, (3.3)

where J±(z) can be considered as the restriction of J(z) to D ∪ vD and to D− ∪
vD or as the limit values of J(z) from the different sides of the curves vD. One
can also consider formula (3.2) as the unique solution to the jump problem (3.3)
with J−(∞) = 0 due to Gakhov (1966).

The relations (2.18) and (2.19) with

J+(z) = 4(z), z ∈ D; J−(z) =
{

41(z) if z ∈ D1

42(z) if |z | > 1
(3.4)

can be written in the form of the jump condition (3.3) with

m(t) =
{−l42(t) if t ∈ L2

−941(t) if t ∈ L1.
(3.5)

Then (3.2) becomes the system of integral equations

41(z) = − l

2pi

∫
|t|=1

42(t)
t − z

dt + 9

2pi

∫
L1

41(t)
t − z

dt, z ∈ D1, (3.6)

and

42(z) = − l

2pi

∫
|t|=1

42(t)
t − z

dt + 9

2pi

∫
L1

41(t)
t − z

dt, |z | > 1. (3.7)
Proc. R. Soc. A
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The relation t = t
−1

is fulfilled in the unit circle. The function 42(t
−1

) is
analytically continued into the unit disc, since 42(z) is analytic in |z | > 1. Then
the first integral in (3.6) can be calculated by Cauchy’s formula:

1
2pi

∫
|t|=1

42(t
−1

)
t − z

dt =

⎧⎪⎨⎪⎩42

(
1
z̄

)
if z ∈ D1

0 if |z | > 1.
(3.8)

Substitution of (3.8) into (3.6) and (3.7) yields

41(z) = −l42

(
1
z̄

)
+ 9

2pi

∫
L1

41(t)
t − z

dt, z ∈ D1 (3.9)

and

42(z) = 9

2pi

∫
L1

41(t)
t − z

dt, |z | > 1. (3.10)

Substitute z−1 instead of z in (3.10) and take the complex conjugation

42

(
1
z̄

)
= − 9

2pi

∫
L1

41(t)
t̄ − (1/z)

dt̄, |z | < 1. (3.11)

The function 42(z) can be eliminated from the system (3.6)–(3.7), which is
reduced to the integral equation

41(z) = 9

{
l

2pi

∫
L1

41(t)
t̄ − (1/z)

dt̄ + 1
2pi

∫
L1

41(t)
t − z

dt

}
, z ∈ D1. (3.12)

This integral equation has to be stated as the following eigenvalue problem. To
find a non-zero function 41(z) and a constant l which satisfies equation (3.12).
The function 41(z) has to be analytic in D1 and Hölder continuous in D1 ∪ L1.

Similar problems were already discussed by Bojarski (1960) and by
Schiffer (1959), who considered the eigenvalue problem (3.6)–(3.7) when
9 = l. Schiffer (1959) proved that the eigenfunctions of that problem generate a
complete orthogonal basis in a Hilbert space; all eigenvalues are real, generate a
countable set and their moduli are greater than unity. This result does not fit to
the considered case with fixed 9 satisfying the inequality |9| < 1. However, it is
possible to extend Schiffer’s result to the problem (3.6)–(3.7) or to the equivalent
problem (3.12). This result will be presented in a separate paper with necessary
mathematical description of the functional space and singular integral operators.

In order to study the properties of the coatings and its dependence on the
core, one can numerically solve the integral equation (3.12) for various L1 and 9.
Applying polynomial approximations for the function 41(z), consider some
examples of a numerical solution to (3.12). All the computations are performed
for the normalized conductivity of the matrix s0 = 1. Let the shape of the core
of conductivity s1 = 3.36 be given by the curve z = 0.6eiq + 0.31e2iq + 0.07e3iq +
0.013e4iq (0 ≤ q < 2p). Three neutral coatings with different conductivity s are
presented in figure 2. It is interesting to note that the non-convex of the core
have convex and non-convex exterior boundaries of the coatings.
Proc. R. Soc. A
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Figure 2. The fixed shape of the core of conductivity s1 = 3.36. Neutral shapes of coated inclusions
for various conductivity: s = 1.64 (solid line), s = 1.54 (dashed line) and s = 1.32 (dotted line).

Another example with the boundary curve of core z = 0.5eiq + 0.35e2iq +
0.12e3iq + 0.06e4iq (0 ≤ q < 2p) is presented in figure 3. Here, we are looking for
similar shapes of the coatings for different s1. All the found shapes differ locally
near the point z = −0.5, where the boundary of coatings approaches to the core
with increasing s1.

4. Functional equation

As noted at the end of §3, it is convenient to consider (3.12) as an eigenvalue
problem with a fixed contour L1. Each fixed contour L1 on the plane z produces a
neutral inclusion on the plane z. In order to constructively solve the integral
equation (3.12), one can take an algebraic curve L1 and reduce (3.12) to a
functional equation. Any smooth curve can be approximated by an algebraic one.
The simplest algebraic curve L1 = vD1 is a circle. One can check that the circle L1
yields the circular annulus on the physical plane z described by Milton (2000). In
the present section, D1 is taken as an ellipse. This gives other non-trivial shapes
of the neutral coated domain.

Let semi-axis of the ellipse L1 be denoted by r(1 + a) and r(1 − a) (0 < a < 1,
r > 0). The Joukowsky conformal mapping

z(w) = r
(
w + a

w

)
(4.1)

transforms the annulus
√

a < |w| < 1 onto D1 \ G, where G is the slit (−2
√

a, 2
√

a)
along the x-axis (figure 4). The mapping (4.1) transforms D′ onto D and
D′

2 onto D2. The curve L′
2 bounds a Bell’s domain (Bell et al. 2009). The inverse
Proc. R. Soc. A
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1.00.5
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(b)

Figure 3. Closed neutral shapes of coated inclusions: (a) whole picture; (b) fragment near the point
z = −0.5. For various conductivity of the core s1 conductivity of coating takes the corresponding s:
s1 = 1.58, s = 172 (solid line), s1 = 2.79, s = 1.50 (dashed line) and s1 = 29.9, s = 1.18 (dotted line).

mapping to (4.1) has the form

w(z) = 1
2

(
z
r

+
√

z2

r2
− 4a

)
, (4.2)

where the branch of the root is chosen in such a way that limz→X±i0√
(z2/r2) − 4a = ±i

√
4a − X 2, for −2

√
ar < X < 2

√
ar .

Let t run over the unit circle. Then t = r(t + a/t) runs over L1. Introduce
the function

F1(w) = 41

(
w + a

w

)
= 41(z), (4.3)

analytic in
√

a < |w| < 1, (z ∈ D1 \ G) and Hölder continuous in
√

a ≤ |w| ≤ 1. It
satisfies the condition

F1(w) = F1

( a

w

)
, |w| = √

a. (4.4)
Proc. R. Soc. A
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Figure 4. Transformation of the domains D1 and D on the plane z onto D′
1 and D′ on the plane w.

The domain (D′
2)

∗ is obtained from D′
2 by the inversion w → 1/w̄ with respect to the unit circle.

Equation (4.4) implies that the function F1(w) can be written in the form

F1(w) = F(w) + F
( a

w

)
,

√
a ≤ |w| ≤ 1, (4.5)

where F(w) is analytic in |w| < 1.
We now proceed to transform equations (3.9) and (3.10) on the plane z to

deduce functional equations on the plane w. Similar method can be applied
to (3.12) with the same result.

Let z belong to D1. The integral from (3.9) becomes

1
2pi

∫
L1

41(t)
t − z

dt = 1
2pi

∫
|t|=1

[F(t) + F(a/t)](1 − a/t2) dt

t + (a/t) − w − (a/w)
, (4.6)

where z = r(w + a/w), |w| < 1. The integral (4.6) can be calculated by residues.
First, consider the integral

J1 = 1
2pi

∫
|t|=1

F(1/t̄)(t2 − a) dt

t(t − w)(t − (a/w))
, (4.7)

where the function F(1/t̄) is analytically continued into |t| > 1. It follows from
inequality

√
a < |w| < 1 that all roots of the denominator of (4.7) belong to the

unit disc except at infinity. Hence,

J1 = 1
2pi

∫
|t|=1

F(1/t̄)(t2 − a) dt

t(t − w)(t − (a/w))
= rest=∞ = F(0). (4.8)

The second part of the integral (4.6) can be calculated by residues at the points
t = 0; w; a/w lying in the unit disc:

J2 = 1
2pi

∫
|t|=1

F(at̄)(t2 − a) dt

t(t − w)(t − (a/w))
= −F(0) + F(aw) + F

(
a2

w̄

)
, (4.9)
Proc. R. Soc. A
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since the function F(at̄) is analytic in |t| < 1. The integral (4.6) is equal to
J1 + J2. Substitution of this result into (3.9) and the use of (4.3) and (4.5) yields

F(w) + F
( a

w

)
= −42

(
1
z̄

)
+ 9

[
F(aw) + F

(
a2

w̄

)]
, (4.10)

where
√

a ≤ |w| ≤ 1.
Now we transform the integral (3.10) written in the form

42(z) = 1
2pi

∫
|t|=1

[F(1/t̄) + F(at̄)](t2 − a) dt

(t + (a/t) − w − (a/w))t2
, (4.11)

where z = r(w + a/w) with |z | > 1, which implies that |w| > 1. Calculate the first
part of the integral (4.11) by residues in |w| > 1

1
2pi

∫
|t|=1

F(1/t)(t2 − a) dt

t(t − w)(t − (a/w))
= rest=w + rest=∞ = −F

(
1
w̄

)
+ F(0). (4.12)

The second part of the integral (4.11) is calculated by residues in |w| < 1

1
2pi

∫
|t|=1

F(at̄)(t2 − a) dt

t(t − w)(t − (a/w))
= rest=0 + rest=a/w = −F(0) + F

(
a2

w̄

)
. (4.13)

Substitution of (4.12) and (4.13) into (4.11) yields

42(z) = 9

[
F

(
a2

w̄

)
− F

(
1
w̄

)]
(4.14)

for z and w related by (4.1) and (4.2) when |z | > 1 and w ∈ D′
2. Introduce the

function F2(w) analytic in D′
2

F2(w) = 42

[
r

(
w + a

w

)]
. (4.15)

The relation (4.15) can be written on the plane z

42(z) = F2

(
1
2

(
z
r

+
√

z2

r2
− 4a

))
, |z | ≥ 1. (4.16)

It follows from (4.16) that 42(1/z̄) = F2(b(w̄)), where

b(w̄) = r + √
r2 − 4a(w̄ + (a/w̄))2

2(w̄ + (a/w̄))
.
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Therefore, equations (3.9) and (3.10) take the form

F(w) + F
( a

w

)
= −lF2[b(w̄)] + 9

[
F(aw̄) + F

(
a2

w̄

)]
,

√
a ≤ |w| ≤ 1,

and

F2(w) = 9

[
F

(
a2

w̄

)
− F

(
1
w̄

)]
, |w| > 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(4.17)

Substitute F2 from the second equation of (4.17) to the first one

F(w) + F
( a

w

)
= −l9{F[a2f (w)] − F[f (w)]} + 9

[
F(aw̄) + F

(
a2

w̄

)]
, (4.18)

where

f (w) = [b(w̄)]−1 = 1
2a

N∑
n=1

(2n)!r2(2n−1)an

(2n − 1)(n!)2

(
w + a

w

)2n−1 + O(r4N ). (4.19)

This functional equation (4.18) can also be obtained from equation (3.12).
Introduce the operator P+, which transforms Laurent’s series to its regular

part. More precisely, let h(w) = ∑+∞
k=−∞ hkwk ,

√
a < |w| < 1. Then (P+h)(w) =∑∞

k=0 hkwk , |w| < 1. Application of P+ to equation (4.18) yields

F(w) = 9F(aw̄) − l9P+{F[a2f (w)] − F[f (w)]}, |w| ≤ 1. (4.20)

Thus, we arrive at the following eigenvalue problem. To find F(w) analytic in
|w| < 1 and continuous in |w| ≤ 1 with a constant l satisfying equation (4.20).

5. Solution to functional equation

In this section, we solve the functional equation (4.20) using the polynomial
approximation

F(w) ≈
M∑

m=1

amwm (5.1)

with a fixed number M . The operator from the right-hand part of (4.20) is
compact in the Banach space endowed with the norm ||F|| = max|w|≤1 |F(w)| (see
Mityushev 1984). Therefore, approximate solutions of (4.20) can be found by
replacement of (4.20) with equations of finite rank operators. Substitution of (5.1)
into (4.20) and selection of the coefficients on wm (m = 0, 1, . . . , M ) yields such
an equation. Having used these arguments, Mityushev (1984) showed that the
polynomial from (5.1) tends to F(w) as M tends to infinity.

We also use approximations on r2 (r < 1). More precisely, all symbolic
computations are performed with the accuracy O(r2(2N−1)). For definiteness,
the power 2(2N − 1) is taken with an odd number 2N − 1. Substitute (5.1)
and (4.19) in the functional equation (4.20), and then select the terms with
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the same powers wm for m = 0, 1, . . . , M . As a result, we obtain a system of
homogeneous linear algebraic equations with respect to the coefficients am and
the spectral parameter l. This eigenvalue problem can be solved by a standard
scheme. Substitution of the rational approximation from (4.19) into (4.20) instead
of f (w) is justified by the compactness of the operator containing f (w). In order
to illustrate the algorithm, we take M = 4 and N = 8. Then the system becomes

− a1 + r2l9a1 + a9a1 − r2la29a1 + 3r6la29a1 − 3r6la49a1

+ 3r6la9a3 − 3r6la79a3 = 0

− a2 + r4l9a2 + a29a2 + 8r8la29a2 − r4la49a2 − 8r8la69a2

+ 4r8la9a4 − 4r8la99a4 = 0

r6la9a1 − r6la39a1 − a3 + r6l9a3 + a39a3 − r6la69a3 = 0

2r8la9a2 − 2r8la59a2 − a4 + r8l9a4 + a49a4 − r8la89a4 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.2)

Denote lj , (j = 1, . . . , 4) the eigenvalues of the system (5.2). For brevity, only the
first eigenvalue l is explicitly written

l1 = [2r8(−1 + a2)2(1 + a2 + a4)92]−1(r2(−1 + a2)9(−1 + a39 + r4

× (−1 + a(9 + a(−4 + a(9 + a(−1 + 4a9)))))) − √
(r4(−1 + a2)292

× ((−1 + a39)2 + 2r4(−1 + a2)(−1 + a39)(−1 + a(a + 9 + 2a29))

+ r8(−1 + a(9 + a(−4 + a(9 + a(−1 + 4a9)))))2))). (5.3)

Each lj yields a non-zero solution of the system (5.2). If l = l1, then a1 is an
arbitrary number, a3 = k1a1 and a2 = a4 = 0, where

k1 = r4a[−1 + a9 + a39 − a492 − r4(1 − a2)](1 − a39)−2

× [(1 − 2a9 − a39 + 2a492 − a2(1 − 92)]. (5.4)

If l = l2, then a2 is arbitrary, a3 = k2a1 and a1 = a3 = 0. If l = l3, then a3 is
arbitrary, a3 = k3a1 and a2 = a4 = 0. If l = l4, then a4 is arbitrary, a2 = k4a4 and
a1 = a3 = 0. Coefficient kj tends to zero as r → 0. This means that |kj | is small
for sufficiently small r . We do not write them all, because of their long form. The
normalized eigenfunctions corresponding to the eigenvalues (5.3) have the form

F(1)(w) ≈ w + k1w3, F(2)(w) ≈ w2 + k2w3,

F(3)(w) ≈ k3w + w3 and F(4)(w) ≈ k4w + w4.

}
(5.5)

The map u : U → G1 ∪ G1 ∪ G is a one-to-one if and only if 42(z) is a one-to-one
map. The function 42(z) is related to F(w) by (4.14). Therefore, 42(z) is one-
to-one in |z | > 1 if and only if the function F(w) = F(a2w) − F(w) is one-to-one
in the domain (D′

2)
∗, the image of D′

2 under the inversion with respect to unit
circle (figure 4). The function F(w) is one for the functions (5.5). Consider the
first function F(1)(w). Then F(w) = −w − k1w3 + wa + k1w3a3. Let w0 belong to
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Table 1. Structure of the eigenvalues. Empty places correspond to zero.

a1 a2 a3 a4 a5 a6

l1 1 k11 k12
l2 1 k21 k22
l3 k31 1 k32
l4 k41 1 k42
l5 k51 k52 1
l6 k61 k62 1

(D∗
2 ) ⊂ U . Then equation F(w0) = F(w) with respect to w0 has the following three

roots:

w1 = w0, w2,3 = −w0

2
±

√−(4 + 3k1w0
2(1 + a2 + a4))

2
√

k1(1 + a2 + a4)
. (5.6)

For sufficiently small r , the roots w2 and w3 lie outside the unit disc. This implies
that F(w) is one-to-one mapping in (D′

2)
∗. Similar calculations can be done for

F(w) with F(j)(w) (j = 2, 3, 4) given by (5.5). In all these cases, F(w) is not a
one-to-one mapping.

In the case M = 6 and N = 12, we have six values of l for which a system
similar to (5.2) has non-zero solutions. The result is summarized in table 1.

For instance, a1 = 1, a3 = k11, a4 = k12, a2 = a4 = a6 = 0 if l = l1. The
coefficients kij are not written here because of their long form. We only note
that |kij | are sufficiently small for small r . This implies that the eigenfunction
F(1)(w) ≈ w + k11w3 + k12w5 is a one-to-one mapping.

For arbitrary even M and N (N ≥ 2M ), we have M eigenvalues and
eigenfunctions. Only the first function realizes one-to-one mapping. It can be
approximately represented in the following form:

F(w) ≈ w + kN1w3 + · · · + kN ,M/2wM , (5.7)

where kN ,j tends to zero as r → 0. The conformal mapping u : U → G1 ∪ G1 ∪ G
is constructed via F by using (2.20) and (4.14):

u(z) = 9

⎡⎣F

(
a2

w(z)

)
− F

(
1

w(z)

)⎤⎦, (5.8)

where w(z) is given by (4.2). Consider an example based on the approximation
(5.5). Substitution of (5.5) into (5.8) yields u(z) ≈ z9(1 + r2z2a)(−1 + a2).
Examples of computations are presented in figure 5.

6. Conclusion

The coated neutral inclusion problem for two-dimensional media is formulated as
the eigenvalue R-linear problem (2.18)–(2.19) on the auxiliary complex plane z .
The later problem is reduced to the integral equation (3.12), where the closed
curve L1 can be arbitrarily fixed in the unit disc.
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Figure 5. Neutral shapes of coated inclusions. (a) a = 0.2, 9 = 0.9 and r = 0.8, (b) a = 0.7, 9 = 0.8
and r = 0.5.

Each solution of the discussed eigenvalue problem can produce a solution for
the neutral coated problem, if only the function u(z) from (2.20) is a one-to-
one map. Examples given in §5 show that the following conjecture can be posed.
There exists at least one eigenfunction of the problem (3.9)–(3.10) or of (3.12) so
that the corresponding function u(z) = 42(1/z) constructed by (3.11) is a one-to-
one map of the unit disc onto G1 ∪ G1 ∪ G2. This conjecture is equivalent to the
existence of at least one eigenfunction from an infinite set of all eigenfunctions
such that u(z) in |z | < 1 has the unique zero at origin. Integral equation (3.12)
gives a constructive algorithm to solve the neutral inclusion problem, since
eigenvalues l and eigenfunctions f1(z) can be computed by standard methods
due to Krasnosel’skij et al. (1969). Then u(z) is constructed by (2.20) and (3.11).
Furthermore, zeros of u(z) in the unit disc have to be investigated (see for instance
Kravanja & Van Brel 2000). If z = 0 is the unique zero of u(z) in the unit disc,
the shape of the neutral inclusion is given by formula z = u(eiq), 0 ≤ q ≤ 2p.

In the earlier mentioned algorithm, 9 is a fixed number and l is unknown. Using
formulae (2.12) and (2.17), it is easy to state the eigenvalue problem in which
conductivity s has to be found. The spectral parameter l is a function of 9, i.e.
l = l(9) (see for instance (5.3) when L1 is an ellipse). Then s can be determined
from equation (s + s0)/(s − s0) = l((s1 − s)/(s1 + s)) with fixed s0 and s1.

It is difficult to precisely compare our results with Milton & Serkov (2001)
since the R-linear problem (2.18)–(2.19) does not coincide with the corresponding
problem (3.17)–(3.18) from Milton & Serkov (2001) in the limit cases when s1 = 0
or s1 = +∞. Moreover, it is difficult to match two results taken from two different
infinite sets of all results. We can suggest that fig. 2(a) and (b) from Milton &
Serkov (2001) can be obtained by using our approach when L1 is an ellipse.

The results obtained in this paper allow us to make the following conclusion.
Any two-dimensional core, i.e. a core of an arbitrary smooth shape and of
an arbitrary conductivity, can be coated by such a material that the coated
inclusion inserted in a matrix of an arbitrary fixed conductivity does not disturb
the uniform field outside the inclusion. This conclusion can be justified by
the following arguments. Any simply connected domain G1 ∪ G ∪ G can be
conformally mapped onto the unit disc; L1 in figure 4 is the image of G1 in figure 1.
For any Hölder continuous curve L1, the integral equation (3.12) has non-trivial
eigenfunctions. For sufficiently small ratios of the areas |G1|/(|G1| + |G|) (that
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is equivalent to small r in §§4 and 5), one of the eigenfunctions produces the
required conformal mapping u(z). Therefore, this eigenfunction determines the
shape of the coating G2 (figure 1), and the corresponding eigenvalue determines
the conductivity s of the coating. It is not yet known whether the area of coating
|G| can be small, i.e. |G1|/(|G1| + |G|) is of order 1. This question is related to the
condition that u(z) must be a one-to-one map. The earlier mentioned discussion
is restricted to inclusions with smooth boundaries. The physical and geometrical
properties of the coating inclusions can be systematically investigated via the
integral equation (3.12). Some examples are discussed at the end of §3.
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