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Electroosmotic flows are studied in wavy channels by expanding the solution into a double series in
terms of the dimensionless amplitudes and of the dimensionless zeta potential for a binary dilute elec-
trolyte. The expansion technique by means of formal calculations is described. Some examples are illus-
trated and discussed for two and three dimensional channels. The importance of the varicose or sinuous
character of the channels as well as the role of high frequency roughness are demonstrated. These fea-
tures may be used for practical purposes in order to amplify or diminish coupling effects in an algebraic
way.
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1. Introduction

The study of electroosmotic flows through porous or dispersed
media is important from a fundamental standpoint and for indus-
trial applications. Among these applications, micro- and nanoflows
are becoming more and more important [1]. The electroosmotic ef-
fects can be induced by two factors, namely when an electrolyte is
submitted to an external electric field E and when a macroscopic
pressure gradient rp is applied to the flow. The electroosmotic
phenomena are governed by a system of non-linear partial differ-
ential equations consisting of the Stokes equations, the convec-
tion–diffusion equations and the Poisson equation. All these
three equations are coupled and this feature makes their resolution
a very difficult computational problem.

The external ‘‘forcing factors” (or generalized forces) E and rp
generate a macroscopic current density I and a Darcy seepage
velocity u which for small E and rp are given by the linear formu-
lae [2,3]

I ¼ r � E� a � rp;

u ¼ aT � E� K
l � rp;

ð1Þ

where r and K are the electric conductivity and permeability tensors;
a is the coupling electroosmotic tensor; the superscript T denotes the
transposition operator. These three tensors are spherical for isotropic
media. All the quantities in (1) are macroscopic quantities.
ll rights reserved.
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Since many experiments use rectangular channels, it was found
interesting to evaluate these tensors for channels with wavy walls.
Extended reviews of these processes before 1996 were given in
[2,3]. Some recent contributions based on homogenization should
be mentioned such as [4–7]. Several papers about analytical and
numerical simulations in channels can be added. Electroosmotic
flow and chaotic stirring were investigated by Qian and Bau [9]
in rectangular cavities with a non-uniform zeta potential distribu-
tion f on the walls. The streaming current fields in an undulated
channel were analytically studied by Brunet and Ajdari [10] thanks
to a simplification of the electroosmotic equations. A numerical
scheme was developed by Patankar and Hu [11] to simulate the
electroosmotic flow between two channels. The lattice Boltzmann
method was applied by Zu and Yan [12] to the electroosmotic flow
between two parallel plates induced by moving vortices near the
walls. Analytical solutions were derived by Gao et al. [13] for the
flow of two liquids that relate the velocity profiles and flow rates
to the liquid holdup, the aspect ratio of the microchannel, the vis-
cosity ratio of the two liquids and the externally applied electric
field. The basic concepts and a mathematical formulation of micro-
flow control and pumping using electrokinetic effects were pre-
sented by Karniadakis et al. [1] with a discussion on numerical
methods such as finite element and spectral element methods in
stationary and moving domains. The physical mechanisms that
lead to the charge inversion and flow reversal phenomena were
discussed in [8].

Though the non-linear effects of the equations are taken into ac-
count in some of these references as well as some couplings such
as between electrokinetic effect and elasticity [6], it was assumed
that the ionic potentials (defined by Eq. (10)) satisfy separate
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Fig. 1. Two-dimensional channel.
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equations. This assumption decouples the electroosmotic equa-
tions since the ionic potential was calculated independently and
substituted into the Stokes equation as an external force. The influ-
ence of the velocity on the ionic field was not taken into account.
Therefore, the fully coupled equations were never addressed before
to the best of our knowledge in an analytical way.

The linearization of the electroosmotic equations while preserv-
ing their coupling is a natural simplification after which the coupling
tensor a can be determined. Investigation of the dependence of a on
geometry is a challenging task. This dependence is known for simple
geometries [2,3] (parallel plate channel, circular cylinder, semi-infi-
nite space). For a plane channel of width 2b, the tensors a and K are
simplified into the scalar coefficients a and K which are related by

a
fK
¼ 3

j2b2

tanhðjbÞ
jb

� 1
� �

: ð2Þ

The value j�1 is known as the Debye–Hückel length [2,3].
In the present paper, the linear method [2,3] is used and the

problem is solved for a curvilinear channel. An analytical method
presented in [15] is applied to a channel enclosed by two wavy
walls whose amplitude is proportional to the mean clearance of
the channel multiplied by a small parameter e. The dimensionless
zeta potential f is taken as the second small parameter of the prob-
lem. The application of the analytical–numerical algorithm yields
analytical formulae for the electric potential w, the ionic potentials
Ui (i ¼ 1;2) of a two-component dilute electrolyte, the fluid veloc-
ity u and the pressure p. These formulae include the spatial coordi-
nates and e in symbolic form. These formulae are subsequently
applied to the determination of a.

This paper is organized as follows. Section 2 presents the basic
equations. A 3D curvilinear channel is described in Section 2.1 in
terms of the double Fourier series which describe its walls. Linear-
ized equations are written in Section 2.2. In Section 2.3, dimension-
less variables are introduced and equations are rewritten in these
variables.

The electric potential w satisfies a separate boundary value
problem which is solved in Section 3 by an expansion in terms of e.

The main algorithm to determine the ionic potentials Ui

(i ¼ 1; 2), the fluid velocity u and the pressure p is detailed in Sec-
tion 4 where the second small parameter f is introduced. The main
idea of the method is to apply perturbations in e following [15].
Then, a cascade of partial differential equations for a plane channel
with prescribed boundary data is derived. The successive problems
are solved by expanding the unknown functions into double Fou-
rier series of the spatial variables.

In Section 5, the coupling coefficient a is derived by using the
Fourier series derived in the previous section. Then, examples com-
puted up to Oðe3Þ and up to Oðf5Þ are presented and discussed.

In Section 6, a series of applications are made to two and three-
dimensional channels. The role of the varicose or sinuous character
of the channel is discussed as well as the importance of high fre-
quency roughness.

Approximate analytical formulae for the velocity and for the
coupling coefficient are given in Appendices A and B, respectively.
The final formulae are presented in such a way that parameters can
be changed and the corresponding plots obtained.

2. General

2.1. Geometry

Consider a 3D channel bounded by the walls

z ¼ Sþðx; yÞ ¼ bþ beTðx; yÞ; z ¼ S�ðx; yÞ ¼ �bþ beBðx; yÞ; ð3Þ

where ðx; y; zÞ are the spatial coordinates; Tðx; yÞ and Bðx; yÞ are
smooth periodic functions with the period 2L along x and y.
Tðx; yÞ and Bðx; yÞ correspond to the top and bottom surfaces of
the channel, respectively. e is a dimensionless geometrical parame-
ter which characterizes the roughness of the channel walls; it is
generally assumed to be small with respect to 1. Fig. 1 illustrates
these geometrical parameters for a two-dimensional channel.

The functions Tðx; yÞ and Bðx; yÞ can be expanded into double
Fourier series which are conveniently presented in the complex
form

Tðx; yÞ ¼
X

s;t

Tste
ip
L ðsxþtyÞ; Bðx; yÞ ¼

X
s;t

Bste
ip
L ðsxþtyÞ; ð4Þ

where i is the imaginary unity; s and t run over integer numbers
from �1 to 1. Since the functions Tðx; yÞ and Bðx; yÞ are real, their
Fourier coefficients satisfy the relation

T�s;�t ¼ ðTstÞ�; B�s;�t ¼ ðBstÞ�; ð5Þ

where � stands for complex conjugation. Since the average positions
of the top and bottom walls are equal to b and to �b, respectively,
this implies

T00 ¼
Z L

�L

Z L

�L
Tðx; yÞdxdy ¼ 0; B00 ¼ 0: ð6Þ

The functions Tðx; yÞ and Bðx; yÞ are assumed to be dimensionless
and bounded by unity.

2.2. Equations

Consider a monovalent binary electrolyte close to equilibrium
of density q, dynamic viscosity l and electric permittivity �el. Let
Di denote the diffusion coefficient, Uiðx; y; zÞ the ionic potential of
the ith component of the electrolyte (i ¼ 1; 2), uðx; y; zÞ the liquid
velocity and pðx; y; zÞ the pressure. Since stationary processes are
addressed, the above quantities are functions of the spatial vari-
ables ðx; y; zÞ only.

Let n1i denote the value of the ion concentration ni (i ¼ 1;2) at
zero potential, i.e., far from the solid walls. The ion concentration ni

is governed by the Boltzmann distribution

ni ¼ n1i exp � ezi

kT
w

� �
; ð7Þ

where z1 ¼ �z2 ¼ 1 is the ion’s algebraic valency, k the Boltzmann
constant, T the absolute temperature and w the electric potential
of the solute. The electric charge density q can be expressed as
[2–14]

q ¼ eðn1 � n2Þ ¼ �en� sinh
ew
kT

; ð8Þ

where n� ¼ n11 þ n12 and e is the arithmetic charge of the electron
equal to 1:6� 10�19 C.
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Introduce the Debye–Hückel length [2–14] j�1

j ¼

ffiffiffiffiffiffiffiffiffiffiffi
e2n�

�elkT

s
: ð9Þ

These phenomena are governed by the Poisson–Boltzmann equa-
tion, the convection diffusion equation and the Stokes equations
which are coupled (see [2] for details). It is usual to assume that
the external fields E and rp are small which implies that the con-
centration distributions and other quantities do not differ signifi-
cantly with respect to their equilibrium values denoted by the
superscript o. The ionic potentials are introduced by means of rela-
tion (7)

ni ¼ n1i exp � ezi

kT
ðwo þ dwþUiÞ

� �
ð10aÞ

¼ no
i exp � ezi

kT
ðdwþUiÞ

� �
; ð10bÞ

where dw is a small local disturbance to the potential w. The Pois-
son–Boltzmann equation, the convection diffusion equation and
the Stokes equations were linearized in [2,3]

r2w ¼ j2w; ð11aÞ

r2U1 ¼ rw � e
kT
rU1 þ

1
D1

u
� �

; ð11bÞ

r2U2 ¼ rw � � e
kT
rU2 þ

1
D2

u
� �

; ð11cÞ

lr2u ¼ rpþ en�

2
�1þ e

kT
w

� �
rU1 þ 1þ e

kT
w

� �
rU2

h i
; ð11dÞ

r � u ¼ 0; S�ðx; yÞ < z < Sþðx; yÞ; ð11eÞ

where r stands for the gradient operator.
The boundary conditions were described in [2,3]

w x; y; S�ðx; yÞ
� �

¼ f; ð12aÞ

u x; y; S�ðx; yÞ
� �

¼ 0; ð12bÞ

pðL; y; zÞ � pð�L; y; zÞ ¼ 2Lrp; ð12cÞ
@Ui

@n
x; y; S�ðx; yÞ
� �

¼ 0; ði ¼ 1;2Þ; ð12dÞ

where @
@n is the outward normal derivative to the surfaces (3). In

accordance with (12a), the electric potential w is equal to the con-
stant potential f on the walls; a constant charge density could have
been implemented as well without changing the algorithm signifi-
cantly. The velocity of the viscous fluid satisfies the no-slip condi-
tion (12b). Eq. (12c) corresponds to Poiseuille flow when the
external pressure gradient rp is applied along the x-axis. Here,
the distinction between rp and rp can be explained; the first gra-
dient is a local pressure gradient at a given point ðx; y; zÞwhilerp is
the volume average of rp over the unit cell which corresponds to a
spatial period. Eq. (12d) means that the walls are impermeable to
the ions. Define the generalized pressure g by

g :¼ p� en�

2
U1 þ

en�

2
U2; ð13Þ

g can be used to transform (11d) into

lr2u ¼ rg þ en�

2kT
w rU1 þrU2ð Þ: ð14Þ

The coupling tensor a was introduced in [2,3] by linearizing the
Poisson–Boltzmann equation (see formula [55a] from [2]). For a
channel, it can be simplified into a scalar along the main direction
of flow

a ¼ �elj2

rp
hwui; ð15Þ
where hf ðx; y; zÞi denotes the volume average of the function
f ðx; y; zÞ over the unit cell.

Of course, the permeability K of the channel along the x-axis
verifies Darcy law when E is zero

K ¼ � l
rp
hui; ð16Þ

where u is the x-component of the velocity u.

2.3. Dimensionless variables and equations

In the present subsection, Eqs. (11)–(14) are written in a
dimensionless form. e; Tðx; yÞ and Bðx; yÞ are introduced above as
dimensionless values. The position vector r ¼ ðx; y; zÞ is made
dimensionless by j�1

r ¼ j�1r0: ð17Þ

Other quantities are made dimensionless as follows

f ¼ kT
e

f0; w ¼ kT
e

w0; Ui ¼
kT
e

U0i; n ¼ j3n0;

u ¼ kTn�

lj
u0; D0i ¼

e2l
�elk

2T2
Di; g ¼ kTn�g0; ð18Þ

(17) implies that the differential operator r takes the following
dimensionless form

r0 ¼ j�1r: ð19Þ

Following [2,3], introduce the dimensionless coefficient a0 and the
dimensionless permeability K 0

a ¼ �elkT
el

a0; K ¼ j�2K 0: ð20Þ

Introduction of these definitions into (15) and the use of (9) imply

a0 ¼ Ahw0u0i with A ¼ �elj3

rp

kT
e

� �2

: ð21Þ

A similar transformation of (16) yields

K 0 ¼ �Ahu0i: ð22Þ

Using (17), the problem (11)–(14) is rewritten in a dimensionless
form. For shortness, primes are omitted below and in the rest of this
paper

r2w ¼ w; ð23aÞ

r2U1 ¼ rw � rU1 þ
1

D1
u

� �
; ð23bÞ

r2U2 ¼ rw � �rU2 þ
1

D2
u

� �
; ð23cÞ

r2u ¼ rg þ 1
2

w rU1 þrU2ð Þ; ð23dÞ

r � u ¼ 0: ð23eÞ

Eqs. (23) are fulfilled in the domain S�ðx; yÞ < z < Sþðx; yÞ. The
boundary conditions become

w x; y; S�ðx; yÞ
� �

¼ f; ð24aÞ
u x; y; S�ðx; yÞ
� �

¼ 0; ð24bÞ
gðL; y; zÞ � gð�L; y; zÞ ¼ rg; ð24cÞ
@Ui

@n
x; y; S�ðx; yÞ
� �

¼ 0; ði ¼ 1;2Þ: ð24dÞ

The geometrical parameters of the channel can be arbitrary. All the
other physical and chemical quantities are kept constant and equal
to
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�el ¼ 7:0� 10�10 F m�1; e ¼ 1:6� 10�19 C;

k ¼ 1:38� 10�23 J K�1; T ¼ 300 K; l ¼ 1:0� 10�3 Pa s;

f ¼ �0:02 V; 5� 10�9
6 j�1

6 25� 10�9 m: ð25Þ

The range of j�1 corresponds to the experimental one in [18]. If for
illustration purposes, Na+ and Cl� are taken as cation and anion, the
diffusivities are [18]

D1 ¼ 1:334� 10�9 m2 s�1; D2 ¼ 2:032� 10�9 m2 s�1: ð26aÞ

The corresponding dimensionless values are

f ¼ �0:773; D1 ¼ 2:846; D2 ¼ 4:336: ð26bÞ

Of course, all these quantities may take other values depending on
the nature of the ions and the physicochemical conditions. In the
formal development, f is used in symbolic form. The linear charac-
ter of Eqs. (23b), (23c), (23d), (23e), (24b), (24c) and (24d) imply
that Ui;u;g are proportional to rg. Hence, without loss of general-
ity rg can be normalized.

The major features of this system can be summarized as
follows. Eq. (23a) with the boundary condition (24a) can be consid-
ered as an independent boundary value problem. Eqs. (23b), (23c)
and (24d) describe the ion distributions in the channels. Eqs. (23d),
(23e), (24b) and (24c) are coupled and cannot be treated
separately. This latter fact complicates the whole problem.

3. Electric potential

3.1. Derivation of the solution

Since w is not coupled with u and Ui (i = 1,2), it is solved inde-
pendently in this section. It verifies

r2w ¼ w; w x; y; S�ðx; yÞ
� �

¼ f: ð27Þ

w can be written as a series

wðx; y; zÞ ¼ f
X1
k¼0

wkðx; y; zÞek: ð28Þ

The following Taylor formula for an analytic function F is applied to
the boundary conditions (24a) [17]

FðZ þ DZÞ ¼
X1
n¼0

DZn

n!
FðnÞðZÞ: ð29Þ

Let us apply (29) to w evaluated on the top surface, i.e., with Z ¼ b
and DZ ¼ beTðx; yÞ

w x; y; bþ beTðx; yÞ½ � ¼
X1
n¼0

enbnTnðx; yÞ
n!

@nw
@zn
ðx; y; bÞ: ð30Þ

Substituting (28) into (30) and rearranging the series yields

w x; y; bþ beTðx; yÞ½ � ¼ f
X1
n¼0

en
Xn

k¼0

bkTkðx; yÞ
k!

@kwn�k

@zk
ðx; y; bÞ: ð31Þ

A similar formula can be derived on the bottom surface

w x; y;�bþ beBðx; yÞ½ � ¼ �f
X1
n¼0

en
Xn

k¼0

bkBkðx; yÞ
k!

@kwn�k

@zk

�ðx; y;�bÞ: ð32Þ

On the walls, w is equal to f. Use of (31) and (32) and selection of the
coefficients with the same power of e yields a classical cascade of
problems for the plane channel �b < z < b. The zeroth problem is

r2w0 ¼ w0; w0ðx; y; bÞ ¼ w0ðx; y;�bÞ ¼ 1: ð33Þ
Therefore, w0 depends only on z. Then, (33) becomes the boundary
value problem for an ordinary differential equation

d2w0

dz2 ¼ w0; �b < z < b; w0jz¼b ¼ w0jz¼�b ¼ 1 ð34Þ

whose classical solution is

w0ðx; y; zÞ ¼
cosh z
cosh b

: ð35Þ

The next terms wk can be constructed by recursive formulae. If the
functions w1; . . . ;wn�1 are known, the nth problem of the cascade
has the form

r2wn ¼ wn; ð36aÞ

wnðx; y; bÞ ¼ �
Xn

k¼1

bkTkðx; yÞ
k!

@kwn�k

@zk
ðx; y; bÞ; ð36bÞ

wnðx; y;�bÞ ¼ �
Xn

k¼1

bkBkðx; yÞ
k!

@kwn�k

@zk
ðx; y;�bÞ; ð36cÞ

where the right-hand parts of (36b) and (36c) are known from the
previous steps of the cascade. The problem (36) can be solved by the
Fourier method [16]. wn is expanded as a Fourier double series

wnðx; y; zÞ ¼
X

s;t

WnstðzÞe
ip
L ðsxþtyÞ: ð37Þ

Convention for summation on s and t are the same as it is described
for double Fourier series (4). In order to calculate the coefficients
WnstðzÞ, substitute (37) into (36) and select the coefficients of
e

ip
L ðsxþtyÞ. Standard manipulations yield

Wi00nstðzÞ ¼ x2
stWnstðzÞ; �b < z < b; WnstðbÞ

¼ Cnst; Wnstð�bÞ ¼ Dnst; ð38Þ

where

xst ¼
p
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ t2

p
; xst ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2

st

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2

L2 ðs2 þ t2Þ

s
; ð39Þ

Cnst and Dnst are the Fourier coefficients of the functions in the right
parts of (36b) and (36c). It is worth noting that Cnst and Dnst are cal-
culated by the functions wj (j ¼ 0;1; . . . ;n� 1) found in the previous
steps. The solution of the problem (38) has the form

WnstðzÞ ¼
1
2
ðCnst þ DnstÞ

cosh xstz
cosh xstb

þ 1
2
ðCnst � DnstÞ

sinh xstz
sinh xstb

: ð40Þ

The proposed algorithm can be applied to any power of e. Similar
algorithms were given in [15] up to Oðe30Þ. In the present paper,
the precision is restricted to Oðe2Þ.

Application of (40) yields solutions to the first- and second-or-
der problems in e

W1stðzÞ ¼ �
b tanh b

2
ðTst � BstÞ

cosh xstz
cosh xstb

þ ðTst þ BstÞ
sinh xstz
sinh xstb

	 

;

ð41Þ

where Tst and Bst are the Fourier coefficients of the boundary sur-
faces (see (4)). The functions W2stðzÞ have the form (40) with
n ¼ 2 and with

C2st ¼ b2P
p;q

Ts�p;t�q xst tanh b BpqþTpq cosh 2xst b
sinh 2xst b � Tpq

2

h i
;

D2st ¼ b2P
p;q

Bs�p;t�q xst tanh b TpqþBpq cosh 2xst b
sinh 2xst b � Bpq

2

h i
:

ð42Þ

Convention for summation on p and q are the same as it is described
for double Fourier series (4).

Therefore, the electric potential w has the form (28) and (37)
where WnstðzÞ is given by the recursive formula (40). The first



76 A.E. Malevich et al. / Journal of Colloid and Interface Science 345 (2010) 72–87
two functions W1stðzÞ and W2stðzÞ are written in the form (42). It is
worth noting that the above formulae hold for arbitrary Tðx; yÞ and
Bðx; yÞ if they are twice differentiable. The convergence radius of
the series (28) was estimated in [15] as well as extensions to large
e and to non-smooth channels.

The electric charge density can be derived from (8) when w is
known.

3.2. The linear approximation of the Poisson–Boltzmann equation

In the previous developments, the non-linear equation (8) is
approximated by (27) with the classical approximation
sinh X � X valid for small X. When the next term is taken into ac-
count, w for a plane channel (e ¼ 0) is given by

wðx; y; zÞ ¼ cosh z
cosh b

fþ wð3Þðx; y; zÞf3 ð43aÞ

with

wð3Þðx;y;zÞ ¼
1

192cosh3b
cosh3zþ12zsinhz� cosh3bþ12bsinhb

coshb
coshz

	 

ð44Þ

The relative errors maxzj
wð3Þ
w j and maxz

jrwð3Þ j
jrwj which are given in Fig. 2

are seen to remain smaller than 5% across the channel. The relative
error of the gradient is also estimated since it is present in the equa-
tions for Ui (23b) and (23c).

The disturbance due to e does not essentially change the result
because the final formulae contain the term e2f3 which is small
even for the undisturbed terms caused by cosh z

cosh b. Therefore, the lin-
ear approximation (27) of r2w ¼ sinh w is numerically justified
for data such as (25) and (26).

4. General algorithm for the coupled problem

In this paper, expansions are restricted to the orders Oðe2Þ and
Oðf4Þ. Following [15], expansions on e and f are used to reduce
the coupled equations (23b), (23c), (23d), (23e), (24b), (24c) and
(24d) to boundary value problems for the plane channel
�b < z < b. The latter problem can be solved by the method of
separated variables via power series in f and e, and double Fourier
series in x and y

Uiðx;y;zÞ ¼
X1
n;k¼0

fnekUinkðx;y;zÞ ¼
X1
n;k¼0

fnek
X

s;t

UinkstðzÞe
ip
L ðsxþtyÞ; ði¼ 1;2Þ; ð44aÞ

uðx;y;zÞ ¼
X1
n;k¼0

fnekunkðx;y;zÞ ¼
X1

n;k¼0

fnek
X

s;t

unkstðzÞe
ip
L ðsxþtyÞ; ð44bÞ

where formally n and k can run from 0 to infinity. However, in the
forthcoming symbolic computations, the largest values for them are
0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

z

Fig. 2. The relative errors on w (solid line) and rw (broken line) as functions of z
across the plane channel calculated by (43a) and (44). b ¼ 1.
equal to 4 and to 2, respectively. Hence, the sum on n and k is finite
while the sum on s and t is an infinite double Fourier series. Further,
sums with different subscripts are used. For instance, un means that
an expansion in f is used, unk a double expansion in f and e;unkst a
series in f; e and x; y. The function gðx; y; zÞ is also expanded as

gðx; y; zÞ ¼
X1

n;k¼0

fnekgnkðx; y; zÞ ¼
X1
n;k¼0

fnek
X

s;t

gnkstðzÞe
ip
L ðsxþtyÞ: ð45Þ

Convention for summation on s and t are the same as it is described
for double Fourier series (4).

4.1. Ionic potentials

Eqs. (23b) and (23c) expanded in f yield the cascade

r2Uin ¼ rw � ð�1Þi�1rUi;n�1 þ D�1
i un�1

h i
; ði ¼ 1;2Þ: ð46Þ

These equations directly show the coupling, i.e., the presence of
lower order terms in e in the right-hand side. A further expansion
of (46) in e yields

X1
k¼0

ekr2U1nk ¼
X1
k¼0

ek
Xk

m¼0

rwk�m � rU1;n�1;m þ D�1
1 un�1;m

� �
; ð47Þ

where only one equation (i ¼ 1Þ is written for shortness. When the
coefficients in the same powers of e are selected and when (35) is
used which implies rw0 ¼ ð0; 0; sinh z

cosh bÞ, the following Poisson equa-
tions are derived

r2U1nk ¼ F1nk; ð48Þ

where

F10k ¼ 0;

F1nk ¼ D�1
1 wn�1;k þ

@U1;n�1;k
@z

� �
sinh zþ

Pk�1

m¼0
rwk�m � ðrU1;n�1;m

þD�1
1 un�1;mÞ;

ð49Þ

where u ¼ ðu;v;wÞ. The Fourier coefficients of F1nk are calculated by

F1nkstðzÞ ¼ D�1
1 wn�1;kst þ

dU1;n�1;kst

dz

� �
sinh z

þ ip
LD1

Xk�1

m¼0

X
p;q

wk�m;s�p;t�q½ðs� pÞun�1;mpq þ ðt � qÞvn�1;mpq�

�
Xk�1

m¼0

X
p;q

p2

L2 ½ðs� pÞpþ ðt � qÞq�wk�m;s�p;t�qU1;n�1;mpq

þ D�1
1

Xk�1

m¼0

X
p;q

dwk�m;s�p;t�q

dz
: ð50Þ

Convention for summation on p and q are the same as it is described
for double Fourier series (4). An analogous formula holds for the
second ionic potential

F2nkstðzÞ ¼ D�1
2 wn�1;kst �

dU2;n�1;kst

dz

� �
sinh z

þ ip
LD2

Xk�1

m¼0

X
p;q

wk�m;s�p;t�q½ðs� pÞun�1;mpq þ ðt � qÞvn�1;mpq�

þ
Xk�1

m¼0

X
p;q

p2

L2 ½ðs� pÞpþ ðt � qÞq�wk�m;s�p;t�qU2;n�1;mpq

þ D�1
2

Xk�1

m¼0

X
p;q

dwk�m;s�p;t�q

dz
: ð51Þ

When Fourier series are used, (48) implies the ordinary differential
equation
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d2Uinkst

dz2 ðzÞ �x2
stUinkstðzÞ ¼ FinkstðzÞ; ði ¼ 1;2Þ; ð52Þ

where xst has the form (39). The general solution of the differential
equation (52) with non-zero xst is

UinkstðzÞ ¼ Ci1 sinh xstzþ Ci2 cosh xstz

þ 1
xst

Z z

�b
sinh½xstðz� nÞ�FinkstðnÞdn; ð53Þ

where Ci1 and Ci2 are undetermined constants which have to be
found from the boundary conditions. The functions FinkstðzÞ are pre-
sented through the Fourier coefficients of the unknown functions
found in the previous steps of the cascade by (50) and (51).

The boundary condition (24d) is transformed as follows. First,
the unit vector n normal to the top surface is written in the form

n ¼ ð0;0;1Þ � ebrT where rT ¼ @T
@x ;

@T
@y ;0

� �
. An analogous formula

can be derived for the bottom surface where
n ¼ ð0;0;�1Þ þ ebrB. Then, (24d) expanded by f becomes

X
n

fn @Uin0

@z
þ
X

k

ek @Uink

@z
� brUin;k�1 � rT

� �" #
jz¼b ¼ 0; ði ¼ 1;2Þ:

ð54Þ

The selection of the coefficients with the same powers of e in (54)
yields a cascade of boundary conditions. It is convenient to expand
the latter formulae in double Fourier series in terms of the functions
found in the previous steps. These formulae for ek (k ¼ 0;1;2Þ are

Zin0stðTÞ :¼ dUin0st
dz ðbÞ¼0;

Zin1stðTÞ :¼ dUin1st
dz ðbÞ¼�b

P
p;q

Ts�p;t�q Fin0pqðbÞþp2

L2 ðspþqtÞUin0pqðbÞ
h i

;

Zin2stðTÞ :¼ dUin2st
dz ðbÞ¼�b

P
p;q

Ts�p;t�q Fin1pqðbÞþp2

L2 ðspþqtÞUin1pqðbÞ
h i

�b2

2

P
p;q;p1 ;q1

Ts�p�p1 ;t�q�q1
Tp1 ;q1

d3Uin0pq

dz3 ðbÞþ 2p2

L2 ðp1pþq1qÞdUin0pq

dz ðbÞ
h i

;

ð55Þ

where Finkpq (i ¼ 1;2; k ¼ 0;1) is given by (50) and (51). (55) yield
analogous formulae for the bottom surface when T is replaced by
B; F ...ðbÞ by F ...ð�bÞ and U...ðbÞ by U...ð�bÞ.

Substitution of (53) into (55) and solution of the corresponding
linear algebraic system of second-order yields formulae for Ci1 and
Ci2 in the kth step

Ci1 ¼
1

2sinhxstb
ZinkstðTÞ�ZinkstðBÞ

xst
þ Iinkst sinhxstb� Jinkst coshxstb

� �
;

Ci2¼
1

2coshxstb
ZinkstðTÞþZinkstðBÞ

xst
þ Iinkst sinhxstb� Jinkst coshxstb

� �
;

ð56Þ

where ZinkstðTÞ and ZinkstðBÞ have the form (55),

Iinkst ¼
1

xst

Z b

�b
FinkstðnÞ sinhðnÞdn;

Jinkst ¼
1

xst

Z b

�b
FinkstðnÞ coshðnÞdn: ð57Þ

Formulae (53), (56) and (57) express the functions UinkstðzÞ in closed
form. Moreover, all integrals in these formulae can be calculated at
each step with elementary functions, since each integral consists of
hyperbolic trigonometric functions multiplied by polynomials. Inte-
gration of such a function yields a function of the same type which
becomes an integrand at the next step of the cascade and so on.
4.2. Velocity

Computation of the velocity follows the lines presented in the
previous section. However, the velocity satisfies the Stokes equa-
tions (23d) and (23e) which are more complicated than the Poisson
equation.

Substituting the series (44b) into (23d) and (23e) and equating
the coefficients with the same basic functions yield the following
ordinary differential equations for the components of unkst ¼
ðunkst;vnkst;wnkstÞ

d2unkst
dz2 ðzÞ �x2

stunkstðzÞ ¼ ips
L gnkstðzÞ þ ip

L FnkstðzÞ;
d2vnkst

dz2 ðzÞ �x2
stvnkstðzÞ ¼ ipt

L gnkstðzÞ þ ip
L GnkstðzÞ;

d2wnkst
dz2 ðzÞ �x2

stwnkstðzÞ ¼ dgnkst
dz ðzÞ þ HnkstðzÞ;

ip
L sunkstðzÞ þ tvnkstðzÞ½ � þ dwnkst

dz ðzÞ ¼ 0;

ð58Þ

where the functions Fnkst; Gnkst and Hnkst are expressed in terms of
the functions Ui;n�1;kpq calculated in the previous steps

F0kst ¼ G0kst ¼ H0kst ¼ 0; ð59Þ

Fnkst ¼
1
2

Xk

m¼0

X
pq

pwk�m;s�p;t�qðU1;n�1;mpq þU2;n�1;mpqÞ;

Gnkst ¼
1
2

Xk

m¼0

X
pq

qwk�m;s�p;t�qðU1;n�1;mpq þU2;n�1;mpqÞ; ð60Þ

Hnkst ¼
1
2

Xk

m¼0

X
pq

wk�m;s�p;t�q
dU1;n�1;mpq

dz
þ dU2;n�1;mpq

dz

� �
; n > 0:

As in (47) for the ionic potentials, the coupling is due to the lower
order U-terms in the right-hand side.

Application of the Taylor formula (29) to the boundary condi-
tions (24b) implies

un0stð�bÞ ¼ 0; unkstðbÞ ¼ Unkst; unkstð�bÞ ¼ Vnkst; ð61Þ

where Unkst and Vnkst are the Fourier coefficients of the functions

�
Xk

m¼1

bmTmðx; yÞ
m!

@mun;k�m

@zm ðx; y; bÞ;

�
Xk

m¼1

bmBmðx; yÞ
m!

@mun;k�m

@zm ðx; y;�bÞ; ð62Þ

respectively. The first terms in e ðk ¼ 1;2Þ can be written as

Un1st ¼ �b
X
p;q

Ts�p;t�q
dun0pq

dz
ðbÞ; Vn1st ¼ �b

X
p;q

Bs�p;t�q
dun0pq

dz
ð�bÞ;

Un2st ¼ �b
X
p;q

Ts�p;t�q
dun1pq

dz
ðbÞ � b2

2

X
p;q

X
p1 ;q1

Ts�p�p1 ;t�q�q1

d2un0pq

dz2 ðbÞ; ð63Þ

Vn2st ¼ �b
X
p;q

Bs�p;t�q
dun1pq

dz
ð�bÞ � b2

2

X
p;q

X
p1 ;q1

Bs�p�p1 ;t�q�q1

d2un0pq

dz2 ð�bÞ:

Then, the general system of ordinary differential equations (58) is
solved with the boundary conditions (63). The cases xst ¼ 0 and
xst – 0 must be investigated separately.

The detailed solution is given in Appendix A.

5. The coupling coefficient

5.1. General

The dimensionless coupling coefficient is related to the dimen-
sionless electric potential and the dimensionless velocity by for-
mula (15) where primes are omitted in non-dimensional values
for shortness. The averaged hwui can be calculated by the double
integral



Fig. 3. The level plot of w and streamlines in the channel (69) with
b ¼ 1; f ¼ �0:773, e ¼ 0:2 and L ¼ p.
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hwui ¼ 1
jsj

Z L

�L

Z L

�L
dxdy

Z Sþðx;yÞ

S�ðx;yÞ
wudz; ð64Þ

where jsj is the dimensionless volume of the periodicity cell

jsj ¼
Z L

�L

Z L

L
ðSþðx; yÞ � S�ðx; yÞÞdxdy ¼ 8bL2

: ð65Þ

The integral (65) is calculated by application of (3)–(6).
The division of the dimensionless coupling coefficient (21) by

the dimensionless permeability (22) and by the dimensionless
parameter f yields

a
fK
¼ �1

f
hwui
hui : ð66Þ

The zero approximation (A2) for u and the zero approximation
W0 ¼ fw0 derived from (35) and (A2) imply that

hu00i ¼ �
rp b2

3
; hW0u00i ¼ frp

tanh b
b
� 1

� �
: ð67Þ

Division of the left equation by the right one in (67) and substitu-
tion of the result into (66) yield the dimensionless version of (2)

a0

fK0
¼ 3

b2

tanh b
b
� 1

� �
; ð68Þ

where a0 and K0 denote the coupling coefficient and the permeabil-
ity for the plane channel.
5.2. Expansion of the coupling coefficient

Calculation of hwui and hui for wavy channels requires their
e-expansion. These expressions are obtained in Appendix B. hwui
is given by (B7) and (B9) with an accuracy Oðe2Þ and Oðf4Þ. hui is
given by (B10) and (B11).
6. Applications

6.1. Two examples

As a first application of the algorithms, consider the two-dimen-
sional channel V1 bounded by the walls (see Table 1)

z ¼ bþ be cos x; z ¼ �b� be cos x; ð69Þ

i.e., L ¼ p; T�1;0 ¼ T1;0 ¼ �B�1;0 ¼ �B1;0 ¼ 0:5; the other Fourier
coefficients Tst and Bst are equal to zero. In this example, the electric
potential up to Oðe3Þ has the form
Table 1
The two-dimensional configurations addressed in Section 6.2. Some of them are illustrate

Channel x Top wall

ctop stop

Vn n 1 0
Sn n 1 0
In 1;2;n 8

11 ; 0;
1

10 0;� 4
9 ; 0

C1 1;3;5;7;9 1;� 1
3 ;

1
5 ;� 1

7 ;
1
9

0

C2 5;13 0; 1
2 � 1

2 ;0
C3 5;8;13 0;0; 1

2 � 1
2 ;0; 0

C4 1;2 8
11 ; 0 0;� 4

9

C5 1;2;3;4;5;6 1
6 ;

1
6 ;

1
6 ;

1
6 ;

1
6 ;

1
6

0

C6 1 0 0
w ¼ f
cosh b

cosh z� eb cos x
cosh

ffiffiffi
2
p

z

cosh
ffiffiffi
2
p

b
sinh b

(

� e2b2

4
cos 2x

cosh
ffiffiffi
5
p

z

cosh
ffiffiffi
5
p

b
� ðcosh b� 2

ffiffiffi
2
p

sinh b tanh
ffiffiffi
2
p

bÞ
"

þ cosh zð1� 2
ffiffiffi
2
p

tanh b tanh
ffiffiffi
2
p

bÞ
io
: ð70Þ

A level plot of w is displayed in Fig. 3.
Then, the permeability K, the coupling coefficient a and the

combination A ¼ a
fK are obtained as

K ¼ 0:053052þ e2ð�0:190647� 0:000229f2 � 2:55� 10�6f3

þ 3:27� 10�7f4Þ

a ¼ �0:037944fþ e2ð0:091295fþ 0:000160f3 þ 1:79� 10�6f4

� 2:29� 10�7f5Þ

a
fK
¼ �0:715218þ e2ð�0:849336� 0:000061f2 � 6:86� 10�7f3

þ 8:70� 10�8f4Þ:

These formulae can be noted as

K ¼ K00 þ e2 K02 þ K22f
2 þ K32f

3 þ K42f
4� �
; ð71aÞ

a ¼ a10fþ e2 a12fþ a32f
3 þ a42f

4 þ a52f
5� �
; ð71bÞ

A ¼ a
fK
¼ A00 þ e2 A02 þ A22f

2 þ A32f
3 þ A42f

4� �
ð71cÞ

where the first index n corresponds to the order in f, and the second
one k to the order in e (see Tables 2, C.1–C.3 and C.4).

A first remark which can be made on these coefficients is that
Kn2, anþ1;2 and An2 are very small when n > 2. Therefore, the correc-
tion due to higher orders in f because of the coupling between the
ionic potentials and the flow is usually very small. It should be no-
ticed that the discussion will be mostly focused on K02 and a12 in
the following.
d in Fig. 4.

Bottom wall Comment

cbot sbot

�1 0 n ¼ 1; . . . ;12
1 0 n ¼ 1; . . . ;12
� 8

11 ; 0;� 1
10 0; 4

9 ; 0 n ¼ 3; . . . ;12

�1; 1
3 ;� 1

5 ;
1
7 ;� 1

9
0

0;� 1
2

1
2 ; 0

0; 1
2 ;0 0; 0;� 1

2
8

11 ; 0 0;� 4
9

� 1
6 ;� 1

6 ;� 1
6 ;� 1

6 ;� 1
6 ;� 1

6
0

�1 0



Table 2
The fitted linear dependence of coefficients K02 ; a12 and A02 of wave number n (see Eqs. (71) and Table 1).

Channel K02ðnÞ a12ðnÞ A02ðnÞ

Vn 0:07725240� 0:15891730n �0:09578348þ 0:10634841n �0:76399530� 0:13782850n
Sn 0:08188105� 0:15939037n �0:09918129þ 0:10669565n �0:76564110� 0:13766085n
In �0:15542495� 0:00158340n 0:07637030þ 0:00105797n �0:65582033� 0:00140439n

V3d
n

0.07957747 �0:10247843� 0:01431426n �0:85884652� 0:26981736n

S3d
n

0.07957747 �0:10252508� 0:01430947n �0:85972588� 0:26972724n
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At this point, it should be recalled that the non-linear equation
(8) has been linearized by sinh w � w and that the resulting poten-
tial has been hardly modified as it was discussed in Section 3.2.

A second example can be detailed in order to illustrate the
three-dimensional calculations. Consider the channel C3d

1 bounded
by the walls (see Table 3 and Fig. 8c)
z ¼ 1þ e cos x cos y; z ¼ �1� e cos x cos y; ð72Þ
i.e., b ¼ 1; L ¼ p; T�1;�1 ¼ �B�1;�1 ¼ 0:25; the other Fourier coeffi-
cients Tst and Bst are equal to zero.

The electric potential up to Oðe3Þ has the form
Table 3
The three-dimensional configurations addressed in Section 6.3. Some of them are
illustrated in Fig. 8.

Channel Top wall Bottom wall Comment

V3d
n

cos ny � cos ny n ¼ 1; . . . ;12

S3d
n

cos ny cos ny n ¼ 1; . . . ;12

C3d
1

cos x cos y � cos x cos y

C3d
2

cos x cos y � sin x cos y

Fig. 4. Some examples of two-dim
w¼0:64800f coshz�0:40322ecosxcosycoshð
ffiffiffi
3
p

zÞ
n

þe2 0:24102cos2ycoshð
ffiffiffi
5
p

zÞþ0:10366cos2xcos2ycosh3z
h io

:

ð73Þ

The corresponding expansions (71) are given by

K ¼ 0:053052þ e2ð�0:035442�0:000034f2 �3:28�10�7f3 þ4:10�10�8f4Þ;
a¼�0:037944fþ e2ð�0:003504fþ0:000024f3 þ2:29�10�7f4 �2:87�10�8f5Þ;
a
fK
¼�0:715218þ e2ð�0:543864�0:000010f2 �1:00�10�7f3 þ1:22�10�8f4Þ:

The same comments as before can be made on these coefficients
(see Tables 2 and C.5).
6.2. An overview of the analytical calculations in 2d

Calculations are better made in complex notations (4), but rep-
resentation is easier with real components. The various channels
are studied for integer values of the pulsation x, i.e., the walls
are obtained by superposing functions of the form cosx1x and
sin x2x where x1 and x2 are integer. The following notation is
used. The various pulsations are given by the vector x and the cor-
responding amplitudes of the cos and sin are given by the vectors c
ensional channels (Table 1).
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Fig. 5. Dependence of the coefficients �K02 and a12 of pulsation n for the two-
dimensional channels Vn and Sn . Data are for: Vn : �K02 (solid line), a12 (broken
line); Sn : �K02 (	), a12 (j).
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Fig. 6. The coefficients �K02 (solid line) and a12 (broken line) as functions of the
wave number n for the channels In .
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and s. These notations can be illustrated by the following example;
x ¼ ð1;2;3Þ; c ¼ ð2; 1

3 ;1Þ; s ¼ ð0;2;0Þ denote the wall

Sðx; yÞ ¼ 2 cos xþ 1
3

cos 2xþ 2 sin 2xþ cos 3x: ð74Þ

The cases studied in two dimensions are summarized in Table 1.
Some of them are illustrated in Fig. 4. Note that the configurations
Vn correspond to the channel limited by �1� e cos nx 6 z 6
1þ e cos nx. Of course, the importance of the corrections to the case
of a straight channel depends on the value of � and f. Whenever, the
channel is very smooth and jfj small, the following corrections are
negligible.

The results are given in Tables 2, C.1–C.4. They can by summa-
rized as follows.

6.2.1. General properties
Let us first comment the results relative to the configurations

V1; S1 and I1.
K02 is always negative and it is most of the times of order 1. The

sign and the variations in the orders of magnitude are certainly re-
lated to the linear character of the streamlines. It is indeed a well
known fact that viscous dissipation is minimal for straight
streamlines.

a10 is always negative. The opposite is true for a12 which is al-
most always positive which means that the part of a depending
on e2 (see formula (71b)) is an increasing function of �f. This
behavior is in agreement with physical intuition since wall oscilla-
tions which increase the solid surface are likely to increase electro-
osmotic effects. The only counterexample is for the purely sinuous
channel S1; but, it should be noticed that in this case ja12j is small
when compared with the other configurations. The other coeffi-
cients an2 (n P 3) may have different signs. In the sinuous mode,
illustrated by the channels In, some of them indeed change sign.

A last general comment can be made on all these coefficients.
Usually, only the 2 first ones are of order 1. There are at least 2
or 3 orders of magnitude between a12 and a32 for instance which
means that the higher order term is completely negligible. It is
important also to notice that numerical computations based on
discretization techniques could not reach such a precision easily
while this is done without any difficulty with the analytical tech-
nique presented in this paper; usually, the numerical task consists
in simple quadratures, i.e., in one-dimensional integrations of
smooth functions; this does not present any problem and this
can be done with an excellent precision.

The same is true for K02 and K22; K22 is about two orders of mag-
nitude smaller than K02.

6.2.2. Influence of the wave number
Because of its importance in real channels, the influence of large

wave numbers was studied for its own sake. First, this influence
was addressed for the series of varicose channels denoted as Vn.
The coefficients K02 and a12 are plotted in Figs. 5 and 6 where they
are seen to be increasing functions of n; obviously, the absolute va-
lue of the coupling increases with n to the expense of a larger vis-
cous dissipation. It should be noticed that K02 and a12 are linear
functions of the wave number n which are fitted for 4 6 n 6 12;
no obvious explanation was found for this very interesting behav-
ior. The coefficients are given in Table 2.

These calculations on the influence of roughness with large
wave numbers on K and a were extended in two ways because
of their practical importance. First, channels in the sinuous mode
were investigated. More precisely, let us denote by Sn the
channels limited by �1þ e cos nx 6 z 6 1þ e cos nx. The corre-
sponding coefficients K02 and a12 are plotted in Fig. 5 and gathered
in Table 2. K02 is always negative and its absolute value is an
increasing value of n. It is remarkably close to the values obtained
for the varicose channels Vn again without any obvious explana-
tion. Moreover, the difference between the two values decreases
with n; for instance K02 ¼ �0:280 for V2, and �0:208 for S2, while
the two values coincide and are equal to �1:83028 for V12 and
S12. Of course, the higher order coefficients in the expansion of K
are different.

With the remarkable exception of n ¼ 1; a12 is always positive
for Sn and it is also an increasing function of n. It becomes rapidly
of order 1. The same phenomenon as for K02 occurs, namely the dif-
ference with a12 obtained for Vn decreases with n.

This increase of coupling with n is an effect which can be prac-
tically important since it means that a roughness with a small
wave length has a larger influence than a roughness with the same
amplitude, but a longer wave length.

This effect was further investigated on the channels In which
result from the superpositions of three terms x ¼ ð1;2;nÞ; ctop ¼
�cbot ¼ ð 8

11 ;0;
1

10Þ; stop ¼ �sbot ¼ ð0;� 4
9 ;0Þ. The wave number n of

the last cosinus was successively increased from 3 to 12 while
keeping constant the other characteristics. The same trends as in
Vn are seen for K02 and a12 when n increases (see Fig. 6). The
observed variations are less important because the amplitude of
sin nx is equal to 1

10 and therefore significantly smaller that the
others. However, the important fact is that the trend is still present.
Linear fits are also given in Table 2. It is seen that the fit is excellent
for all values of n, i.e., 3 6 n 6 12.

6.3. An overview of the analytical calculations in 3d

A similar set of calculations though significantly less extensive
was made in 3d. The studied cases are summarized in Table 3 with
notations analogous to Table 1.
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It is interesting to see that K02 is always positive and a12 is al-
ways negative for the channels V3d

n and S3d
n .

Let us now look at the influence of large wave numbers in a 3d
channel. Two cases can be considered as illustrated in Fig. 8. The
oscillations are so to speak parallel to the flow since the other case
was already investigated in the previous section; the channels can
be again either varicose or sinuous. The equations for the walls are

T ¼ cos ny; B ¼ � cos ny: ð75Þ

Results for K02 and a12 are given in Fig. 7 and in Table C.5. The first
interesting feature is that K02 is now always positive and constant
whatever the value of n and the channel type. This remark was
not made before to the best of our knowledge; it is certainly related
to the fact that streamlines are straight and that the Stokes equa-
tions are reduced to a two-dimensional Poisson equation.

The second specific feature is that a12 is always negative what-
ever the channel type (see Fig. 7). ja12j is an increasing function of n
as in two dimensions. ja12j depends slightly on the channel type for
small n, but this is influence disappears rapidly when n increases.

Again the coefficients K02 and a12 are well fitted by linear
relations for 4 6 n 6 12; the values of the coefficients are given
in Table 2.

6.4. Discussion

It might be useful to summarize the analytical–numerical
algorithm which was devised in order to calculate the coefficients
a and A to Oðe3Þ and Oðf4Þ. The expansion in e is used to reduce the
electroosmotic equations. (23)-(24) for a curvilinear channel to
equations for a plane channel �b 6 z 6 b. The latter problem is re-
duced to a cascade of boundary value problems for ordinary differ-
ential equations by expansions in f and by using the method of
separated variables. As a result w; Ui and u are written as double
Fourier series in x; y with coefficients in z (see formulae (37), (40)
and (42) for w; (53), (56) and (57) for Ui; (59), (60) and (63) for u).

The coefficients a and A are determined by integrating over the
unit cell. The considered triple integrals are first reduced to succes-
sive integrals in x; y and in zZ L

�L

Z L

�L
Fðx; yÞdxdy; ð76Þ

where Fðx; yÞ has the form (B1). First, the integral Fðx; yÞ is re-
duced to the form (B3) which contains an ordinary integralZ b

�b
f ðx; y; zÞdz; ð77Þ

The integral (77) is calculated by expanding f ðx; y; zÞ as a double
Fourier series in x; y. Only the zero term (s ¼ t ¼ 0) yields a non-
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Fig. 7. The coefficients K02 and �a12 as functions of the wave number n for the
three-dimensional channels V3d

n and S3d
n . Data are for: V3d

n : K02 (solid line), �a12

(broken line); S3d
n : K02 (	), �a12 (j).
zero integral in (76). Therefore, in order to calculate the triple inte-
gral (76) over the curvilinear unit cell S�ðx; yÞ 6 z 6 Sþðx; yÞ;
�L 6 x; y 6 L, we need to compute a single ordinary integral in z
for the zero Fourier coefficient f00ðzÞ of the function f ðx; y; zÞ.

These ordinary integrals are computed with the help of Math-
ematica� with a precision of 15 decimal digits by the standard
operator NIntegrate; the number of grid points is not important
in computing the integral and it could be increased without any
significant time increase. Moreover, all these integrals could be cal-
culated analytically, but it was found more convenient to compute
them numerically. As a result, the calculations take about 14 min
for the two-dimensional channel V1 and 62 min for the three-
dimensional channel S3d

n . The computations were performed by
using a usual notebook with a dual core (2.10 GHz) and a central
memory of 2 GB.

It is worth nothing that the Fourier coefficients Tst and Bst of the
walls are arbitrary. Hence, varicose and sinuous channels with lon-
gitudinal and transversal oscillations and roughness of the walls
can be investigated by a unified approach. Computational restric-
tions arise when too many non-zero terms Tst and Bst or terms with
too high frequencies xst (xst > 12) are taken. The large number of
terms Tst and Bst (more than 14) produce many terms which com-
pose the final solution. For instance, ten terms Tst and Bst produce
auxiliary functions with about thousand terms of different scales
(polynomial and exponential functions of xstz). Though these
terms are analytically calculated, introduction of the numerical
values of xst may lead to error accumulation. As a consequence,
the relative error may be equal to 6% when terms with a high fre-
quency xst are present. For the other channels, the numerical error
is negligible. Of course, this difficulty can be overcome by increas-
ing the computational precision of Mathematica� and by interac-
tive manipulations of the obtained symbolic formulae for Ui and u.
7. Conclusion

The previous developments are practically useful for interpret-
ing experiments where roughness is small but cannot be neglected.
It should be emphasized that the overall precision is always better
than 6%. It provides also quantitative informations on the way a
channel should be machined in order to favor a given effect.

Of course, this first work could be extended in several ways.
First, further orders in e can be relatively easily derived and this
would allow the study of channels which are much rougher.

Another possibility would be to put different boundary condi-
tions on the solid surfaces such as a constant charge. Then, one
could try to use boundary conditions which vary in space such as
a zeta potential or a surface charge which would be spatially cor-
related with the roughness.

Further terms in zeta could possibly be included. However, it is
not clear at this stage if significant progress can be made about the
non-linear character of the equations.
Appendix A. Solution for the velocity field

A.1. Case xst ¼ 0

Eq. (58) become

d2unk00

dz2 ðzÞ ¼ ip
L

Fnk00ðzÞ;
d2wnk00

dz2 ðzÞ ¼ dgnk00

dz
ðzÞ þ Hnk00ðzÞ;

d2vnk00

dz2 ðzÞ ¼ ip
L

Gnk00ðzÞ;
dwnk00

dz
ðzÞ ¼ 0: ðA1Þ

If n ¼ k ¼ 0, the Fourier series degenerate and one obtains the clas-
sical Poiseuille flow in the plane channel



Fig. 8. The three-dimensional channels (see Table 3).
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u00ðx; y; zÞ ¼
rp
2
ðz2 � b2Þ; v00ðx; y; zÞ ¼ w00ðx; y; zÞ ¼ 0;

g00ðx; y; zÞ ¼ rpx: ðA2Þ

If n – 0 or k – 0, the general solution of the system (A1) with the
boundary conditions (61) has the form

unk00ðzÞ ¼ C1 þ C2zþ ip
L

R z
�bðz� nÞFnk00ðnÞdn;

vnk00ðzÞ ¼ D1 þ D2zþ ip
L

R z
�bðz� nÞGnk00ðnÞdn;

wnk00ðzÞ ¼ 1
2 Uð3Þnk00 þ V ð3Þnk00

� �
;

ðA3Þ

where the constants Cj and Dj are calculated by

C1 ¼ ip
2L Uð1Þnk00 þ V ð1Þnk00 �

R b
�bðb� nÞFnk00ðnÞdn

� �
;

C2 ¼ ip
2bL Uð1Þnk00 � V ð1Þnk00 �

R b
�bðb� nÞFnk00ðnÞdn

� �
;

D1 ¼ ip
2L Uð2Þnk00 þ V ð2Þnk00 �

R b
�bðb� nÞGnk00ðnÞdn

� �
;

D2 ¼ ip
2bL Uð2Þnk00 � V ð2Þnk00 �

R b
�bðb� nÞGnk00ðnÞdn

� �
:

ðA4Þ

Here, for instance Uð1Þnk00 denotes the first component of the vector
Unk00.

A.2. Case xst – 0

Eqs. (58) are transformed as follows. Differentiate the first and
second Eqs. (58) in z. Multiply the results by ips

L and by ipt
L , respec-

tively. Add the obtained equations with the third equation multi-
plied by x2

st . According fourth Eq. (58) replace ips
L unkst þ ipt

L vnkst

with � dwnkst
dz . The result is the fourth-order differential equation

d4wnkst

dz4 � 2x2
st

d2wnkst

dz2 þx4
stwnkst ¼Wnkst; ðA5Þ

where Wnkst is related to the known functions from the right parts of
(58)
WnkstðzÞ ¼
p2s

L2

dFnkst

dz
ðzÞ þ p2t

L2

dGnkst

dz
ðzÞ �x2

stHnkstðzÞ: ðA6Þ

It follows from (61) that wnkst satisfies the boundary conditions

wnkstðbÞ ¼ Uð3Þnkst;
dwnkst

dz
ðbÞ ¼ � ip

L
ðsUð1Þnkst þ tUð2ÞnkstÞ;

wnkstð�bÞ ¼ V ð3Þnkst;
dwnkst

dz
ð�bÞ ¼ � ip

L
ðsV ð1Þnkst þ tV ð2ÞnkstÞ: ðA7Þ

Using long but standard manipulations, the solution of Eqs. (A5) and
(A7) is derived as

wnkstðzÞ ¼ ðc1 þ c2zÞ cosh xstzþ ðd1 þ d2zÞ sinh xstzþWnkstðzÞ;
ðA8Þ

where

WnkstðzÞ ¼
1

2x3
st

xst

Z z

�b
ðz� nÞ cosh xstnWnkstðnÞdn

	

þ d2

dz2

Z z

�b
ðz� nÞ cosh xstnWnkstðnÞdn

� �#
: ðA9Þ

The constants cj and dj are

c1 ¼
bxstðR1 þ R2Þ cosh xstbþ ½R1 þ R2 � bðR3 � R4Þ� sinh xstb

sinh 2xstbþ 2xstb
;

c2 ¼
bxstðR1 � R2Þ sinh xstbþ ½R1 � R2 � bðR3 þ R4Þ� cosh xstb

sinh 2xstb� 2xstb
;

d1 ¼
�xstðR1 � R2Þ cosh xstbþ ðR3 � R4Þ sinh xstb

sinh 2xstb� 2xstb
;

d2 ¼
�xstðR1 þ R2Þ sinh xstbþ ðR3 � R4Þ cosh xstb

sinh 2xstbþ 2xstb
;

ðA10Þ

where

R1 ¼ Uð3Þnkst �WnkstðbÞ; R3 ¼ �
ip
L
ðsUð1Þnkst þ tUð2ÞnkstÞ �WnkstðbÞ;

R2 ¼ V ð3Þnkst; R4 ¼ �
ip
L
ðsV ð1Þnkst þ tV ð2ÞnkstÞ: ðA11Þ
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Formulae (44b), (A8), (A9), (A10) and (A11) completely determine
the third component of the velocity, more precisely its Fourier com-
ponents wnkst .

The first and the second components of the velocity are deter-
mined by the following computations. First, generate the linear
combination

MnkstðzÞ ¼ tunkstðzÞ � svnkstðzÞ: ðA12Þ

Then, the same linear combinations of the first two equations (58)
and the boundary conditions (61) yield the ordinary differential
equation

d2Mnkst

dz2 ðzÞ �x2
stMnkstðzÞ ¼ NnkstðzÞ ðA13Þ

with the boundary conditions

MnkstðbÞ ¼ tUð1Þnkst � sUð2Þnkst; Mnkstð�bÞ ¼ tV ð1Þnkst � sV ð2Þnkst: ðA14Þ

The functions Nnkst are defined by

NnkstðzÞ ¼
ip
L

t FnkstðzÞ � sGnkstðzÞ½ � ðA15Þ

The solution of the boundary value problem (A13) and (A14) is

MnkstðzÞ ¼ C1 � cðzÞ½ � cosh xstzþ C2 þ sðzÞ½ � sinh xstz; ðA16Þ

where the functions cðzÞ and sðzÞ are

cðzÞ ¼ 1
xst

Z z

�b
NnkstðnÞ cosh xstndn;

sðzÞ ¼ 1
xst

Z z

�b
NnkstðnÞ sinh xstndn: ðA17Þ

The constants Cj are given by

C1 ¼
tðUð1Þnkst � V ð1ÞnkstÞ � sðUð2Þnkst � V ð2ÞnkstÞ þ cðbÞ � sðbÞ

2xst sinh xstb
; ðA18Þ

C2 ¼
tðUð1Þnkst � V ð1ÞnkstÞ þ sðUð2Þnkst þ V ð2ÞnkstÞ þ cðbÞ � sðbÞ

2xst cosh xstb
:

Therefore, the function MnkstðzÞ is determined by Eqs. (A16)–(A18).
The functions unkstðzÞ and vnkstðzÞ are found from the following

relations

tunkstðzÞ � svnkstðzÞ ¼ MnkstðzÞ; sunkstðzÞ þ tvnkstðzÞ

¼ iL
p

dwnkst

dz
ðzÞ: ðA19Þ

Hence,

unkstðzÞ ¼
ips

Lx2
st

dwnkst

dz
ðzÞ þ p2t

L2x2
st

MnkstðzÞ;

vnkstðzÞ ¼
ipt

Lx2
st

dwnkst

dz
ðzÞ � p2s

L2x2
st

MnkstðzÞ: ðA20Þ

The functions MnkstðzÞ and wnkstðzÞ are given by (A16) and (A8).

Appendix B. The coupling coefficient

B.1. Determination of hwui

Let us study the integral in z in the triple integral (64). Let
f ðx; y; zÞ denote a smooth function and Fðx; y; zÞ its primitive in z,
i.e., @

@z Fðx; y; zÞ ¼ f ðx; y; zÞ. Introduce

Fðx; yÞ ¼
Z bþbeTðx;yÞ

�bþbeBðx;yÞ
f ðx; y; zÞdz

¼ Fðx; y; bþ beTðx; yÞÞ � Fðx; y;�bþ beBðx; yÞÞ: ðB1Þ

Application of the Taylor formula (29) yields
Fðx; yÞ ¼
X1
k¼0

bkek

k!
Tk @

kF
@zk
ðx; y; bÞ � Bk @

kF
@zk
ðx; y;�bÞ

" #
: ðB2Þ

Hence, the integral (B1) with variable limits of integration is re-
duced to

Fðx; yÞ ¼
Z b

�b
f ðx; y; zÞdzþ

X1
k¼1

� bkek

k!
Tk @

k�1f
@zk�1 ðx; y; bÞ � Bk @

k�1f
@zk�1 ðx; y;�bÞ

" #
: ðB3Þ

Substitute f ¼ wu into (B3) and preserve the terms of order Oðe2Þ

Aðx; yÞ ¼
Z bþbeTðx;yÞ

�bþbeBðx;yÞ
wudz ¼

Z b

�b
wudzþ eb Tðx; yÞwðx; y; bÞuðx; y; bÞ½

�Bðx; yÞwðx; y;�bÞuðx; y;�bÞ� þ b2e2

2
T2ðx; yÞ uðx; y; bÞ @w

@z
ðx; y; bÞ

�	

þwðx; y; bÞ @u
@z
ðx; y; bÞ

�
� B2ðx; yÞ uðx; y;�bÞ @w

@z
ðx; y;�bÞ

�

þwðx; y;�bÞ @u
@z
ðx; y;�bÞ

�

þ Oðe3Þ: ðB4Þ

The functions w and u are calculated in Section 3 and in Section 4.2
in the form of expansion in f, e and the Fourier series in x; y. Hence,
it is convenient to present (B4) in such a form. First, expansions in f
and e are applied. Then, Aðx; yÞ defined by (B4) becomes

Aðx; yÞ ¼
X1

n;k¼0

fnekankðx; yÞ; ðB5Þ

where the required terms with k ¼ 0;1;2 can be written as

an0ðx; yÞ ¼
Z b

�b
cosh z un�1;0ðx; y; zÞdz; ðB6Þ

an1ðx; yÞ ¼
Z b

�b
ðw1un�1;0 þ cosh z un�1;1Þdzþ b

� cosh b Tw0un�1;0jz¼b � Bw0un�1;0jz¼�bÞ
� �

;

an2ðx; yÞ ¼
Z b

�b
ðw2un�1;0 þ w1un�1;1 þ cosh z un�1;2Þdzþ b½Tðw1un�1;0

þ cosh b un�1;1Þjz¼b � Bðw1un�1;0 þ cosh b un�1;1Þjz¼�b�

þ b2 sinh b
2

ðT2un�1;0jz¼b þ B2un�1;0jz¼�bÞ

þ b2 cosh b
2

T2 @un�1;0

@z
jz¼b � B2 @un�1;0

@z
jz¼�b

� �
:

where the arguments of the functions are omitted for shortness.
The next step is the calculation of the integrals in x and y in (64)

hwui ¼ 1

8bL2

Z L

�L

Z L

�L
Aðx; yÞdxdy ¼ 1

2b

X1
n;k¼0

fnekAnk; ðB7Þ

where

Ank ¼
Z L

�L

Z L

�L
ankðx; yÞdxdy: ðB8Þ

The functions w1 and w2 were calculated in Section 3 as Fourier
series as well as the functions un�1;0 and un�1;1 in Section 4.2 with
the computed coefficients un�1;0st . Substitution of these formulae
into (B6) and into (B7) yields after some tedious symbolic
computations

A0k ¼ 0; An0 ¼
Z b

�b
cosh z un�1;0 dz; ðB9Þ



Table C.1
The coefficients Knk for the two-dimensional varicose channels described in Table 1.

Channel K00 K02 K22 K32 K42

V1 0.05305165 �0.19064676 �0.00022889 �0.00000255 0.00000033
V2 0.05305165 �0.27998459 �0.00005912 �0.00000044 0.00000005
V3 0.05305165 �0.41009148 �0.00001309 �0.00000006 0.00000001
V4 0.05305165 �0.56004845 �0.00000325 �0.00000001 �0.00000000
V5 0.05305165 �0.71684814 �0.00000102 �0.00000000 0.00000002
V6 0.05305165 �0.87548129 �0.00000041 �0.00000419 0.00000594
V7 0.05305165 �1.03453122 �0.00000020 0.00000542 0.00000496
V8 0.05305165 �1.19366637 0.00008958 0.00006989 0.00004525
V9 0.05305165 �1.35281776 0.00008128 0.00006799 �0.00199125
V10 0.05305165 �1.51197208 0.00083152 �0.00274530 �0.00034320
V11 0.05305165 �1.67112692 �0.03283528 �0.00021212 0.00478510
V12 0.05305165 �1.83028185 �0.03618856 �0.00040601 0.00539587

Table C.2
The coefficients Knk for the two-dimensional sinuous channels given in Table 1.

Channel K00 K02 K22 K32 K42

S1 0.05305165 �0.05512055 �0.00000001 0.00000000 0.00056619
S2 0.05305165 �0.20839997 �0.00000062 0.00000000 0.00000000
S3 0.05305165 �0.38639969 �0.00000145 �0.00000000 0.00000000
S4 0.05305165 �0.55406854 �0.00000118 �0.00000000 �0.00000000
S5 0.05305165 �0.71554753 �0.00000068 �0.00000000 0.00000002
S6 0.05305165 �0.87522313 �0.00000036 �0.00000418 0.00000594
S7 0.05305165 �1.03448304 �0.00000019 0.00000542 0.00000496
S8 0.05305165 �1.19365777 0.00008958 0.00006989 0.00004525
S9 0.05305165 �1.35281627 0.00008126 0.00006800 �0.00199125
S10 0.05305165 �1.51197183 0.00083141 �0.00274529 �0.00034327
S11 0.05305165 �1.67112688 �0.03283578 �0.00021208 0.00478490
S12 0.05305165 �1.83028184 �0.03617176 �0.00040677 0.00540160

Table C.3
The coefficients Knk for the two-dimensional channels Ink given in Table 1.

Channel K00 K02 K22 K32 K42

I3 0.05305165 �0.16024447 �0.00013287 �0.00000144 0.00000018
I4 0.05305165 �0.16174404 �0.00013277 �0.00000135 0.00000025
I5 0.05305165 �0.16331203 �0.00013275 �0.00000138 0.00000062
I6 0.05305165 �0.16489836 �0.00013162 �0.00000078 0.00000054
I7 0.05305165 �0.16648886 �0.00012453 �0.00001584 �0.00001379
I8 0.05305165 �0.16808022 �0.00012447 �0.00002143 0.00003513
I9 0.05305165 �0.16967173 �0.00039421 0.00000071 0.00003885
I10 0.05305165 �0.17126327 �0.00042075 �0.00000479 �0.00002328
I11 0.05305165 �0.17285482 �0.00012420 �0.00003932 0.00001347
I12 0.05305165 �0.17444637 �0.00049676 �0.00000823 �0.00001015

Table C.4
The coefficients ank for the two-dimensional varicose channels given in Table 1.

Channel a10 a12 a32 a42 a52

V1 �0.03794347 0.09129521 0.00016049 0.00000179 �0.00000023
V2 �0.03794347 0.14677744 0.00004118 0.00000030 �0.00000004
V3 �0.03794347 0.23146311 0.00000902 0.00000004 �0.00000001
V4 �0.03794347 0.33086870 0.00000220 0.00000001 0.00000000
V5 �0.03794347 0.43549855 0.00000068 �0.00000048 0.00000019
V6 �0.03794347 0.54160677 0.00000027 0.00000583 �0.00000385
V7 �0.03794347 0.64810002 0.00000008 �0.00000491 0.00000836
V8 �0.03794347 0.75470479 �0.00003004 �0.00003684 �0.00003527
V9 �0.03794347 0.86135372 0.00007143 �0.00022910 0.00125493
V10 �0.03794347 0.96802724 0.00005155 0.00119961 0.00050676
V11 �0.03794347 1.07471737 0.02502505 0.00058048 0.00032893
V12 �0.03794347 1.18015709 �0.00018679 0.00072894 �0.00018404
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Table C.5
The coefficients ank for the two-dimensional sinuous channels given in Table 1.

Channel a10 a12 a32 a42 a52

S1 �0.03794347 �0.00513099 0.00000001 �0.00000000 �0.00043930
S2 �0.03794347 0.09531903 0.00000038 �0.00000000 �0.00000000
S3 �0.03794347 0.21423798 0.00000093 0.00000000 �0.00000000
S4 �0.03794347 0.32648395 0.00000077 0.00000000 0.00000000
S5 �0.03794347 0.43453907 0.00000044 �0.00000048 0.00000019
S6 �0.03794347 0.54141547 0.00000023 0.00000583 �0.00000385
S7 �0.03794347 0.64806420 0.00000007 �0.00000491 0.00000836
S8 �0.03794347 0.75469838 �0.00003004 �0.00003684 �0.00003527
S9 �0.03794347 0.86135262 0.00007144 �0.00022910 0.00125493
S10 �0.03794347 0.96802705 0.00005163 0.00119960 0.00050681
S11 �0.03794347 1.07471734 0.02502542 0.00058045 0.00032908
S12 �0.03794347 1.18015709 �0.00019959 0.00072953 �0.00018840

Table C.6
The coefficients ank for the two-dimensional channels Ink given in Table 1.

Channel a10 a12 a32 a42 a52

I3 �0.03794347 0.07959608 0.00009311 0.00000100 �0.00000013
I4 �0.03794347 0.08059014 0.00009305 0.00000097 �0.00000013
I5 �0.03794347 0.08163643 0.00009276 0.00000117 �0.00000040
I6 �0.03794347 0.08269752 0.00009292 0.00000067 �0.00000161
I7 �0.03794347 0.08376245 0.00009493 0.00000783 0.00000860
I8 �0.03794347 0.08482850 0.00009372 0.00002038 �0.00001446
I9 �0.03794347 0.08589499 0.00009170 0.00000249 0.00000193
I10 �0.03794347 0.08694657 0.00011609 0.00000703 0.00005240
I11 �0.03794347 0.08801485 0.00008652 �0.00145663 �0.00001025
I12 �0.03794347 0.08908302 0.00037026 �0.00177141 0.00000774

Table C.7
The coefficients Ank for the two-dimensional varicose channels given in Table 1.

Channel A00 A02 A22 A32 A42

V1 �0.71521753 �0.84933637 �0.00006052 �0.00000069 0.00000009
V2 �0.71521753 �1.00793189 �0.00002069 �0.00000017 0.00000002
V3 �0.71521753 �1.16568504 �0.00000653 �0.00000004 �0.00000004
V4 �0.71521753 �1.31358346 �0.00000231 �0.00000001 �0.00000001
V5 �0.71521753 �1.45525755 �0.00000097 �0.00000915 0.00000383
V6 �0.71521753 �1.59378261 �0.00000047 0.00005348 0.00000746
V7 �0.71521753 �1.73066907 �0.00000122 �0.00001941 0.00022447
V8 �0.71521753 �1.86660236 0.00064139 0.00024783 �0.00005486
V9 �0.71521753 �2.00192187 0.00244210 �0.00340180 �0.00319022
V10 �0.71521753 �2.13681776 0.01218180 �0.01439876 0.00492528
V11 �0.71521753 �2.27140742 0.02904112 0.00808209 0.07071056
V12 �0.71521753 �2.42956783 �0.49139824 0.00826654 0.06927557
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Table C.8
The coefficients Ank for the two-dimensional sinuous channels given in Table 1.

Channel A00 A02 A22 A32 A42

S1 �0.71521753 �0.83982648 �0.00000006 0.00000000 �0.00064751
S2 �0.71521753 �1.01282960 �0.00000126 0.00000000 0.00000000
S3 �0.71521753 �1.17096935 �0.00000202 �0.00000000 �0.00000004
S4 �0.71521753 �1.31561574 �0.00000144 �0.00000000 �0.00000001
S5 �0.71521753 �1.45580910 �0.00000082 �0.00000913 0.00000382
S6 �0.71521753 �1.59390815 �0.00000044 0.00005347 0.00000746
S7 �0.71521753 �1.73069478 �0.00000121 �0.00001941 0.00022447
S8 �0.71521753 �1.86660727 0.00064139 0.00024783 �0.00005486
S9 �0.71521753 �2.00192276 0.00244212 �0.00340180 �0.00319022
S10 �0.71521753 �2.13681792 0.01218189 �0.01439877 0.00492534
S11 �0.71521753 �2.27140744 0.02904155 0.00808205 0.07071076
S12 �0.71521753 �2.42956784 �0.49141293 0.00826742 0.06927054



Table C.9
The coefficients Ank for the two-dimensional channels Ink given in Table 1.

Channel A00 A02 A22 A32 A42

I3 �0.71521753 �0.65999027 �0.00003617 �0.00000052 0.00000010
I4 �0.71521753 �0.66146926 �0.00003612 0.00000008 0.00000092
I5 �0.71521753 �0.66288600 �0.00004121 0.00000350 0.00000079
I6 �0.71521753 �0.66427125 �0.00002291 0.00000214 �0.00002310
I7 �0.71521753 �0.66564011 0.00011057 �0.00006591 �0.00002378
I8 �0.71521753 �0.66699945 0.00008848 0.00009517 0.00020095
I9 �0.71521753 �0.66835264 �0.00358602 0.00005649 0.00056008
I10 �0.71521753 �0.66998720 �0.00348405 0.00006803 0.00067395
I11 �0.71521753 �0.67130713 �0.00004356 �0.02798686 �0.00001157
I12 �0.71521753 �0.67262910 0.00028212 �0.03350128 0.00000908

Table C.10
The coefficients K ¼ 0:05305165þ K02e2, a ¼ �0:03794347fþ a12fe2 and A ¼ �0:71521753þ A02e2 for the three-dimensional varicose V3d

n and sinuous S3d
n channels given in

Table 3.

n Channel V3d
n Channel S3d

n

K02 a12 A02 K02 a12 A02

1 0.07957747 �0.11854742 �1.16173991 0.07957747 �0.12339534 �1.25312100
2 0.07957747 �0.13197311 �1.41480826 0.07957747 �0.13344953 �1.44263802
3 0.07957747 �0.14592203 �1.67773913 0.07957747 �0.14624950 �1.68391181
4 0.07957747 �0.15993701 �1.94191525 0.07957747 �0.15999950 �1.94309321
5 0.07957747 �0.17406350 �2.20819347 0.07957747 �0.17407448 �2.20840035
6 0.07957747 �0.18828195 �2.47620476 0.07957747 �0.18828378 �2.47623927
7 0.07957747 �0.20256250 �2.74538690 0.07957747 �0.20256280 �2.74539245
8 0.07957747 �0.21688409 �3.01534254 0.07957747 �0.21688414 �3.01534341
9 0.07957747 �0.23123357 �3.28582388 0.07957747 �0.23123358 �3.28582401

10 0.07957747 �0.24560273 �3.55667615 0.07957747 �0.24560273 �3.55667617
11 0.07957747 �0.25998626 �3.82779934 0.07957747 �0.25998627 �3.82779934
12 0.07957747 �0.27438061 �4.09912629 0.07957747 �0.27438061 �4.09912629
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:

Therefore, the expression hwui can be computed by (B7) and (B9)
with an accuracy Oðe2Þ and Oðf4Þ.

B.2. Determination of hui

Similar computations can be applied to hui. It was already done
in [15] for Stokes flow only without any electrical effect with an
accuracy Oðe30Þ. Below the results are given for hui when the elec-
tric potential is taken into account, but without an external electric
field. Numerical comparison shows a weak dependence on f (see
examples below). hui is given by
hui ¼ 1
2b

X1
n;k¼0

fnekKnk; ðB10Þ

where

Kn0 ¼
Z b

�b
un000 dz; Kn1
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X
st

ðT�s;�tU
ð1Þ
n;0st � B�s;�tV

ð1Þ
n;0stÞ; ðB11Þ

Kn2 ¼
Z b

�b
un200 dzþ b

X
st

ðT�s;�tU
ð1Þ
n;1st � B�s;�tV

ð1Þ
n;1stÞ þ

b2

2

X
st

�
X

pq

T�s�p;�t�qTpq
dun;0st

dz
ððbÞ � B�s�p;�t�qBpq

dun;0st

dz
ð�bÞ

� �
:

Appendix C. Complete numerical data

C.1. Two-dimensional channels

See Tables C.1–C.9.

C.2. Three-dimensional channels

Table C.10.
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