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way.

Electroosmotic flows are studied in wavy channels by expanding the solution into a double series in
terms of the dimensionless amplitudes and of the dimensionless zeta potential for a binary dilute elec-
trolyte. The expansion technique by means of formal calculations is described. Some examples are illus-
trated and discussed for two and three dimensional channels. The importance of the varicose or sinuous
character of the channels as well as the role of high frequency roughness are demonstrated. These fea-
tures may be used for practical purposes in order to amplify or diminish coupling effects in an algebraic
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1. Introduction

The study of electroosmotic flows through porous or dispersed
media is important from a fundamental standpoint and for indus-
trial applications. Among these applications, micro- and nanoflows
are becoming more and more important [1]. The electroosmotic ef-
fects can be induced by two factors, namely when an electrolyte is
submitted to an external electric field E and when a macroscopic
pressure gradient Vp is applied to the flow. The electroosmotic
phenomena are governed by a system of non-linear partial differ-
ential equations consisting of the Stokes equations, the convec-
tion-diffusion equations and the Poisson equation. All these
three equations are coupled and this feature makes their resolution
a very difficult computational problem.

The external “forcing factors” (or generalized forces) E and Vp
generate a macroscopic current density I and a Darcy seepage
velocity u which for small E and Vp are given by the linear formu-
lae [2,3]

I=6¢-E—a-Vp, )
u=o -E— vp.
where ¢ and K are the electric conductivity and permeability tensors;
«is the coupling electroosmotic tensor; the superscript T denotes the
transposition operator. These three tensors are spherical for isotropic
media. All the quantities in (1) are macroscopic quantities.
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Since many experiments use rectangular channels, it was found
interesting to evaluate these tensors for channels with wavy walls.
Extended reviews of these processes before 1996 were given in
[2,3]. Some recent contributions based on homogenization should
be mentioned such as [4-7]. Several papers about analytical and
numerical simulations in channels can be added. Electroosmotic
flow and chaotic stirring were investigated by Qian and Bau [9]
in rectangular cavities with a non-uniform zeta potential distribu-
tion ¢ on the walls. The streaming current fields in an undulated
channel were analytically studied by Brunet and Ajdari [10] thanks
to a simplification of the electroosmotic equations. A numerical
scheme was developed by Patankar and Hu [11] to simulate the
electroosmotic flow between two channels. The lattice Boltzmann
method was applied by Zu and Yan [12] to the electroosmotic flow
between two parallel plates induced by moving vortices near the
walls. Analytical solutions were derived by Gao et al. [13] for the
flow of two liquids that relate the velocity profiles and flow rates
to the liquid holdup, the aspect ratio of the microchannel, the vis-
cosity ratio of the two liquids and the externally applied electric
field. The basic concepts and a mathematical formulation of micro-
flow control and pumping using electrokinetic effects were pre-
sented by Karniadakis et al. [1] with a discussion on numerical
methods such as finite element and spectral element methods in
stationary and moving domains. The physical mechanisms that
lead to the charge inversion and flow reversal phenomena were
discussed in [8].

Though the non-linear effects of the equations are taken into ac-
count in some of these references as well as some couplings such
as between electrokinetic effect and elasticity [6], it was assumed
that the ionic potentials (defined by Eq. (10)) satisfy separate
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equations. This assumption decouples the electroosmotic equa-
tions since the ionic potential was calculated independently and
substituted into the Stokes equation as an external force. The influ-
ence of the velocity on the ionic field was not taken into account.
Therefore, the fully coupled equations were never addressed before
to the best of our knowledge in an analytical way.

The linearization of the electroosmotic equations while preserv-
ing their coupling is a natural simplification after which the coupling
tensor « can be determined. Investigation of the dependence of « on
geometry is a challenging task. This dependence is known for simple
geometries [2,3] (parallel plate channel, circular cylinder, semi-infi-
nite space). For a plane channel of width 2b, the tensors « and K are
simplified into the scalar coefficients o and K which are related by

o 3 (tanh(;cb) B 1>'

K e\ wb 2

The value k! is known as the Debye-Hiickel length [2,3].

In the present paper, the linear method [2,3] is used and the
problem is solved for a curvilinear channel. An analytical method
presented in [15] is applied to a channel enclosed by two wavy
walls whose amplitude is proportional to the mean clearance of
the channel multiplied by a small parameter ¢. The dimensionless
zeta potential { is taken as the second small parameter of the prob-
lem. The application of the analytical-numerical algorithm yields
analytical formulae for the electric potential y, the ionic potentials
®; (i=1,2) of a two-component dilute electrolyte, the fluid veloc-
ity u and the pressure p. These formulae include the spatial coordi-
nates and ¢ in symbolic form. These formulae are subsequently
applied to the determination of .

This paper is organized as follows. Section 2 presents the basic
equations. A 3D curvilinear channel is described in Section 2.1 in
terms of the double Fourier series which describe its walls. Linear-
ized equations are written in Section 2.2. In Section 2.3, dimension-
less variables are introduced and equations are rewritten in these
variables.

The electric potential  satisfies a separate boundary value
problem which is solved in Section 3 by an expansion in terms of &.

The main algorithm to determine the ionic potentials @;
(i=1, 2), the fluid velocity u and the pressure p is detailed in Sec-
tion 4 where the second small parameter ( is introduced. The main
idea of the method is to apply perturbations in ¢ following [15].
Then, a cascade of partial differential equations for a plane channel
with prescribed boundary data is derived. The successive problems
are solved by expanding the unknown functions into double Fou-
rier series of the spatial variables.

In Section 5, the coupling coefficient « is derived by using the
Fourier series derived in the previous section. Then, examples com-
puted up to O(£3) and up to O(*) are presented and discussed.

In Section 6, a series of applications are made to two and three-
dimensional channels. The role of the varicose or sinuous character
of the channel is discussed as well as the importance of high fre-
quency roughness.

Approximate analytical formulae for the velocity and for the
coupling coefficient are given in Appendices A and B, respectively.
The final formulae are presented in such a way that parameters can
be changed and the corresponding plots obtained.

2. General
2.1. Geometry

Consider a 3D channel bounded by the walls
z=S"(x,y)=b+DbeT(x.y), z=5 (x,y)=-b+DbeB(xy), (3)

where (x,y,z) are the spatial coordinates; T(x,y) and B(x,y) are
smooth periodic functions with the period 2L along x and y.

T(x,y) and B(x,y) correspond to the top and bottom surfaces of
the channel, respectively. ¢ is a dimensionless geometrical parame-
ter which characterizes the roughness of the channel walls; it is
generally assumed to be small with respect to 1. Fig. 1 illustrates
these geometrical parameters for a two-dimensional channel.

The functions T(x,y) and B(x,y) can be expanded into double
Fourier series which are conveniently presented in the complex
form

T(xy) =Y Taef®  Bxy) =Y Byefe®, 4)
st st

where i is the imaginary unity; s and t run over integer numbers
from —oo to cc. Since the functions T(x,y) and B(x,y) are real, their
Fourier coefficients satisfy the relation

T—sA—t = (Tst)*7 B—s,—t = (Bst)*7 (5)

where * stands for complex conjugation. Since the average positions
of the top and bottom walls are equal to b and to —b, respectively,
this implies

L L
TOO = / / T(X,y) dXdy = 07 BOO =0. (6)
J-L J-L

The functions T(x,y) and B(x,y) are assumed to be dimensionless
and bounded by unity.

2.2. Equations

Consider a monovalent binary electrolyte close to equilibrium
of density p, dynamic viscosity ¢ and electric permittivity €. Let
D; denote the diffusion coefficient, ®;(x,y,z) the ionic potential of
the ith component of the electrolyte (i = 1, 2), u(x,y,z) the liquid
velocity and p(x,y,z) the pressure. Since stationary processes are
addressed, the above quantities are functions of the spatial vari-
ables (x,y,z) only.

Let n}* denote the value of the ion concentration n; (i =1,2) at
zero potential, i.e., far from the solid walls. The ion concentration n;
is governed by the Boltzmann distribution

m = exp (— ), @)

where z; = —z; = 1 is the ion’s algebraic valency, k the Boltzmann
constant, T the absolute temperature and v the electric potential
of the solute. The electric charge density p can be expressed as
[2-14]

_ — —en*sinh¥
p=e(m —ny)=—en SmhkT’ (8)

where n* = n{* + n3° and e is the arithmetic charge of the electron
equal to 1.6 x 107 C.

2b

2L

Fig. 1. Two-dimensional channel.
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Introduce the Debye-Hiickel length [2-14] !

I i 9)

EE[’(T

These phenomena are governed by the Poisson-Boltzmann equa-
tion, the convection diffusion equation and the Stokes equations
which are coupled (see [2] for details). It is usual to assume that
the external fields E and Vp are small which implies that the con-
centration distributions and other quantities do not differ signifi-
cantly with respect to their equilibrium values denoted by the
superscript °. The ionic potentials are introduced by means of rela-
tion (7)

n; = n exp (—%(w oy + ) (10a)
=nfexp (— 20y + b)), (10b)

where dy is a small local disturbance to the potential . The Pois-
son-Boltzmann equation, the convection diffusion equation and
the Stokes equations were linearized in [2,3]

V2 = K2y, (11a)

V2o, =V - ( Vo, +Dl ) (11b)
2 1

Vo, =Vy - < kTV¢2+D ) (11¢)

29— M4 e
uvu=vp+ - [( 1+an//>V<1>1+(1+kTw)vq>2] (11d)
V-u=0, S (xy)<z<S(xy), (11e)
where V stands for the gradient operator.

The boundary conditions were described in [2,3]
vxy. S xy)] =C (12a)
ufx,y,S*(x,y)] =0, (12b)
p(L y, Z) _p(_L7y7Z) = ZLW, (12(:)
0D; )

Sy yS @y =0, (i=12) (12d)
where 2 is the outward normal derivative to the surfaces (3). In

accordance with (12a), the electric potential y is equal to the con-
stant potential { on the walls; a constant charge density could have
been implemented as well without changing the algorithm signifi-
cantly. The velocity of the viscous fluid satisfies the no-slip condi-
tion (12b). Eq. (12c) corresponds to Poiseuille flow when the
external pressure gradient Vp is applied along the x-axis. Here,
the distinction between Vp and Vp can be explained; the first gra-
dient is a local pressure gradient at a given point (x,y, z) while Vp is
the volume average of Vp over the unit cell which corresponds to a
spatial period. Eq. (12d) means that the walls are impermeable to
the ions. Define the generalized pressure g by

en* en*
g=p——5 P+ 5 P, (13)

g can be used to transform (11d) into

uViu = Vg + Vo, + Vo). (14)

il
The coupling tensor « was introduced in [2,3] by linearizing the
Poisson-Boltzmann equation (see formula [55a] from [2]). For a
channel, it can be simplified into a scalar along the main direction
of flow

_Eqi?

= (Ju), (15)
p

where (f(x,y,z)) denotes the volume average of the function
f(x,y,2) over the unit cell.

Of course, the permeability K of the channel along the x-axis
verifies Darcy law when E is zero

__*
K=, (16)

where u is the x-component of the velocity u.
2.3. Dimensionless variables and equations

In the present subsection, Egs. (11)-(14) are written in a
dimensionless form. ¢ T(x,y) and B(x,y) are introduced above as
dimensionless values. The position vector r = (x,y,z) is made
dimensionless by k!

=xr. (17)
Other quantities are made dimensionless as follows
=My KBy =My noien,
kTn" | ’ e? .
= D= 12“2131, g=kTn'g, (18)

(17) implies that the differential operator V takes the following
dimensionless form

V' =KkV. (19)

Following [2,3], introduce the dimensionless coefficient ' and the
dimensionless permeability K’

_ kT

o, K=kK7K. (20)
el
Introduction of these definitions into (15) and the use of (9) imply
3 2
— AWy with A=S8 (’LT> . 1)
Vp \ e

A similar transformation of (16) yields
K' = -A). (22)

Using (17), the problem (11)-(14) is rewritten in a dimensionless
form. For shortness, primes are omitted below and in the rest of this

paper

Vi =y, (23a)
V2o, =Vy- <qu>1 + Dllu), (23b)
V2®, =V - <—v<1>2 + [%u), (23c)
Viu= Vg+%l//(v¢1 + V), (23d)
V-u=0. (23e)

Egs. (23) are fulfilled in the domain S™(x,y) <z < S*(x,y). The
boundary conditions become

Y%y, ST xy)] =¢ (242)
ufx,y,S*(x,y)] =0, (24b)
g(L,y,2) - g(-Ly,2) = Vg, (24¢)
agb [x y.55(xy)] = (i=1,2). (24d)

The geometrical parameters of the channel can be arbitrary. All the
other physical and chemical quantities are kept constant and equal
to



A.E. Malevich et al. /Journal of Colloid and Interface Science 345 (2010) 72-87 75

€a=70x10""Fm!, e=16x10""7¢,
k=138x102JK"', T=300K pu=10x10"3Pas,
{=-002V, 5x10° <Kk 1<25x10° m. (25)
The range of k! corresponds to the experimental one in [18]. If for

illustration purposes, Na* and CI~ are taken as cation and anion, the
diffusivities are [18]

D;=1334x10°m?s™", D, =2032x10"m?s™". (26a)
The corresponding dimensionless values are
{=-0.773, D;=2.846, D,=4.336. (26b)

Of course, all these quantities may take other values depending on
the nature of the ions and the physicochemical conditions. In the
formal development, { is used in symbolic form. The linear charac-
ter of Egs. (23b), (23c), (23d), (23e), (24b), (24c) and (24d) imply
that @;,u, g are proportional to Vg. Hence, without loss of general-
ity Vg can be normalized.

The major features of this system can be summarized as
follows. Eq. (23a) with the boundary condition (24a) can be consid-
ered as an independent boundary value problem. Egs. (23b), (23c)
and (24d) describe the ion distributions in the channels. Egs. (23d),
(23e), (24b) and (24c) are coupled and cannot be treated
separately. This latter fact complicates the whole problem.

3. Electric potential
3.1. Derivation of the solution

Since v is not coupled with u and @; (i =
pendently in this section. It verifies

VA =y, Yxy.Sxy)] =C 27)

Y can be written as a series

1,2), it is solved inde-

V(xy,2) =) vy, 2)e. (28)
k=0

The following Taylor formula for an analytic function F is applied to
the boundary conditions (24a) [17]

00 Azn
FZ+AZ)=>" =

n=0

F™(2). (29)

Let us apply (29) to y evaluated on the top surface, i.e., with Z =b
and AZ = beT(x,y)

i eb"T" (x,y) "y

VX, ¥,b + beT(x,y)] o o

(x,y,b). (30)

n=0
Substituting (28) into (30) and rearranging the series yields
0 k
WXy, b+ beT(x,y)] = > &" Z BT (x.y) v IVnkxyb). (31)

k! ozk

n=0 k=l

A similar formula can be derived on the bottom surface

—b + beB(x,y)]

k pk
VK.Y, — ﬂvzg ZbB(!Xy)dwnk

n=0 k= 82"
x (X,y,—b). (32)
On the walls, y is equal to {. Use of (31) and (32) and selection of the

coefficients with the same power of ¢ yields a classical cascade of
problems for the plane channel —b < z < b. The zeroth problem is

vzl:bo = [//07 (//O(vaab) = l//O(Xv.y> 7b) =1 (33)

Therefore, , depends only on z. Then, (33) becomes the boundary
value problem for an ordinary differential equation

v b b 1 4
a2 =to, —b<z<b, Yol =ol,ep = (34)
whose classical solution is

coshz
Volx.y.2) = . (35)

The next terms y, can be constructed by recursive formulae. If the

functions y,..., ¥, ; are known, the nth problem of the cascade
has the form
Vz!//n = l//nt (363)
n kak X, 8/( ~
by b) = =3 PL I Ty ) (36b)
b*B(x,y) &
oy, by = =30 PEEI Ty, ) (36¢)

k=1

where the right-hand parts of (36b) and (36¢) are known from the
previous steps of the cascade. The problem (36) can be solved by the
Fourier method [16]. y,, is expanded as a Fourier double series

Ua(%.y.2) = Y W (2)eTD), (37)
st

Convention for summation on s and t are the same as it is described
for double Fourier series (4). In order to calculate the coefficients
W,st(z), substitute (37) into (36) and select the coefficients of
e+ Standard manipulations yield

Wi (2) = a) Pnst(2), —-b<z<b, Wn(b)
= Cnsh "I'Inst(_b) = Dnst: (38)

where

Wgt =T \/52+t Wy =/1+w%=4/1+ 52+t2 (39)

Cpse and Dy are the Fourier coefficients of the functions in the right
parts of (36b) and (36c). It is worth noting that C,s and D, are cal-
culated by the functions y; (j = 0,1,...,n — 1) found in the previous
steps. The solution of the problem (38) has the form

sinh sz
sinh b’

coshwgz 1

1
¥net(2) =5 cosh yb )

2
The proposed algorithm can be applied to any power of ¢. Similar
algorithms were given in [15] up to O(&*°). In the present paper,
the precision is restricted to O(&?).

Application of (40) yields solutions to the first- and second-or-
der problems in ¢

btanhb (To— )coshwﬁz
2 St 7 cosh g b

(Cnst + Dnst) (Cnst - Dnst) (40)

sinh @z
Wig(z) = — + (T + Byt) St }

) sinh @yb|’

(41)
where Ty and B are the Fourier coefficients of the boundary sur-
faces (see (4)). The functions W,«(z) have the form (40) with
n = 2 and with

12 Bpg+Tpq cosh2sch — Tpg
Coa = b3 Topig | @ tanh b BnfSeioad _Ta],

2 Tpg+Bpg cosh2wgbh B (42)
Das = b 2B e [ tanh b Teliaconiond b,
Convention for summation on p and q are the same as it is described
for double Fourier series (4).

Therefore, the electric potential y has the form (28) and (37)
where W,«(z) is given by the recursive formula (40). The first



76 A.E. Malevich et al./Journal of Colloid and Interface Science 345 (2010) 72-87

two functions Wi (z) and W (2z) are written in the form (42). It is
worth noting that the above formulae hold for arbitrary T(x,y) and
B(x,y) if they are twice differentiable. The convergence radius of
the series (28) was estimated in [15] as well as extensions to large
¢ and to non-smooth channels.

The electric charge density can be derived from (8) when y is
known.

3.2. The linear approximation of the Poisson-Boltzmann equation

In the previous developments, the non-linear equation (8) is
approximated by (27) with the classical approximation
sinh X =~ X valid for small X. When the next term is taken into ac-
count,  for a plane channel (¢ = 0) is given by

coshz

V(XY,2) = s L s (%9, 2)0 (43a)
with
. cosh3b+12bsinhb
Vs (x,3,2) = T92cosiD cosh3z+ 1225mh27W coshz}
(44)
The relative errors max,| L] | and max, il \which are given in Fig. 2

are seen to remain smaller than 5% acrc‘)vsdg the channel. The relative
error of the gradient is also estimated since it is present in the equa-
tions for @; (23b) and (23c).

The disturbance due to ¢ does not essentially change the result
because the final formulae contain the term &2¢> which is small
even for the undisturbed terms caused by ggg}}g Therefore, the lin-
ear approximation (27) of V?y =sinhy is numerically justified

for data such as (25) and (26).

4. General algorithm for the coupled problem

In this paper, expansions are restricted to the orders O(&?) and
0(¢*). Following [15], expansions on ¢ and ¢ are used to reduce
the coupled equations (23b), (23c), (23d), (23e), (24b), (24c) and
(24d) to boundary value problems for the plane channel
—b < z < b. The latter problem can be solved by the method of
separated variables via power series in ¢ and ¢, and double Fourier
series in x and y

B(xy,2)= Y (e bulxy.2) = CF Y (2, ((=1.2), (44a)
n,k=0 k=0

uxy,z) =Y (" uy(xy.2) Z (e Zunkst eE), (44b)
n,k=0 nk=0

where formally n and k can run from O to infinity. However, in the
forthcoming symbolic computations, the largest values for them are

0.05

0.04 | DL

0.03

0.02

0.01

0.00 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. The relative errors on y (solid line) and Vy (broken line) as functions of z
across the plane channel calculated by (43a) and (44). b = 1.

equal to 4 and to 2, respectively. Hence, the sum on n and k is finite
while the sum on s and t is an infinite double Fourier series. Further,
sums with different subscripts are used. For instance, u, means that
an expansion in { is used, u,, a double expansion in ¢ and &, u,s a
series in ¢, ¢ and x,y. The function g(x,y,z) is also expanded as

g(x.y,2) Z ("e'gu(x,y,2) Z :"skzgnkst

n,k=0 n,k=0

% SX+ty) . (45)

Convention for summation on s and t are the same as it is described
for double Fourier series (4).

4.1. Ionic potentials

Eqgs. (23b) and (23c) expanded in { yield the cascade
V2P = Vi - [(-1) Vi 4D M|, (1=1,2). (46)

These equations directly show the coupling, i.e., the presence of
lower order terms in ¢ in the right-hand side. A further expansion
of (46) in ¢ yields

00 00 k
Z e v? Dy = Z & Z Vim - (V@l.n—Lm + D;lun—l.m) ) (47)
k=0 k=0 m=0

where only one equation (i = 1) is written for shortness. When the
coefficients in the same powers of ¢ are selected and when (35) is
used which implies Vy, = (0, 0,02, the following Poisson equa-
tions are derived

vz(plnk = F]nky (48)

where
F]Ok = 07

k-1
Fyp — (D Wy L m) sinhz+ Y Vi - (VPip1m  (49)
m=0

+D;]“n—1,m)>

where u = (u, v, w). The Fourier coefficients of F, are calculated by

d¢l n—1kst

kasxz):(n;lwnq.ksﬁ 2 )sinhz

—1
T] Z Z‘//k ms—p—ql(S = P)Un-1mpq + (£ — q) Vn—1,mpq]
m=0 pgq
k-1 7T
- Z L_2 [( p)p + (t - Q]lpk—m,s—p,t—qél-ﬂfl-,mpq
m=0 pgq
k= d
+D Z lpk ms— pt q (50)
m=0 p.q

Convention for summation on p and q are the same as it is described
for double Fourier series (4). An analogous formula holds for the
second ionic potential

Fanst(Z) = (Dz_]wn—l.kst - a—z

Zzlpk msptq

— D)Un-1.mpq + (£ — @) Un—1,mpq]

m=0 pgq
k-1
+ Z T2 [( pp+(t- q)Q]‘/’k—m,s—p,t—q(pz-nfl-me
m=0 p.q L
d
+D2—1 Z wk rg;pt q (51)
m=0 pgq

When Fourier series are used, (48) implies the ordinary differential
equation
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dz (pincs
oD

60 (pmkst( ) Finkst(z)~, (l = 172)7 (52)
where w; has the form (39). The general solution of the differential
equation (52) with non-zero wy; is

Dinist (2) = Ciy sinh gz + Cip cosh gz
1 .
L L / Sinh {04 (Z — &)|Fintse(€) A&, (53)
Wst J_p

where C;; and C;; are undetermined constants which have to be
found from the boundary conditions. The functions Fiu(z) are pre-
sented through the Fourier coefficients of the unknown functions
found in the previous steps of the cascade by (50) and (51).

The boundary condition (24d) is transformed as follows. First,
the unit vector n normal to the top surface is written in the form

n=(0,0,1) — ebVT where VT = (GT oL 0) An analogous formula

X1 dy >
can be derived for the bottom  surface
= (0,0,—1) + ¢bVB. Then, (24d) expanded by { becomes

8(15 0 0Dy
ZC ln Z‘ < a;n(

k
The selection of the coefficients with the same powers of ¢ in (54)
yields a cascade of boundary conditions. It is convenient to expand
the latter formulae in double Fourier series in terms of the functions
found in the previous steps. These formulae for & (k = 0,1,2) are

where

bV Bin1 - VT)] ,,=0 (i=1,2).

(54)

Zinost (T) d(pézm (b) = 0:
Z;

inlst (T) dd:i"m (b) = _b pzc; Ts—p‘t—q [FinOpq (b) + 7{_22 (Sp + qt) d’inOpq (b)] 5

ZmZSt(T) dq‘gnzs[ ( ) = _b§Ts—p‘t—q [Finlpq (b) ""%zz(sp +qt)¢in1pq (b)]

3
b2 d 4’in0pq
- Z TS*P*P]-[*‘]’QITPLCII{ dz3 (b)

p.q.p1.41

22 (pip-+4,0) (b))
(55)

where Fipyyg (i=1,2; k=0,1) is given by (50) and (51). (55) yield
analogous formulae for the bottom surface when T is replaced by
B, F.(b) by F.(~b) and &_(b) by &_(~b).

Substitution of (53) into (55) and solution of the corresponding
linear algebraic system of second-order yields formulae for C;; and
Cj in the kth step

Cin =5 sinlll b <Zi"k5[(T)a:stZi"k5‘ ®, Tingst SINh @5t b — J 4, COSH wstb> :
2= 3 COSll'l oub (Zi"kSt(T)a:tZi"kSt B + Iingst SINh gt b — J 4 COSA ws[b> ,
(56)
where Zinst(T) and Zinkst(B) have the form (55),
Linkst = o / Finkse(¢) sinh(&) dé,
Just = 5 / Fua(£) cosh()de. (57)

Formulae (53), (56) and (57) express the functions @, (z) in closed
form. Moreover, all integrals in these formulae can be calculated at
each step with elementary functions, since each integral consists of
hyperbolic trigonometric functions multiplied by polynomials. Inte-
gration of such a function yields a function of the same type which
becomes an integrand at the next step of the cascade and so on.

4.2. Velocity

Computation of the velocity follows the lines presented in the
previous section. However, the velocity satisfies the Stokes equa-
tions (23d) and (23e) which are more complicated than the Poisson
equation.

Substituting the series (44b) into (23d) and (23e) and equating
the coefficients with the same basic functions yield the following
ordinary differential equations for the components of u =
(unksh Unkst s Wnkst)

llnks[ (Z) w?tunks[(z) L gnks[(z) + Fnkst( )
m( 2) — 02 Vit (2) = P&t (2) + 2 Gri (2), (58)
d* Wnkst( ) Cl)?thkst( )

dgnkst (2) + nm( ),
) =

P (SUpgst (2) + Vst (2)] + dwﬂm (z

where the functions Fps;, Guse and Hyse are expressed in terms of
the functions @;,_1 4y calculated in the previous steps

FOkst = GOkst = HOkst = 07 (59)
1 k
Fnkst = E Z Zpl//k—m,s—p.t—q(qsl,n—l‘mpq + ¢2,n71‘mpq)7
m=0 pq
Grkst = ZZZqu ms—p,t— q((p“l 1mpg + Pon- 1qu) (60)
m=0 pq
d(p],nfl‘m d(DZ 1,
nkst*zr;);‘,bk ms— ptq< o Pq SZ mpq)/ n>0.

As in (47) for the ionic potentials, the coupling is due to the lower
order @-terms in the right-hand side.

Application of the Taylor formula (29) to the boundary condi-
tions (24b) implies

unOst(ib) = 07 unkst(b) = Unksh unkst(*b) = vnksh (61)

where Uy and V. are the Fourier coefficients of the functions

KODMT™(X,y) 0™

- r; m Hzm ( Y, b)7
"B (x.y) 0"k
- n; m! Hzm (x7.y7 7b)‘ (62)

respectively. The first terms in ¢ (k = 1,2) can be written as

du,, dun
Uﬂlsf =-b Z TS*P-F(I d;)pq (b), vnlst =-b ZBs—p.t—q d;pq (_b)7
p.a p.gq

b’ d’u
D) =5 3 Y Teppeaa—gar (b), (63)

dunl
112st* bZTs p.t—q pq

P.q P14
dl.lmpq d unOpq
VnZst:—bZBsfp-tq (= b)——z ZBspmtqq] dz2 (=b).
pq pgq p1:4h

Then, the general system of ordinary differential equations (58) is
solved with the boundary conditions (63). The cases ws =0 and
ws # 0 must be investigated separately.

The detailed solution is given in Appendix A.

5. The coupling coefficient
5.1. General

The dimensionless coupling coefficient is related to the dimen-
sionless electric potential and the dimensionless velocity by for-
mula (15) where primes are omitted in non-dimensional values
for shortness. The averaged (yu) can be calculated by the double
integral
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1 L L ST(xy)
(Yu) = — / / dxdy / yudz, (64)
Tl Joo Jo Js(xy)
where |7| is the dimensionless volume of the periodicity cell
Lol
o= [ ]S ) =S (x)dxdy = 801, (65)
-LJL

The integral (65) is calculated by application of (3)-(6).

The division of the dimensionless coupling coefficient (21) by
the dimensionless permeability (22) and by the dimensionless
parameter { yields

{yu)

u)

(66)

U] o=

K

The zero approximation (A2) for u and the zero approximation
Yo = (Y, derived from (35) and (A2) imply that

m W2
(tloo) = *%7 (67)

J— h
(Wouoo) = (Vp (ta?’ b_ 1)~

Division of the left equation by the right one in (67) and substitu-
tion of the result into (66) yield the dimensionless version of (2)

ﬂfi tanhb_1
Ko p2\ D ’

(68)

where oy and K, denote the coupling coefficient and the permeabil-
ity for the plane channel.

5.2. Expansion of the coupling coefficient

Calculation of (yu) and (u) for wavy channels requires their
e-expansion. These expressions are obtained in Appendix B. (yu)
is given by (B7) and (B9) with an accuracy 0(¢?) and O(¢*). (u) is
given by (B10) and (B11).

6. Applications
6.1. Two examples

As a first application of the algorithms, consider the two-dimen-
sional channel v*; bounded by the walls (see Table 1)

z=Db+ bgcosx, z=—b— becosx, (69)
iie, L=m, T 10=T10o=—-B 10=—B1o=0.5; the other Fourier
coefficients T, and B, are equal to zero. In this example, the electric

potential up to O(&®) has the form

Table 1

-1 /4 a2 -z O a4 w2 w4 @

Fig. 3. The level plot of  and streamlines in the channel (69) with
b=1, {=-0773,¢e=02and L =m.
coshv2z

—— " sinhb
cosh v2b :

¢
V= coshb

- ﬁ 03 2x cosh v/5z
4 coshv/5b

+coshz(1 — 2v2 tanh btanh \/ib)} }

{coshz —¢ebcosx

x (coshb — 2v/2 sinh btanh v2b)

(70)

A level plot of y is displayed in Fig. 3.
Then, the permeability K, the coupling coefficient o and the
combination A = % are obtained as

K = 0.053052 + £*(—0.190647 — 0.000229: — 2.55 x 10°°¢
+327x107¢Y

o = —0.037944¢ + £2(0.091295¢ + 0.000160¢> +1.79 x 1075¢*
—229x107)
% = —0.715218 + £2(—0.849336 — 0.000061{*> — 6.86 x 1077
+8.70 x 1078¢%).

These formulae can be noted as

K = Koo + € (Koz + Kol + K32 + Kap (), (71a)

o = g0l + & (o2l + 0328 + otaal* + 0520), (71b)
o

A=—=Ap + & (A + Anl® +An® +Anl®) (71c)

K

where the first index n corresponds to the order in ¢, and the second
one k to the order in ¢ (see Tables 2, C.1-C.3 and C.4).

A first remark which can be made on these coefficients is that
K2, 0ny12 and Ay are very small when n > 2. Therefore, the correc-
tion due to higher orders in { because of the coupling between the
ionic potentials and the flow is usually very small. It should be no-
ticed that the discussion will be mostly focused on Ky, and a4, in
the following.

The two-dimensional configurations addressed in Section 6.2. Some of them are illustrated in Fig. 4.

Channel [0} Top wall Bottom wall Comment
Ctop Stop Chot Shot

Vn n 1 0 -1 0 n=1,...,12

Pn n 1 0 1 0 n=1,...,12

In 1,2,n £.0,4 0,-3.0 -£,0-4 02,0 B=3 0009112

“ 1.35.7.9 1,-3.4,-3.4 0 ~14,-43,-} 0

(2] 5,13 0,1 -1.0 0,-1 1.0

3 5,8,13 0,0,% -1,0,0 0.4,0 0,0,-1

Ca 1,2 £.0 0,—3% 2.0 0,—4%

s 123,456 Lhddbd 0 —b-b-d-d-b-d 0

Ce 1 0 0 -1 0
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o2(1)

Aoz (1)

—0.09578348 +0.10634841n
—0.09918129 + 0.10669565n

0.07637030 + 0.00105797n
—0.10247843 — 0.01431426n

Table 2
The fitted linear dependence of coefficients Koy, o1, and Ap, of wave number n (see Egs. (71) and Table 1).
Channel Koz (n)
Vn 0.07725240 — 0.15891730n
Sn 0.08188105 — 0.15939037n
In —0.15542495 — 0.00158340n
,,/'3'(1 0.07957747
3 0.07957747

—0.10252508 — 0.01430947n

—0.76399530 — 0.13782850n
—0.76564110 — 0.13766085n
—0.65582033 — 0.00140439n
—0.85884652 — 0.26981736n

—0.85972588 — 0.26972724n

At this point, it should be recalled that the non-linear equation
(8) has been linearized by sinhy ~  and that the resulting poten-
tial has been hardly modified as it was discussed in Section 3.2.

A second example can be detailed in order to illustrate the
three-dimensional calculations. Consider the channel 3¢ bounded
by the walls (see Table 3 and Fig. 8c)

z=1+4¢&cosxcosy, z=-1—-¢&cosxcosy, (72)

ie, b=1, L=m, Ti1 11 = —B.y .1 = 0.25; the other Fourier coeffi-
cients T and B, are equal to zero.
The electric potential up to O(¢3) has the form

Table 3
The three-dimensional configurations addressed in Section 6.3. Some of them are
illustrated in Fig. 8.

Channel Top wall Bottom wall Comment
/y/ﬁd cos ny —cosny n=1,...,12
L(/%d cos ny cos ny n=1,...,12
qf%d COSXCOSy — COSXCOSY

rg%d COSXCOSY —sinxcosy

= 0.64800C{coshz —0.40322¢cosxcosycosh(v3z)

+&2 {0.241 02 cos 2y cosh(v/5z) +0.10366 cos 2x cos 2y cosh3z] }
(73)

The corresponding expansions (71) are given by

K =0.053052 + ¢?(—0.035442 — 0.000034¢> —3.28 x 1077 +4.10 x 1073¢%),
o= —0.037944¢ + &2(~0.003504¢ +0.000024¢> +2.29 x 1077 —2.87 x 1078%),

giK: —0.715218 + £2(~0.543864 — 0.00001072 — 1.00 x 1073 +1.22 x 1075¢%).

The same comments as before can be made on these coefficients
(see Tables 2 and C.5).

6.2. An overview of the analytical calculations in 2d

Calculations are better made in complex notations (4), but rep-
resentation is easier with real components. The various channels
are studied for integer values of the pulsation w, i.e., the walls
are obtained by superposing functions of the form cosw;x and
sinw,x where w; and w, are integer. The following notation is
used. The various pulsations are given by the vector w and the cor-
responding amplitudes of the cos and sin are given by the vectors ¢

\e

-n 34 -n2 -4 O w4 w2 3m4 T

(a) The channel V3

-1 34 —m2 —n/A

15 z 15

- 10
0.5
0.0

(b) The channel 8g

0 w4 w2 34 om -t BmA -2 —mA O mA w2 dmA W

(¢) The channel Jq5

1.5 Z
1.0 - G
0.5

0.0

-0.5
-1.0

-0.5

1.0 '\

-1 34 —x2 -mA O w4 w2 1 =3mA —n2 —mj4

(d) The channel €y

3n/4 w

15 z 15
10
05
0.0

[V 721

(e) The channel Cy

-1 34 -xf2 —m4 0 w4 w2 3m4 om

(f) The channel C3

/2 3n/4 W

15 z

-0.5
-1.0

[

-n =3n/4 -n/2 -x/4 O

/4 w2

(g) The channel Cy

3n/4 W -r =3n/4 -n/2 -n/4

0 w4

(h) The channel G5

n2 3m/4 T - -3n/4 -n/2 -n/4 O /4

(i) The channel Cg

n/2 3m/4 T

Fig. 4. Some examples of two-dimensional channels (Table 1).
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and s. These notations can be illustrated by the following example;
w=(1,2,3), c=(2,1,1), s=(0,2,0) denote the wall

Sx,y) = 2cosx+% €0S 2X + 2 sin 2x + cos 3x. (74)
The cases studied in two dimensions are summarized in Table 1.
Some of them are illustrated in Fig. 4. Note that the configurations
¥, correspond to the channel limited by —1-e&cosnx<z<
1 + ¢ cos nx. Of course, the importance of the corrections to the case
of a straight channel depends on the value of € and {. Whenever, the
channel is very smooth and |{| small, the following corrections are
negligible.

The results are given in Tables 2, C.1-C.4. They can by summa-
rized as follows.

6.2.1. General properties

Let us first comment the results relative to the configurations
”V'], 91 and S.

Koz is always negative and it is most of the times of order 1. The
sign and the variations in the orders of magnitude are certainly re-
lated to the linear character of the streamlines. It is indeed a well
known fact that viscous dissipation is minimal for straight
streamlines.

o190 is always negative. The opposite is true for o1, which is al-
most always positive which means that the part of « depending
on & (see formula (71b)) is an increasing function of —{. This
behavior is in agreement with physical intuition since wall oscilla-
tions which increase the solid surface are likely to increase electro-
osmotic effects. The only counterexample is for the purely sinuous
channel #4; but, it should be noticed that in this case |0, | is small
when compared with the other configurations. The other coeffi-
cients oy, (n > 3) may have different signs. In the sinuous mode,
illustrated by the channels .#,, some of them indeed change sign.

A last general comment can be made on all these coefficients.
Usually, only the 2 first ones are of order 1. There are at least 2
or 3 orders of magnitude between o, and o3, for instance which
means that the higher order term is completely negligible. It is
important also to notice that numerical computations based on
discretization techniques could not reach such a precision easily
while this is done without any difficulty with the analytical tech-
nique presented in this paper; usually, the numerical task consists
in simple quadratures, i.e.,, in one-dimensional integrations of
smooth functions; this does not present any problem and this
can be done with an excellent precision.

The same is true for Ko, and K3, ; K3, is about two orders of mag-
nitude smaller than Ko,.

6.2.2. Influence of the wave number

Because of its importance in real channels, the influence of large
wave numbers was studied for its own sake. First, this influence
was addressed for the series of varicose channels denoted as ¥ .
The coefficients Ko, and o, are plotted in Figs. 5 and 6 where they
are seen to be increasing functions of n; obviously, the absolute va-
lue of the coupling increases with n to the expense of a larger vis-
cous dissipation. It should be noticed that Ky, and o, are linear
functions of the wave number n which are fitted for 4 < n < 12;
no obvious explanation was found for this very interesting behav-
ior. The coefficients are given in Table 2.

These calculations on the influence of roughness with large
wave numbers on K and o were extended in two ways because
of their practical importance. First, channels in the sinuous mode
were investigated. More precisely, let us denote by %, the
channels limited by —1+¢cosnx <z <1+ ¢&cosnx. The corre-
sponding coefficients Ko, and o, are plotted in Fig. 5 and gathered
in Table 2. Ko, is always negative and its absolute value is an
increasing value of n. It is remarkably close to the values obtained

2.0
—Kp,
Oy

15
s

1.0

05
oof & 7 . . . . n
0 2 4 6 8 10 12

Fig. 5. Dependence of the coefficients —Ko, and o, of pulsation n for the two-
dimensional channels 7", and .#,. Data are for: ¥, : —Kq, (solid line), o, (broken

line); &, : =Koy (o), o2 (M)
0.20
—Ky>
Olyn //
0.15}
0.10}
0.05} nj
0 2 4 6 8 10 12

Fig. 6. The coefficients —Ko, (solid line) and o4, (broken line) as functions of the
wave number n for the channels .#,.

for the varicose channels ¥, again without any obvious explana-
tion. Moreover, the difference between the two values decreases
with n; for instance Ky, = —0.280 for ¥",, and —0.208 for .%,, while
the two values coincide and are equal to —1.83028 for 71, and
S12. Of course, the higher order coefficients in the expansion of K
are different.

With the remarkable exception of n = 1, o4, is always positive
for &, and it is also an increasing function of n. It becomes rapidly
of order 1. The same phenomenon as for K¢, occurs, namely the dif-
ference with o, obtained for v~, decreases with n.

This increase of coupling with n is an effect which can be prac-
tically important since it means that a roughness with a small
wave length has a larger influence than a roughness with the same
amplitude, but a longer wave length.

This effect was further investigated on the channels .7, which
result from the superpositions of three terms w = (1,2,n), Cip =
—Chot = (&,0,75), Stop = —Spot = (0, —3,0). The wave number n of
the last cosinus was successively increased from 3 to 12 while
keeping constant the other characteristics. The same trends as in
v, are seen for Ko, and o4, when n increases (see Fig. 6). The
observed variations are less important because the amplitude of
sinnx is equal to ; and therefore significantly smaller that the
others. However, the important fact is that the trend is still present.
Linear fits are also given in Table 2. It is seen that the fit is excellent
for all values of n, i.e., 3 <n < 12.

6.3. An overview of the analytical calculations in 3d
A similar set of calculations though significantly less extensive

was made in 3d. The studied cases are summarized in Table 3 with
notations analogous to Table 1.
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It is interesting to see that Ko, is always positive and oy, is al-
ways negative for the channels 3% and o3¢,

Let us now look at the influence of large wave numbers in a 3d
channel. Two cases can be considered as illustrated in Fig. 8. The
oscillations are so to speak parallel to the flow since the other case
was already investigated in the previous section; the channels can
be again either varicose or sinuous. The equations for the walls are

T = cosny, B = +cosny. (75)

Results for Kg; and o, are given in Fig. 7 and in Table C.5. The first
interesting feature is that K¢, is now always positive and constant
whatever the value of n and the channel type. This remark was
not made before to the best of our knowledge; it is certainly related
to the fact that streamlines are straight and that the Stokes equa-
tions are reduced to a two-dimensional Poisson equation.

The second specific feature is that o, is always negative what-
ever the channel type (see Fig. 7). |o12] is an increasing function of n
as in two dimensions. |2 | depends slightly on the channel type for
small n, but this is influence disappears rapidly when n increases.

Again the coefficients Ky, and o;, are well fitted by linear
relations for 4 < n < 12; the values of the coefficients are given
in Table 2.

6.4. Discussion

It might be useful to summarize the analytical-numerical
algorithm which was devised in order to calculate the coefficients
o and A to O(¢3) and O(¢*). The expansion in ¢ is used to reduce the
electroosmotic equations. (23)-(24) for a curvilinear channel to
equations for a plane channel —b < z < b. The latter problem is re-
duced to a cascade of boundary value problems for ordinary differ-
ential equations by expansions in { and by using the method of
separated variables. As a result y, ®; and u are written as double
Fourier series in x,y with coefficients in z (see formulae (37), (40)
and (42) for y; (53), (56) and (57) for &;; (59), (60) and (63) for u).

The coefficients o and A are determined by integrating over the
unit cell. The considered triple integrals are first reduced to succes-
sive integrals in x, y and in z

/: '/7i97(x,y)dxdy, (76)

where Z(x,y) has the form (B1). First, the integral 7 (x,y) is re-
duced to the form (B3) which contains an ordinary integral

/.bf(x,y,z) dz, (77)
J-b

The integral (77) is calculated by expanding f(x,y,z) as a double
Fourier series in x, y. Only the zero term (s = t = 0) yields a non-

0.30
Ky,

025 =12
0.20F -

0.15 -

0.10 ¢

0.05 i i i i i n
0 2 4 6 8 10 12

Fig. 7. The coefficients K, and —o4, as functions of the wave number n for the
three-dimensional channels 73! and 3?. Data are for: 3¢ : Kg, (solid line), —ot,
(broken line); 3¢ : Koy (), —o4z (W).

zero integral in (76). Therefore, in order to calculate the triple inte-
gral (76) over the curvilinear unit cell S™(x,y) <z<S"(x,y),
—L <X, y <L, we need to compute a single ordinary integral in z
for the zero Fourier coefficient fyo(z) of the function f(x,y,z).

These ordinary integrals are computed with the help of Math-
ematica® with a precision of 15 decimal digits by the standard
operator NIntegrate; the number of grid points is not important
in computing the integral and it could be increased without any
significant time increase. Moreover, all these integrals could be cal-
culated analytically, but it was found more convenient to compute
them numerically. As a result, the calculations take about 14 min
for the two-dimensional channel ¥"; and 62 min for the three-
dimensional channel Sf,d. The computations were performed by
using a usual notebook with a dual core (2.10 GHz) and a central
memory of 2 GB.

It is worth nothing that the Fourier coefficients T and By of the
walls are arbitrary. Hence, varicose and sinuous channels with lon-
gitudinal and transversal oscillations and roughness of the walls
can be investigated by a unified approach. Computational restric-
tions arise when too many non-zero terms Ty and B, or terms with
too high frequencies wy (ws > 12) are taken. The large number of
terms T, and By (more than 14) produce many terms which com-
pose the final solution. For instance, ten terms T and By produce
auxiliary functions with about thousand terms of different scales
(polynomial and exponential functions of wgz). Though these
terms are analytically calculated, introduction of the numerical
values of ws may lead to error accumulation. As a consequence,
the relative error may be equal to 6% when terms with a high fre-
quency wy are present. For the other channels, the numerical error
is negligible. Of course, this difficulty can be overcome by increas-
ing the computational precision of Mathematica® and by interac-
tive manipulations of the obtained symbolic formulae for @; and u.

7. Conclusion

The previous developments are practically useful for interpret-
ing experiments where roughness is small but cannot be neglected.
It should be emphasized that the overall precision is always better
than 6%. It provides also quantitative informations on the way a
channel should be machined in order to favor a given effect.

Of course, this first work could be extended in several ways.
First, further orders in & can be relatively easily derived and this
would allow the study of channels which are much rougher.

Another possibility would be to put different boundary condi-
tions on the solid surfaces such as a constant charge. Then, one
could try to use boundary conditions which vary in space such as
a zeta potential or a surface charge which would be spatially cor-
related with the roughness.

Further terms in zeta could possibly be included. However, it is
not clear at this stage if significant progress can be made about the
non-linear character of the equations.

Appendix A. Solution for the velocity field
A.1. Case wsg =0

Eq. (58) become

du, in d*w, dg,,
dzfoo (Z) = TFnkOO(Z)a dzzkoo (Z) = %;00 (Z) + an00(2)7
dz Un in de
dzzkoo (Z) = TGnkOO(Z)v deOO (Z) =0. (Al)

If n = k = 0, the Fourier series degenerate and one obtains the clas-
sical Poiseuille flow in the plane channel



82 A.E. Malevich et al./Journal of Colloid and Interface Science 345 (2010) 72-87

(a) The channel V34

(¢) The channel €3¢

(b) The channel §3¢

(d) The channel 3¢

Fig. 8. The three-dimensional channels (see Table 3).

Vp
uOO(x7y7Z) = TP(ZZ - b2)7 Z}(]C'(xv.]/72) = W()()(X,y,Z) = 07
gOO(Xayv Z) = WX' (AZ)

If n# 0 or k # 0, the general solution of the system (A1) with the
boundary conditions (61) has the form

Unkoo(2) = C1 + Gz + 2 [*)(z — &)Fpioo (&) d¢,
Vnkoo(2) = D1 + Doz + = [*, (2 — &)Gryoo (&) dE, (A3)
Wikoo(2) = 3 (Ugoo + VSc)oo)’

where the constants C; and D; are calculated by

Cr =5 (Ulioo + Vo = S35 — OFoo(§)dc).
Cz=%(U§,}£ofV£Loo S (b = )Fmoo(2) ),
D1 = 5 (Ukoo + Visoo = J%5(b — G (9) ).
Dz = 4 (Ustoo — Viso = [75(b — Guoo(8) d2).

Here, for instance Ul};,, denotes the first component of the vector
Usikoo-

A.2. Case wg # 0

Eqgs. (58) are transformed as follows. Differentiate the first and
second Egs. (58) in z. Multiply the results by % and by %, respec-
tively. Add the obtained equations with the third equation multi—
plied by w?. According fourth Eq. (58) replace Zup + X vy
with — d"”"k“ The result is the fourth-order dlfferentlal equatlon

d Whkst _ 2w 2 d Whkst
dz* s "dz

where W, is related to the known functions from the right parts of
(58)

+ w?twnkst = Wnksh (AS)

%S ank_gf Tt dGnkst
T o Ot @

It follows from (61) that Wy satisﬁes the boundary conditions

Wiise(2) = - w?tH nkst (2)- (A6)

dw,
Waise (B) = Uy S (b) = T (sUD, + (U,
dw, in
Wakst (D) = Vi =™ (=) = = (Ve +V,0)- (A7)

Using long but standard manipulations, the solution of Egs. (A5) and
(A7) is derived as

Wist (2) = (€1 + €22) cosh gz + (dq + daz) sinh Wz + W kst (2),

(A8)
where
1 Z
W@ = 3 [0 [ (2 )OS0 W (€18
az2 z
+ 7 ( [ b(z — &) cosh W EW st (&) dé)} . (A9)

The constants ¢; and d; are

_ by (Ry + Ry) cosh wgh + [Ry + Ry — b(Rs — Ry)] sinh b
n sinh 2wgb + 2wgb ’
bwg(Ry — Ry) sinh wgb + [Ry — R, — b(R3 + R4)] cosh wstb

= sinh 2wgb — 2wsb
4 — —st(R1 — Ry) cosh wgb + (R3 — Ry) sinh awgch

1 sinh 2wy b — 2wyb '
4 — —st(R1 + Ry) sinh wgb + (R3 — Ry) cosh b

2= sinh 2wyb + 2w ’

(A10)
where
R = Unkst W”"Sf(b)7 Rs = L ( Uglkst + tUnkst) W"kﬁ(b)7
in

R, =V, Ry= fT(svﬁ,}jst +va). (A11)
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Formulae (44b), (A8), (A9), (A10) and (A11) completely determine
the third component of the velocity, more precisely its Fourier com-
ponents Wyys.

The first and the second components of the velocity are deter-
mined by the following computations. First, generate the linear
combination

Mnkst (Z) = tunks[ (Z) — SUnkst (Z) .

Then, the same linear combinations of the first two equations (58)
and the boundary conditions (61) yield the ordinary differential
equation

(A12)

d*M,
@)~ OiMuise(2) = Nutse (2) (A13)
with the boundary conditions
MﬂkSt (b) - tUnksr sunkst7 Mnkst(_b) - tvnkst Svnkst (Al 4)
The functions Ny are defined by
in
Nnkst(z) = [tFnkst (Z) - SGnkst (Z)] (Al 5)

L
The solution of the boundary value problem (A13) and (A14) is

Mist(2) = [C1 — ¢(2)] cosh gz + [C2 + $(2)] sinh wyz, (A16)
where the functions c(z) and s(z) are
l z
c(z) = o /ankSI(f) cosh g £dé,
st J_
1 /* . 1
S(Z) = (l)_[ /ankst(&) Slnhwstgdg- (A17)
The constants C; are given by
1) 1) 2
¢, -t = Vi) = sWUpss = Vi) +€(b) = 5(b) A18)
2wy sinh wgb ’
C2 _ t(Unkst Vnkst) (Unkst + Vnkst) (b) — S(b)
2w cosh wgb ’

Therefore, the function M (z) is determined by Egs. (A16)-(A18).
The functions s (z) and vy, (2z) are found from the following
relations

tunkst(z) — SUnkst (Z) = Mnkst (Z), SUnkst (Z) + EUnkse (Z)
- il dekst
= —— (). (A19)
Hence,
IS dWpkst T2t
unkst(z) = mgr d;s (Z) Lz—a)?tMnkst(Z)7
i 2
(@) = 12 At ) TS ). (A20)

“Iof &z Y Rap

st

The functions M, (z) and wys(z) are given by (A16) and (A8).

Appendix B. The coupling coefficient
B.1. Determination of (yu)

Let us study the integral in z in the triple integral (64). Let
f(x y,z) denote a smooth function and F(x,y,z) its primitive in z,

ie, ZF(x,y,z) =f(x,y,z). Introduce

b+beT(x.y)
Z(xy) = / fx.y,2)dz

—b-+beB(x.y)

=F(x,y,b + beT(x,y)) — F(x,y, —b + beB(x,y)). (B1)

Application of the Taylor formula (29) yields

X ek [ OF O'F
7(x.y) :22 i {Tkak (x.y,b) = B~ (x.y.~b) |. (B2)

Hence, the integral (B1) with variable limits of integration is re-
duced to

b 0
7 (x,y) = /bf(x,y,Z) dz+)
- k=1

y kak |:Tl< 6k—]f ak—lf

Ozk-1

(x.y,b) - B

| T o (x.y. —b)} (B3)

Substitute f = yu into (B3) and preserve the terms of order O(¢?)

b+beT(x.y) b
A (X,y) = / Yyudz = / yudz + eb[T(x,y)¥(x,y,b)u(x,y,b)

J—

By, ~bu(x.y, b]+— {TZ %) < (3.0 2 (x.y.b)
ley.0) G (b)) - Bxy) (utey. ~b) G .y b)

06y, b 2—Z<x,y, )]0 (B4)

The functions y and u are calculated in Section 3 and in Section 4.2
in the form of expansion in ¢, ¢ and the Fourier series in x,y. Hence,
it is convenient to present (B4) in such a form. First, expansions in {
and ¢ are applied. Then, «/(x,y) defined by (B4) becomes

Z e an(x,y), (B5)

n,k=0

where the required terms with k = 0,1,2 can be written as

b
ano(X,y) = / , coshz u,_1(x,y,2)dz, (B6)

b
an(x,y) = / (YyUn-10+coshz uy 11)dz+b
—b

x cosh b[TygUn-10l,_, — B¥oUn-10l,__p)],

b
a2 (X,y) = /b(xpzun,l,o + YqUp_11 +€oShz up_12)dz + b[T(Y1Up-10

+coshb uy_11)],p — B(WquUn_10 + CcOShb up_11)|,_ ;]

b*sinh b
+ 2S0E (Puyly + Bt 10l )
b’ coshb (., duy 10 20U 10
+ 2 (T oz |z:b - B 9z ‘z:—b) .

where the arguments of the functions are omitted for shortness.
The next step is the calculation of the integrals in x and y in (64)

(x,y)dxd A, B7
SbL// Y) yZb;OC ! (B7)

where

L L
A = / L / () dxdy. (BS)

The functions , and , were calculated in Section 3 as Fourier
series as well as the functions u,_;, and u,_{; in Section 4.2 with
the computed coefficients u,_;os. Substitution of these formulae
into (B6) and into (B7) yields after some tedious symbolic
computations

b
A =0, Ap= / coshz u,_10dz, (B9)

-b
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Table C.1

The coefficients K, for the two-dimensional varicose channels described in Table 1.
Channel Koo Ko> K> K33 K4
71 0.05305165 —0.19064676 —0.00022889 —0.00000255 0.00000033
vy 0.05305165 —0.27998459 —0.00005912 —0.00000044 0.00000005
V3 0.05305165 —0.41009148 —0.00001309 —0.00000006 0.00000001
V4 0.05305165 —0.56004845 —0.00000325 —0.00000001 —0.00000000
Vs 0.05305165 —0.71684814 —0.00000102 —0.00000000 0.00000002
V6 0.05305165 —0.87548129 —0.00000041 —0.00000419 0.00000594
Vg 0.05305165 —1.03453122 —0.00000020 0.00000542 0.00000496
Vg 0.05305165 —1.19366637 0.00008958 0.00006989 0.00004525
) 0.05305165 —1.35281776 0.00008128 0.00006799 —0.00199125
7 10 0.05305165 —1.51197208 0.00083152 —0.00274530 —0.00034320
711 0.05305165 -1.67112692 —0.03283528 —0.00021212 0.00478510
Y12 0.05305165 —1.83028185 —0.03618856 —0.00040601 0.00539587

Table C.2

The coefficients K, for the two-dimensional sinuous channels given in Table 1.
Channel Koo Ko> Ko, K3, K
L1 0.05305165 —0.05512055 —0.00000001 0.00000000 0.00056619
2 0.05305165 —0.20839997 —0.00000062 0.00000000 0.00000000
S 0.05305165 —0.38639969 —0.00000145 —0.00000000 0.00000000
N 0.05305165 —0.55406854 —0.00000118 —0.00000000 —0.00000000
Is 0.05305165 —0.71554753 —0.00000068 —0.00000000 0.00000002
Y6 0.05305165 —0.87522313 —0.00000036 —0.00000418 0.00000594
S 0.05305165 —1.03448304 —0.00000019 0.00000542 0.00000496
Sg 0.05305165 -1.19365777 0.00008958 0.00006989 0.00004525
Sy 0.05305165 —1.35281627 0.00008126 0.00006800 —0.00199125
10 0.05305165 —-1.51197183 0.00083141 —0.00274529 —0.00034327
L1 0.05305165 -1.67112688 —0.03283578 —0.00021208 0.00478490
S12 0.05305165 —1.83028184 —0.03617176 —0.00040677 0.00540160

Table C.3

The coefficients Ky for the two-dimensional channels .7, given in Table 1.
Channel Koo Koz Ko K3, K4
I3 0.05305165 —0.16024447 —0.00013287 —0.00000144 0.00000018
I 0.05305165 —0.16174404 —0.00013277 —0.00000135 0.00000025
Is 0.05305165 —0.16331203 —0.00013275 —0.00000138 0.00000062
Ie 0.05305165 —0.16489836 —0.00013162 —0.00000078 0.00000054
I 0.05305165 —0.16648886 —0.00012453 —0.00001584 —0.00001379
I3 0.05305165 —0.16808022 —0.00012447 —0.00002143 0.00003513
Fg 0.05305165 —-0.16967173 —0.00039421 0.00000071 0.00003885
710 0.05305165 —0.17126327 —0.00042075 —0.00000479 —0.00002328
J11 0.05305165 —0.17285482 —0.00012420 —0.00003932 0.00001347
J12 0.05305165 —0.17444637 —0.00049676 —0.00000823 —0.00001015

Table C.4

The coefficients o, for the two-dimensional varicose channels given in Table 1.
Channel 10 012 032 Olap 0lsp
1 —0.03794347 0.09129521 0.00016049 0.00000179 —0.00000023
vy —0.03794347 0.14677744 0.00004118 0.00000030 —0.00000004
V3 —0.03794347 0.23146311 0.00000902 0.00000004 —0.00000001
V4 —0.03794347 0.33086870 0.00000220 0.00000001 0.00000000
Vs —0.03794347 0.43549855 0.00000068 —0.00000048 0.00000019
A —0.03794347 0.54160677 0.00000027 0.00000583 —0.00000385
V7 —0.03794347 0.64810002 0.00000008 —0.00000491 0.00000836
g —0.03794347 0.75470479 —0.00003004 —0.00003684 —0.00003527
) —0.03794347 0.86135372 0.00007143 —0.00022910 0.00125493
7 10 —0.03794347 0.96802724 0.00005155 0.00119961 0.00050676
711 —0.03794347 1.07471737 0.02502505 0.00058048 0.00032893
12 —0.03794347 1.18015709 —0.00018679 0.00072894 —0.00018404
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Table C.5

The coefficients o, for the two-dimensional sinuous channels given in Table 1.
Channel Ol10 012 032 Olg Ols
I —0.03794347 —0.00513099 0.00000001 —0.00000000 —0.00043930
S —0.03794347 0.09531903 0.00000038 —0.00000000 —0.00000000
I3 —0.03794347 0.21423798 0.00000093 0.00000000 —0.00000000
Sy —0.03794347 0.32648395 0.00000077 0.00000000 0.00000000
S5 —0.03794347 0.43453907 0.00000044 —0.00000048 0.00000019
Se —0.03794347 0.54141547 0.00000023 0.00000583 —0.00000385
Kz —0.03794347 0.64806420 0.00000007 —0.00000491 0.00000836
Sg —0.03794347 0.75469838 —0.00003004 —0.00003684 —0.00003527
Sq —0.03794347 0.86135262 0.00007144 —0.00022910 0.00125493
Y10 —0.03794347 0.96802705 0.00005163 0.00119960 0.00050681
11 —0.03794347 1.07471734 0.02502542 0.00058045 0.00032908
S12 —0.03794347 1.18015709 —0.00019959 0.00072953 —0.00018840

Table C.6

The coefficients o, for the two-dimensional channels .7, given in Table 1.
Channel o0 o1 032 Olg 05
I3 —0.03794347 0.07959608 0.00009311 0.00000100 —0.00000013
Iy —0.03794347 0.08059014 0.00009305 0.00000097 —0.00000013
Is —0.03794347 0.08163643 0.00009276 0.00000117 —0.00000040
Je —0.03794347 0.08269752 0.00009292 0.00000067 —0.00000161
S —0.03794347 0.08376245 0.00009493 0.00000783 0.00000860
I3 —0.03794347 0.08482850 0.00009372 0.00002038 —0.00001446
Sq —0.03794347 0.08589499 0.00009170 0.00000249 0.00000193
S0 —0.03794347 0.08694657 0.00011609 0.00000703 0.00005240
I —0.03794347 0.08801485 0.00008652 —-0.00145663 —0.00001025
I12 —0.03794347 0.08908302 0.00037026 —-0.00177141 0.00000774

Table C.7

The coefficients A, for the two-dimensional varicose channels given in Table 1.
Channel Aoo Aoz A Az Ag
71 —0.71521753 —0.84933637 —0.00006052 —0.00000069 0.00000009
Yy —-0.71521753 —1.00793189 —0.00002069 —0.00000017 0.00000002
V3 —0.71521753 —1.16568504 —0.00000653 —0.00000004 —0.00000004
vy —0.71521753 —1.31358346 —0.00000231 —0.00000001 —0.00000001
s —-0.71521753 —1.45525755 —0.00000097 —0.00000915 0.00000383
6 —-0.71521753 —1.59378261 —0.00000047 0.00005348 0.00000746
V7 —0.71521753 —1.73066907 —0.00000122 —0.00001941 0.00022447
g —0.71521753 —1.86660236 0.00064139 0.00024783 —0.00005486
) —-0.71521753 —-2.00192187 0.00244210 —0.00340180 —0.00319022
10 —0.71521753 —2.13681776 0.01218180 —0.01439876 0.00492528
1 —0.71521753 —2.27140742 0.02904112 0.00808209 0.07071056
7 12 —0.71521753 —2.42956783 —0.49139824 0.00826654 0.06927557

Table C.8

The coefficients A, for the two-dimensional sinuous channels given in Table 1.
Channel Agg Agz Azz Agz A42
I —-0.71521753 —0.83982648 —0.00000006 0.00000000 —0.00064751
S —0.71521753 —1.01282960 —0.00000126 0.00000000 0.00000000
S —0.71521753 —1.17096935 —0.00000202 —0.00000000 —0.00000004
Sy —0.71521753 -1.31561574 —0.00000144 —0.00000000 —0.00000001
Is —0.71521753 —1.45580910 —0.00000082 —0.00000913 0.00000382
Se —0.71521753 —1.59390815 —0.00000044 0.00005347 0.00000746
S —0.71521753 —1.73069478 —0.00000121 —0.00001941 0.00022447
I —0.71521753 —1.86660727 0.00064139 0.00024783 —0.00005486
Fg -0.71521753 —2.00192276 0.00244212 —0.00340180 —0.00319022
Y10 —0.71521753 —2.13681792 0.01218189 —-0.01439877 0.00492534
S11 —0.71521753 —2.27140744 0.02904155 0.00808205 0.07071076
S12 —0.71521753 —2.42956784 —0.49141293 0.00826742 0.06927054
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Table C.9
The coefficients A, for the two-dimensional channels .7, given in Table 1.
Channel Aoo Aoz A Az Ag
I3 —0.71521753 —0.65999027 —0.00003617 —0.00000052 0.00000010
Ia —0.71521753 —0.66146926 —0.00003612 0.00000008 0.00000092
Is —0.71521753 —0.66288600 —0.00004121 0.00000350 0.00000079
Ie —0.71521753 —0.66427125 —0.00002291 0.00000214 —0.00002310
I —0.71521753 —0.66564011 0.00011057 —0.00006591 —0.00002378
I3 —0.71521753 —0.66699945 0.00008848 0.00009517 0.00020095
Jg —0.71521753 —0.66835264 —0.00358602 0.00005649 0.00056008
J10 —0.71521753 —0.66998720 —0.00348405 0.00006803 0.00067395
J1 —0.71521753 —0.67130713 —0.00004356 —0.02798686 —0.00001157
J12 —0.71521753 —0.67262910 0.00028212 —0.03350128 0.00000908
Table C.10
The coefficients K = 0.05305165 + Ko&?, o = —0.03794347( + 015(e? and A = —0.71521753 + Ap,&* for the three-dimensional varicose "t/'ﬁd and sinuous .9”,31“ channels given in
Table 3.
n Channel 734 Channel &34
Koz o2 Aoz Koz 12 Aoz
1 0.07957747 —0.11854742 —1.16173991 0.07957747 —0.12339534 -1.25312100
2 0.07957747 —-0.13197311 —1.41480826 0.07957747 —0.13344953 —1.44263802
3 0.07957747 —0.14592203 —1.67773913 0.07957747 —0.14624950 —1.68391181
4 0.07957747 —0.15993701 —1.94191525 0.07957747 —0.15999950 —1.94309321
5 0.07957747 —0.17406350 —2.20819347 0.07957747 —0.17407448 —2.20840035
6 0.07957747 —0.18828195 —2.47620476 0.07957747 —0.18828378 —2.47623927
7 0.07957747 —0.20256250 —2.74538690 0.07957747 —0.20256280 —2.74539245
8 0.07957747 —0.21688409 —3.01534254 0.07957747 —0.21688414 —3.01534341
9 0.07957747 —0.23123357 —3.28582388 0.07957747 —0.23123358 —3.28582401
10 0.07957747 —0.24560273 —3.55667615 0.07957747 —0.24560273 —3.55667617
11 0.07957747 —0.25998626 —3.82779934 0.07957747 —0.25998627 —3.82779934
12 0.07957747 —0.27438061 —4.09912629 0.07957747 —0.27438061 —4.09912629
b b 1 oS
An = / coshz uy_1100dz + Z / Vi s ¢ Un-10sedZ + b =35 Z &Kok, (B10)
b _b _

x coshb Z (Tos-eUp 1 05 = BostVi 1 00,

Anzz/ coshz u,_ 1200dz+2/ (W2 _s_¢ Un 105t

+ Y st Un-115t)dZ + bcoshb Z(Tfs.frunq,m
St

—B V), 1) — b’ tanhb Z Z(T*S*Pf[*qTStUill—)l‘Opq

st

b? smhb

+Bsp-t-qBsV} IOpq)

(1)
- B*S*Il*f*qBqun 10st)

dun—l.Os
x> (TfS—p-—t—quq T[
pq

(b)

Pq

st

Z z T*S p,—t— ‘IT Un]105t
b* cosh b
—— >

2

dutg_1 os
B o qBpy St b)).

dz

Therefore, the expression (yu) can be computed by (B7) and (B9)
with an accuracy O(g2) and O((*).

B.2. Determination of (u)

Similar computations can be applied to (u). It was already done
in [15] for Stokes flow only without any electrical effect with an
accuracy 0(&3°). Below the results are given for (u) when the elec-
tric potential is taken into account, but without an external electric
field. Numerical comparison shows a weak dependence on { (see
examples below). (u) is given by

where

b
Ko = / Ungoodz, K
b

b
_ / tnondz + b ST U B V), (B11)
- st
bZ
Knp = / o002 +b Y (T s Uil ~Bos Vil +

du du
x 2 (T*Sfp,ffqupq J;St ((b) = Bs-p.-t-qBpqg J;St (*b))

pq

Appendix C. Complete numerical data
C.1. Two-dimensional channels

See Tables C.1-C.9.
C.2. Three-dimensional channels

Table C.10.
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