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Conductivity of a two-dimensional composite
containing elliptical inclusions

BY VLADIMIR MITYUSHEV*

Department of Mathematics, Pedagogical University, ul. Podcharazych 2,
Krakow 30-084 Poland

We develop a method of functional equations to derive analytical approximate formulae
for the effective conductivity tensor of the two-dimensional composites with elliptical
inclusions. The sizes, the locations and the orientations of the ellipses can be
arbitrary. The analytical formulae contain all the above geometrical parameters in
symbolic form.

Keywords: transport properties; effective conductivity; elliptical inclusions

1. Introduction

Analysis concerning the transport properties of inhomogeneous materials is of
fundamental theoretical interest. It is also important in engineering, for instance
in optimal design problems. Analytical formulae for the macroscopic properties
with physical and geometrical parameters in symbolic form are useful to predict
the behaviour of composites. Using the terminology of electric or thermal
conductivity, we study the transport properties of a two-dimensional, two-phase
composite with parallel elliptical cylinders of conductivity λ embedded in a host
material of the normalized unit conductivity.

The effective conductivity of random conducting materials has been studied
since the nineteenth century by Maxwell and Rayleigh. Most of the work in
literature is concerned with dilute composites with spherical and ellipsoidal
inclusions (circular and elliptical inclusions in two-dimensional composites),
because the corresponding boundary value problem for one inclusion in the
whole space can be solved in closed form. The attention of this study is on
two-dimensional composites for which few analytical formulae are known.

Let ν be the area fraction of the inclusions, and

ρ = λ − 1
λ + 1

(1.1)

denotes the contrast parameter introduced by Bergman (1978). The semi-axes of
the ellipses are denoted by r(1 + α) and r(1 − α), where 0 < α < 1 and r > 0. If all
the ellipses are aligned with the coordinate axes, the effective conductivity tensor
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2992 V. Mityushev

is diagonal. Its diagonal components were estimated by Galeener (1971a–c):

λx ≈ 1 + 2ρν

1 − ρ(ν + α)
and λy ≈ 1 + 2ρν

1 − ρ(ν − α)
. (1.2)

Cohen et al. (1973) discussed what they viewed as inconsistencies arising from
formulae (1.2) and derived formulae based on an elliptical Lorentz cavity having
the same depolarization factors as the inclusions:

λx ≈ 1 + 2ρν

1 − ρ(α + ν(1 − α))
and λy ≈ 1 + 2ρν

1 + ρ(α − ν(1 + α))
. (1.3)

The scalar macroscopic conductivity of randomly distributed ellipses were
calculated by Hetherington & Thorpe (1992) and by Zimmerman (1996):

λe = 1 + 2ρν

1 − α2ρ2
+ O(ν2). (1.4)

Having applied the differential method, Zimmerman (1996) deduced another
approximate formula

1
1 − ν

≈ λ(1−α2)/2
e

∣∣∣∣ λ − 1
λ − λe

∣∣∣∣
∣∣∣∣λ + λe

λ + 1

∣∣∣∣
α2

. (1.5)

The following formula was obtained by Hetherington & Thorpe (1992) in the
case of holes whose shape is an n-sided regular polygon

λe = 1 − tan(π/n)Γ 4(1/n)

2πnΓ 2(2/n)
+ O(ν2), (1.6)

where Γ is a gamma function. Garboczi & Douglas (1996) investigated the
influence of the various shapes of inclusions on the effective conductivity up to
O(ν2). Ammari et al. (2005) expressed the effective conductivity tensor Λ via the
dipole matrix M

Λ ≈ I − ν

π
M

(
I + ν

2π
M

)−1
, (1.7)

where I is the identity matrix. A method of integral equations was applied
to compute the matrix M . Movchan et al. (2002, 2003) explicitly calculated
M for the shapes described by algebraic equations. Crowdy (2008) applied the
Schottky–Klein prime function to effectively compute the local field of finite sets
of discs. Having used the dipole matrix method, Rylko (2000) deduced formulae
for the principal conductivities of a dilute composite with curvilinear inclusions
unidirectionally located on the plane

λ1 = 1 + ρν(1 + ερ|c2|)
1 − ρν(1 + ερ|c2|) + O(ν2) and λ2 = 1 + ρν(1 − ερ|c2|)

1 − ρν(1 − ερ|c2|) + O(ν2), (1.8)

Proc. R. Soc. A (2009)
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Conductivity of elliptical inclusions 2993

where the shape of the inclusion is defined by the function r = 1 + εf (θ) in polar
coordinates (r , θ), ε is a small positive parameter, and

c2 = 1
π

∫π

−π

f (θ) e2iθ dθ .

General methods to deduce formulae (1.2)–(1.5) and discussion of other
approaches were presented by Milton (2002).

The summarized works are based mainly on the solution to the boundary
value problems with one inclusion in the plane. It should be emphasized that
the above-discussed formulae are valid only to the first order of ν. In general, to
evaluate higher-order terms, we need to discuss boundary value problems with an
infinite number of inclusions and to investigate at least the first-order interactions
between inclusions. Such problems in a class of doubly periodic functions for
composites with circular inclusions were systematically studied by Berlyand &
Mityushev (2001, 2005), Mityushev (2001, 2005) and Mityushev et al. (2008).
In particular, an exact formula for the effective conductivity of the square array
of cylinders was constructed. Approximate analytical formulae for the effective
conductivity tensor for any distribution of the discs were deduced.

The problem of determining the conductivity of randomly distributed ellipses
has not yet been dealt with rigorously for non-dilute composites. As has already
been noted, Maxwell’s approach is based on a single inclusion and can produce
formulae valid only to the first order of ν. Such approximations take into account
the shape of inclusions, but not the geometry of their location. To the best of our
knowledge, there are only four works devoted to the rigorous study of composites
with many elliptical inclusions with the precision at least O(ν2). McPhedran &
Nicorovici (1997) and Nicorovici & McPhedran (1996) applied Rayleigh’s method
to a rectangular array of elliptical cylinders and reduced the problem to an infinite
system of linear algebraic equations. Analytical solution to a truncated system
for sufficiently small α yields

λx ≈ 1 + 2ρν

1 − ρ(α + (S2/π)ν)
and λy ≈ 1 + 2ρν

1 − ρ(α − ((2π − S2)/π)ν)
, (1.9)

where S2 is a lattice sum. More precise formulae for not small α were also deduced.
The later ones differ from equation (1.9) by a coefficient on ν in the denominator.
Formulae (1.9) and others presented by McPhedran & Nicorovici (1997) and
Nicorovici & McPhedran (1996) are rigorous, because the applied Rayleigh’s
method takes into account both the shape of the ellipses and the geometry of
the array, by means of the lattice sum.

Yardley et al. (1999, 2001) calculated the effective conductivity for a structure
consisting of a finite number of layers, or stack, of ellipses by Rayleigh’s method.
It is interesting to extend the results by McPhedran & Nicorovici (1997),
Nicorovici & McPhedran (1996) and Yardley et al. (1999, 2001) to random media
by using the method of functional equations that effectively works for circular
inclusions.

In this paper, the first step has been done in this direction. We propose an
iterative method to compute the effective conductivity tensor Λ for an arbitrary
distribution of non-overlapping ellipses. It is based on symbolic computations and
yields analytical formulae for the local field and for Λ in the form of a series in ν.

Proc. R. Soc. A (2009)
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2994 V. Mityushev

Table 1. Nomenclature.

X , Y local coordinates for each ellipse
x , y global coordinates
Z = X + iY , z = x + iy, w complex coordinates
Dm elliptical inclusions with the number m
D domain occupied by host material
rm(1 + α), rm(1 − α) semi-axes of the ellipse ∂Dm
θm angle between the major axis of ∂Dm and the x-axis
sm = rm eiθm complex parameter of ∂Dm
am = xm + iym centre of the ellipse Dm
λ normalized conductivity of inclusions
ρ contrast parameter
n total number of inclusions
N number of inclusions per periodicity cell
ν concentration of inclusions

Λ =
(

λx λxy

λxy λy

)
effective conductivity tensor

λe effective conductivity of macroscopically isotropic composite
um , ϕm potentials in Dm
u, ϕ potentials in D
φm , ψm = φ′

m , Φm complex potentials in
√

α ≤ |w| ≤ 1
t complex variable on the ellipses
τ complex variable on the circles |τ | = √

α and |τ | = 1
� = maxk �=m

√
rkrm |ak − am |−1 characteristic ratio

S2(n) finite sum (equation (4.25))
S2 infinite sum (equation (4.30))
S2 lattice sum of second order

The final formulae (4.34)–(4.37) for Λ are derived up to O(ν3). One can proceed
the iterations and obtain higher-order formulae. However, it requires advanced
symbolic computations.

This paper is organized as follows. A list of the nomenclature is given in table 1.
The problem is presented in §2, and the R-problem that governs the local complex
potential is derived in §2a. The problem is reduced to integral equations in §2c.
The main part of the paper, solution to the integral equations, is presented in §3.
Applications to the calculation of the effective conductivity tensor are presented
in §4. New analytical formulae up to O(ν3) are summarized in §4c–f. They are
universal for any distribution of the centres of inclusions, of their sizes and of
orientations. This analytical dependence of Λ on locations of elliptical inclusions
was not known before. Some concluding remarks are given in §5.

2. Statement of the problem and reduction to integral equations

(a) Geometry

Non-overlapping elliptical inclusions Dm (m = 1, 2, . . . , n) are embedded
in the plane (x , y). It is convenient to put the semi-axes equal to rm(1 + α) and
rm(1 − α), respectively. The positive parameter rm characterizes the size of the

Proc. R. Soc. A (2009)
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inclusion, and α the shape of the ellipse (0 < α < 1). The limit case when α is
equal to 0 can be treated in the final formulae by calculating the corresponding
limits. The limit case α = 1 requires a separate investigation that is not presented
in this paper. Let an inclusion Dm be centred at (xm , ym) and the angle between
the major semi-axis of the ellipse and the x-axis is equal to θm . Introduce the
local coordinates (X , Y ) for a fixed inclusion Dm as follows:

X = 1
rm

[(x − xm) cos θm + (y − ym) sin θm ]

and

Y = 1
rm

[−(x − xm) sin θm + (y − ym) cos θm ] .

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

The local equation of the ellipse ∂Dm , i.e. the boundary of Dm , has the form

X 2

(1 + α)2
+ Y 2

(1 − α)2
= 1. (2.2)

The foci of the ellipse ∂Dm in the local coordinates are located at (±2
√

α, 0).
Introduce the local and global complex coordinates Z = X + iY and z = x + iy,

where i denotes the imaginary unit. The Joukowsky conformal mapping

Z = w + α

w
(2.3)

transforms the annulus
√

α < |w| < 1 onto Dm − Γm , where Γm is the slit
(−2

√
α, 2

√
α) along the X -axis. The inverse mapping to equation (2.3) has

the form
w = 1

2

(
Z +

√
Z 2 − 4α

)
, (2.4)

where the branch of the square root is chosen in such a way that

lim
Z→X±i0

√
Z 2 − 4α = ±i

√
4α − X 2 for − 2

√
α < X < 2

√
α. (2.5)

Formulae (2.3) and (2.4) in the global coordinates become

z = sm

(
w + α

w

)
+ am (2.6)

and

w = 1
2

⎡
⎣z − am

sm
+

√(
z − am

sm

)2

− 4α

⎤
⎦ , (2.7)

where am = xm + iym and sm = rmeiθm .

(b) Conjugation conditions

Let D denote the complement of the closures of all domains Dm to the
plane. It is convenient to assume that infinity belongs to D as it is usually
done in complex analysis. We study the conductivity of the two-dimensional
composite, when the domains D and Dm are occupied by materials of unit and
λ conductivity, respectively, where 0 < λ < ∞. Then, the potentials u(z) and

Proc. R. Soc. A (2009)
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um(z) are harmonic in D and Dm (m = 1, 2, . . . , n) and satisfy the conjugation
(transmission) conditions

u = um ,
∂u
∂n

= λ
∂um

∂n
on ∂Dm , m = 1, 2, . . . , n, (2.8)

where ∂/∂n is the outward normal derivative to the ellipses. For simplicity, it is
assumed that the potential u(z) has singularities only in the domain D described
by a function Re f (z), where f (z) is analytic in all the inclusions Dk and Re
stands for the real part of a complex number. For instance, if u(z) ∼ x = Re z at
infinity, i.e.

f (z) = z , (2.9)

the external flux is applied parallel to the x-axis.
Following Mityushev & Rogosin (2000), introduce complex potentials ϕ(z) and

ϕm(z) analytic in D and Dm , respectively, in such a way that u(z) and um(z) are
related to the complex potentials, respectively, by

u(z) = Re [ϕ(z) + z] and um(z) = 2
1 + λ

Re ϕm(z). (2.10)

Then the conditions (2.8) can be reduced to the following R-linear problem

ϕ(t) = ϕk(t) − ρϕk(t) − f (t), t ∈ ∂Dk , k = 1, 2, . . . , n, (2.11)

where the overbar stands for the complex conjugation.

(c) Integral equations

In this section, we reduce the problem (2.11) to integral equations. First, recall
the Sokhotskij–Plemelj formulae. The curve L := ∪n

k=1∂Dk divides the complex
plane onto two domains D+ and D. Here, each curve ∂Dk is orientated in the
clockwise direction. Let μ(t) be a Hölder continuous function on L. Then the
function

Φ(z) = 1
2π i

∫
L

μ(t)
t − z

dt (2.12)

is analytic and continuous on the complex plane except L where its limit boundary
values Φ+(t) = limz→t z∈D+ Φ(z) and Φ−(t) = limz→t z∈D Φ(z) satisfy the jump
condition

Φ+(t) − Φ−(t) = μ(t), t ∈ L. (2.13)

The relation (2.11) can be written in the form (2.13) with Φ+(t) = ϕk(t) − f (t),
Φ−(t) = ϕ(t) and μ(t) = ρϕk(t). Then equation (2.11) yields

ϕk(z) = ρ

n∑
m=1

1
2π i

∫
∂Dm

ϕm(t)
t − z

dt + f (z), z ∈ Dk , k = 1, 2, . . . , n (2.14)

and

ϕ(z) = ρ

n∑
m=1

1
2π i

∫
∂Dm

ϕm(t)
t − z

dt + f (z), z ∈ D. (2.15)

Proc. R. Soc. A (2009)
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One can consider equation (2.14) as a system of integral equations with respect
to ϕk(z) analytic in Dk and continuously differentiable in its closure. When
ϕk(z) are found, ϕ(z) is calculated by equation (2.15). It is worth noting that
equations (2.14) are not the classic integral equations of the potential theory.
They correspond to integral equations that can be deduced from the Schwarz
alternating method due to Mityushev & Rogosin (2000).

Following Mityushev & Rogosin (2000), one can prove that the system of
integral equations (2.14) has a unique solution up to an additive constant
when |ρ| < 1 that corresponds to the physical meaning of the problem (see
equation (1.1)). This solution can be found by the method of successive
approximations uniformly convergent in any compact subset of D+. This
theoretical result will be proved in detail in a separate paper. In this paper,
attention is paid to finding a constructive solution to equations (2.14).

3. Solution to integral equations

Integral equations (2.14) are deduced for general shape of the inclusions Dk and
can be numerically solved, for instance, by the boundary element method due
to Lifanov (1996). This method and other numerical methods are effective for
numerically given geometries and data. However, if one wishes to preserve the
contrast parameter ρ, the concentration ν and parameters of the shape Dk in
symbolic form, then he should apply symbolic computations.

In this section, equations (2.14) are solved for the elliptical shape of inclusions
with the parameters ρ, α, θk , ak and n in symbolic form. First, the integral
equations (2.14) on the complex plane z are transformed to equations on the
complex plane w. The latter equations are reduced to functional equations. A
simple constructive algorithm to solve the functional equations in symbolic form
is described.

(a) Transformation of integral equations

Let k be fixed in equations (2.14). The doubly connected domain Dk − Γk
is mapped onto the annulus

√
α < |w| < 1 by the conformal mapping (2.7); Dk

is transformed onto the unit circle |w| = 1, and Γk onto the circle |w| = √
α.

Introduce the functions

Φm(w) = ϕm(z) = ϕm

[
sm

(
w + α

w

)
+ am

]
(3.1)

analytic in
√

α < |w| < 1 and continuous in
√

α ≤ |w| ≤ 1. Substitute equation (3.1)
in equations (2.14) and change the variables in the integrals as follows:

t = sm

(
τ + α

τ

)
+ am . (3.2)

Then equations (2.14) become

Φk(w) = ρ

n∑
m=1

1
2π i

∫
|τ |=1

Φm(τ )
(
1 − α/τ 2

)
dτ

τ + α/τ − (sk/sm)(w + α/w) + (am − ak)/sm
+ F(w),

√
α < |w| < 1, k = 1, 2, . . . , n, (3.3)

where F(w) = f (z).

Proc. R. Soc. A (2009)
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Moreover, it follows from the continuity of ϕk(z) when z passes the slit Γk that

Φk(τ ) = Φk

(α

τ

)
, |τ | = √

α. (3.4)

Equation (3.4) implies that Φk(w) is represented in the form

Φk(w) = φk(w) + φk

( α

w

)
,

√
α ≤ |w| ≤ 1, (3.5)

where φk(w) is analytic in the unit disc |w| < 1. Equation (3.5) follows from
the representation of Φk(w) in the form of the Laurent series in the annulus√

α ≤ |w| ≤ 1 and form the application of equation (3.4). The same arguments
yield the representation of F(w) in the form F(w) = gk(w) + gk(α/w), where gk(w)
is analytic in the unit disc. Substitution of equation (3.5) into equation (3.3) yields

φk(w) + φk

( α

w

)
= ρ

n∑
m=1

[Pkm(w) + Qkm(w)] + gk(w) + gk

( α

w

)
,

√
α < |w| < 1, k = 1, 2, . . . , n, (3.6)

where

Pkm(w) = 1
2π i

∫
|τ |=1

φm(1/τ)(1 − α/τ 2) dτ

τ + α/τ − (sk/sm)(w + α/w) + (am − ak)/sm
(3.7)

and

Qkm(w) = 1
2π i

∫
|τ |=1

φm(ατ)(1 − α/τ 2) dτ

τ + α/τ − (sk/sm)(w + α/w) + (am − ak)/sm
. (3.8)

Here, the relation τ = 1/τ on the unit circle is used.

(b) Calculation of the integrals

In this section, the integrals (3.7) and (3.8) are analytically calculated by
residua. To study singularities of the integrands, we investigate the roots of the
denominator. We have the quadratic equation with respect to τ ,

τ 2 − s−1
m

[
sk

(
w + α

w

)
+ ak − am

]
τ + α = 0. (3.9)

The cases of equal and non-equal k and m have to be separately investigated.

(i) Let k = m. Then equation (3.9) becomes

τ 2 −
(
w + α

w

)
τ + α = 0. (3.10)

Its two solutions have the form

τ1 = w and τ2 = α

w
. (3.11)

One can see τ1 and τ2 lie in the unit disc, as
√

α < |w| < 1.

Proc. R. Soc. A (2009)

 on 26 August 2009rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Conductivity of elliptical inclusions 2999

(ii) Let k �= m. To avoid confusion with equation (3.11), the roots of
equation (3.9) in this case are denoted by w1 and w2:

w1 = 1
2

⎧⎨
⎩s−1

m

[
sk

(
w + α

w

)
+ ak − am

]

−
√[

sk (w + α/w) + ak − am

sm

]2

− 4α

⎫⎬
⎭

and

w2 = 1
2

⎧⎨
⎩s−1

m

[
sk

(
w + α

w

)
+ ak − am

]

+
√[

sk(w + α/w) + ak − am

sm

]2

− 4α

⎫⎬
⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.12)

The branch of the square root is chosen in accordance with equation (2.5).
We will prove that |w1| < 1 and |w2| > 1. Consider equation (3.9) in the
domain |τ | ≥ 1. Let D−

m denote the complement of Dm to the extended
complex plane z . Changing the variable τ by t (see equation (3.2)),
we obtain

t = z (3.13)

with respect to t ∈ D−
m ∪ ∂Dm , where the parameter

z = sk

(
w + α

w

)
+ ak (3.14)

belongs to Dk . Therefore, equation (3.13) has the unique solution t = z ∈
D−

m , as Dk ⊂ D−
m (k �= m). Hence, equation (3.9) has a unique solution in the

domain |τ | ≥ 1. The second root w2 from equation (3.12) in the variables
τ and w corresponds to the root t = z in the variables t and z . Therefore,
|w2| ≥ 1. It follows from Viète’s formulae that w1w2 = α. This implies that
|w1| < 1, as α < 1.

We now proceed to analytically calculate the integral (3.7). For m �= k, it can
be written in the form

Pkm(w) = 1
2π i

∫
|τ |=1

φm(1/τ)(τ 2 − α) dτ

τ(τ − w1)(τ − w2)
, (3.15)

where w1 and w2 have the form (3.12). Calculate Pkm(w) by residua using the
analyticity of φm(1/τ) in |τ | > 1,

Pkm(w) = −res∞
φm(1/τ)(τ 2 − α)

τ(τ − w1)(τ − w2)
− resw2

φm(1/τ)(τ 2 − α)

τ(τ − w1)(τ − w2)

= φm(0) − φm

(
w1

α

)
(m �= k), (3.16)

Proc. R. Soc. A (2009)
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where the relation w1w2 = α is used. Similar arguments yield formulae

Pkk(w) = φk(0),

Qkm(w) = φm(0) − φm(αw1) (m �= k)

and Qkk(w) = −φk(0) + φk(αw) + φk

(
α2

w

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.17)

Here, the following formula for Φ−(w) analytic in |w| > 1 is used due to
Gakhov (1966):

1
2π i

∫
|τ |=1

Φ−(τ )

τ − w
dτ = −Φ−(w) + Φ−(∞).

(c) Functional equations

The integrals (3.7) and (3.8) have been exactly calculated in the previous
section. Substituting the results (3.16) and (3.17) into equation (3.6), we
transform the integral equations (3.6) to the following functional equations:

φk(w) + φk

( α

w

)
= ρ

⎧⎨
⎩φk(αw) + φk

(
α2

w

)
−

∑
m �=k

⎡
⎣−2φm(0) + φm(αβkm(w))

+ φm

(
βkm(w)

α

)⎤
⎦ + gk(w) + gk

( α

w

)⎫⎬
⎭,

√
α < |w| < 1, k = 1, 2, . . . , n. (3.18)

Here, for convenience the root w1 is written as the function of w,

βkm(w) = 1
2

{
s−1
m

[
sk

(
w + α

w

)
+ ak − am

]
− √

hkm(w)
}

, (3.19)

where

hkm(w) =
[
sk (w + α/w) + ak − am

sm

]2

− 4α. (3.20)

The left-hand part of equation (3.18) consists of the functions φk(w) and
φk(α/w) analytic in |w| < 1 and |w| > √

α, respectively. Denote by P+ the project
operator that transforms a function analytic in

√
α < |w| < 1 to its part analytic

in the unit disc. This operator can be considered as taking the regular part of the
Laurent series or as the integral operator (1/2π i)

∫
|w|=1 • dw/(w − ζ ) with |ζ | < 1.
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Application of P+ to equation (3.18) yields

φk(w) + φk(0) = ρ

⎧⎨
⎩φk(αw) + φk(0) −

∑
m �=k

⎡
⎣−2φm(0) + P+φm(αβkm(w))

+ P+φm

(
βkm(w)

α

)⎤
⎦
⎫⎬
⎭ + gk(w)+gk(0), |w|≤1, k =1, 2, . . . , n.

(3.21)

Here, the relation P+φk(α2/w) = φk(0) is used.
If the external field is applied parallel to the x-axis, then equation (2.9) implies

that F(w) = z = sk(w + α/w) + ak , hence

g(w) = skw + ak . (3.22)

Hereafter, equations (3.21) are considered with the function (3.22).
One can consider equations (3.21) as a system of functional equations with

respect to φk(w) analytic in the unit disc and continuous in its closure. Despite
equations (3.21) involving the operator P+, they are more convenient in symbolic
computations than equations (3.18). As stated at the end of §2c, the system (3.21)
has a unique solution. This solution can be found by the method of successive
approximations. Equations (3.21) can be considered as iterative functional
equations with shift into domain (Kuczma et al. 1990), as |βkm(w)| < 1. The later
inequality is equivalent to the relation |w1| < 1 justified in §3b.

The special case of α = 0 can be investigated by the limit α → 0 when the
ellipses become circles. In this case we arrive at the functional equations discussed
in Mityushev (1993). Applications of such equations and their modifications to
determining the effective conductivity tensor of a composite containing circular
inclusions were presented by Berlyand & Mityushev (2001, 2005) and Mityushev
et al. (2008). Discussion of dilute regime and regular locations of circular
inclusions was presented by Milton (2002), McPhedran (1986) and McPhedran &
Milton (1987) by application of Rayleigh’s method.

4. Effective conductivity tensor Λ

(a) General formulae for Λ

The effective conductivity tensor

Λ =
(

λx λxy

λxy λy

)
(4.1)

can be calculated by the Maxwell approach. Following Mityushev (1999, 2005),
one can obtain formula for dilute composites

λx − iλxy = 1 + 2ρν
1
n

n∑
k=1

Ik + O(ν2), (4.2)
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where Ik denotes the double integral

Ik = 1
|Dk |

∫
Dk

ϕ′
k(z) dx dy, (4.3)

where ϕk(z) is a solution of equation (2.11) with f (z) = z . The component λy can
be calculated by the formula due to Mityushev (2001):

λy + iλxy = 1 + 2ρν
1
n

n∑
k=1

Ik + O(ν2), (4.4)

where the double integral Ik is calculated with ϕk(z), a solution of equation (2.11)
with f (z) = −iz . The later corresponds to the external field applied in the
y-direction.

The integral Ik can be transformed by Green’s formula written in complex form

Ik = − 1
2i|Dk |

∫
∂Dk

ϕk(t) dt, (4.5)

where |Dk | = r2
k (1 − α2) is the area of Dk . The integral (4.5) can be calculated by

the change of variables (see equation (3.2)). Then

t = sk

(
τ + α

τ

)
+ ak .

Using the relation τ = 1/τ on the unit circle, we obtain

dt = sk

(
α − 1

τ 2

)
dτ .

Substituting equations (3.1) and (3.5) into equation (4.5) and calculating the
integrals by the residua (at zero and at infinity), we arrive at the simple formula

Ik = s−1
k φ′

k(0). (4.6)

Therefore, equation (4.2) becomes

λx − iλxy = 1 + 2ρν
1
n

n∑
k=1

s−1
k φ′

k(0) + O(ν2). (4.7)

The value φ′
k(0) can be computed after solution to functional equations (3.21).

It is noted at the end of §3b that these equations can be solved by the method
of successive approximations. Differentiating equations (3.21), multiplying the
result by s−1

k and introducing the function ψk(w) = s−1
k φ′

k(w), then it implies that

ψk(w) = ρα e−2iθk ψk(αw) − ρ
∑
m �=k

sm

sk
P+

⎡
⎣αψm(αβkm(w))

+ 1
α

ψm

(
βkm(w)

α

)⎤
⎦ β ′

km(w) + 1, |w| ≤ 1, k = 1, 2, . . . , n. (4.8)
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Here, the commutativity of the operators P+ and d/dw is used. Formula (4.7)
becomes

λx − iλxy = 1 + 2ρν
1
n

n∑
k=1

ψk(0) + O(ν2). (4.9)

Therefore, to determine λx and λxy , one can solve the functional equation (4.8),
compute ψk(0) and substitute it in equation (4.9).

(b) Algorithm to compute Λ in symbolic form

Introducing the dimensionless parameter � = maxk �=m
√

rkrm|ak − am|−1

characterizes the ratio of the line sizes of inclusions to the distances between
them. To describe the structure of the functional equation (4.8), we shortly write
it in the form

ψk(w) = ρα e−2iθk ψk(αw) − ρ�2
∑
m �=k

(Akmψm)(w) + 1, |w| ≤ 1, k = 1, 2, . . . , n,

(4.10)

where Akm is a bounded linear operator. It will be clear later why the power �2 is
taken as a coefficient. Equation (4.10) can be solved by the following two iterative
schemes. First, the direct iterations can be applied to it to obtain

ψ
(0)

k (w) = 1, ψ
(p+1)

k (w) = ρα e−2iθk ψ
(p)

k (αw) − ρ�2
∑
m �=k

(Akmψ(p)
m )(w) + 1,

p = 0, 1, 2, . . . , (4.11)

where ψ
(p)

k (w) is the pth approximation of ψk(w). As it is noted at the end of §3b,
the iterations (4.11) always converge. The rate of the convergence is equal to |ρ|.
Even in the case |ρ| = 1, the method (4.11) can be modified to be convergent as
it was done by Mityushev & Rogosin (2000).

The second iterative scheme is constructed on the basis of the parameter �2:

ψ
(0)

k (w) = ρα e−2iθk ψ
(0)

k (αw) + 1,

ψ
(p+1)

k (w) = ρα e−2iθk ψ
(p+1)

k (αw) − ρ�2
∑
m �=k

(Akmψ(p)
m )(w) + 1, p = 0, 1, 2, . . . .

(4.12)

Therefore, at each step the functional equation has to be solved

ψ
(p)

k (w) = ρα e−2iθk ψ
(p)

k (αw) + h(p)

k (w), |w| ≤ 1. (4.13)

Here, the function h(p)

k (w) is expressed through ψ
(p−1)

k (w) computed at the
previous step

h(p)

k (w) = −ρ�2
∑
m �=k

(Akmψ(p−1)
m )(w) + 1.
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Mityushev & Rogosin (2000) proved that equation (4.13) has a unique solution
represented in the form of the absolutely convergent series

ψ
(p)

k (w) =
∞∑

q=0

(ρα)2q
[
h(p)

k (α2qw) + e−2iθk ραh(p)

k (α2q+1w)
]
. (4.14)

The iterative scheme (4.12) corresponds to the generalized alternating Schwarz
method discussed by Mityushev & Rogosin (2000).

The zero approximation of equation (4.12) can be easily obtained from
equation (4.14):

ψ
(0)

k (w) = 1 + ρα e−2iθk

1 − ρ2α2
. (4.15)

Substitution of equation (4.15) into equation (4.9) yields the Maxwell
approximation

λx − iλxy = 1 + 2ρν

1 − ρ2α2

1
n

n∑
k=1

(1 + ρα e−2iθk ) + O(ν2). (4.16)

Averaging over the orientation of the inclusions yields formula (1.4).
Higher approximations can be obtained by numerical and symbolic

computations. It is worth noting that the realization of the iterative
schemes (4.11) and (4.12) involves computations of the compositions of functions
and of the regular parts of the Laurent series. There is not any integral
that requires numerical computations that rather could not be computed in
symbolic form.

(c) First-order approximation for general distribution of inclusions

We now proceed to determine ψ
(1)

k (0) via ψ
(0)

k (w) given by equation (4.15) from
the functional equation

ψ
(1)

k (w) = ρα e−2iθk ψ
(1)

k (αw) + h(1)

k (w), |w| ≤ 1, (4.17)

where

h(1)

k (w) = 1 − ρ
∑
m �=k

sm

sk

1 + ρα e−2iθm

1 − ρ2α2

(
α + 1

α

)
(P+β ′

km)(w). (4.18)

The value ψ
(1)

k (0) can be immediately determined by substitution of w = 0 into
equation (4.17):

ψ
(1)

k (0) = h(1)

k (0) + ρα e−2iθk h(1)

k (0)

1 − ρ2α2
. (4.19)
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Therefore, to determine ψ
(1)

k (0), it is sufficient to calculate (P+β ′
km)(0). It is

convenient to calculate (α + 1/α)(P+β ′
km)(0) in the form of the expansion on α,(

α + 1
α

)
(P+β ′

km)(0) = −sksm

[
1 + α2

(ak − am)2
+ 3α

s2
k + s2

m

(ak − am)4

+ 10α2 s4
k + 3s2

k s
2
m + s4

m

(ak − am)6
+ · · ·

]
. (4.20)

This formula explicitly shows that the value ψ
(1)

k (0) is of order �2. Further, only
the terms to O(�2) are kept in equation (4.20) and in the following computations.
Substitution of equation (4.20) into equation (4.18) and of equation (4.19) into
equation (4.9) yield

λx − iλxy = 1 + 2ρν

1 − ρ2α2

1
n

n∑
k=1

[h(1)

k (0) + ρα e−2iθk h(1)

k (0)] + O(ν2), (4.21)

where

h(1)

k (0) = 1 + ρ(1 + α2)

1 − ρ2α2

∑
m �=k

(1 + ρα e−2iθm )
r2
m

(ak − am)2
. (4.22)

Formula (4.21) is valid up to O(ν2) and takes into account first-order interactions
between the inclusions.

(d) Parallel inclusions

Consider equal elliptical inclusions with the parallel semi-axes. Then θk = θ
and rk = r for all k = 1, 2, . . . , n and equations (4.22) and (4.21) are simplified,
respectively, to

h(1)

k (0) = 1 + ρ(1 + α2)(1 + ρα e−2iθ )

1 − ρ2α2

∑
m �=k

�2

(ak − am)2
(4.23)

and

λx − iλxy = 1 + 2ρν

1 − ρ2α2

1
n

n∑
k=1

[h(1)

k (0) + ρα e−2iθh(1)

k (0)] + O(ν2). (4.24)

Consider the case θ = 0. Introduce the sum

S2(n) = 1
n

n∑
k=1

∑
m �=k

1
(ak − am)2

. (4.25)

Then the components of the effective conductivity tensor take the form

λx = 1 + 2ρν

1 − ρα

[
1 + ρ(1 + α2)

1 − ρα
�2 Re S2(n)

]
+ O(ν2)

and

λxy = −2ρ2ν(1 + α2)

(1 − ρα)2
�2 Im S2(n) + O(ν2),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(4.26)
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where Re and Im stand for the real and the imaginary parts of complex values,
respectively. To calculate λy , it is sufficient to replace ak by iak . Then in
accordance with equation (4.4), we obtain

λy = 1 + 2ρν

1 − ρα

[
1 − ρ(1 + α2)

1 − ρα
�2 Re S2(n)

]
+ O(ν2). (4.27)

(e) Randomly distributed inclusions

Consider equal elliptical inclusions randomly distributed on the plane. More
precisely, it is assumed that all rk = r are fixed and each angle θk is a
random value uniformly distributed on [0, π ]. Moreover, the centres ak are
independent identically distributed random variables such that the random vector
(a1, a2, . . . , an) obeys a non-overlapping distribution for ellipses. The distribution
of the centres and of the angles are mutually independent. Then the averages over
θk from equation (4.21) vanish

〈e−2iθk 〉 = 0 and 〈e2i(θm−θk )〉 = 0 (4.28)

and equation (4.21) becomes

〈λx − iλxy〉 = 1 + 2ρν

1 − ρ2α2

[
1 + ρ(1 + α2)

1 − ρ2α2
�2〈S2(n)〉

]
+ O(ν2). (4.29)

Formula (4.29) is a generalization of the Maxwell formula (1.4). The term
〈S2(n)〉 describes the first-order interactions of the inclusions.

(f ) Infinite number of inclusions

The most interesting begins when n tends to infinity. Then the first-order term
in �2 can be transformed into the first-order approximation in the concentration
ν. The following limit of equation (4.25) plays the main role in the investigation

S2 = lim
n→∞

1
n

n∑
k=1

∑
m �=k

1
(ak − am)2

. (4.30)

The formal pass to an infinite sum transforms equation (4.30) to a conditionally
convergent series. To treat this series, fix an order of |ak |. Let 0 < |a1| ≤ |a2| ≤
· · · ≤ |ak | ≤ . . . . The limit (4.30) was written via the absolutely convergent sums
by Mityushev (1999)

S2 = lim
n→∞

1
n

n∑
k=1

∞′∑
m=1

[
1

(ak − am)2
− 1

a2
m

]

+ lim
�z→∞

∞∑
k=1

[
1
a2

k

− 1
(z∗ − ak)(z∗ − ak + �z)

]
, (4.31)

where m �= k in the sum
∑∞′

m=1. The second limit from equation (4.31) is well
defined, if it does not depend on the choice of point z∗ and on the curve along
which �z → ∞.
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Mityushev (1999) proved that the first limit limn→∞ from equation (4.31)
exists, if the area fraction

ν = lim
R→∞

A(R)

πR2
(4.32)

exists. Here A(R) is the area of inclusions located in a disc of radius R. The
limit (4.32) has to be independent on the centre of the large disc. Hence,
the first term from equation (4.32) is defined as the average of the absolutely
convergent sums

∑∞′
m=1. It is forbidden to interchange the limit lim�z→∞ and the

sum
∑∞

k=1, because, in general, this produces the conditionally convergent series∑∞
k=1 a−2

k . Therefore, formula (4.31) cannot be simplified in general cases. The
limits from equation (4.31) exist under the above described conditions on the
distribution of ak . This is not surprising because the composite discussed may
not be homogenized.

The above theoretical discussion concerning S2 is simplified, if we consider a
doubly periodic distribution of ak . Then the considered composite is homogenized
and the limit (4.31) always exists. Let N points ak (k = 1, 2, . . . , N ) are placed in
a rectangular periodicity cell Q with the sides γ and γ −1. The area of the cell
holds 1. All other points ak are obtained from the first N points by translations
on the vectors γ and iγ −1 expressed in the form of complex numbers. Further, it
is convenient to apply to the limit (4.30) the Eisenstein summation (for detail,
see Mityushev et al. 2008). Then equation (4.30) becomes

S2 = 1
N

N∑
k=1

∑
m �=k

1
(ak − am)2

= 1
N

N∑
k,m

E∗
2 (ak − am), (4.33)

where E2(z) denotes the Eisenstein function, E∗
2 (z) coincides with E2(z) for z �= 0

and E∗
2 (0) := 2γ −1ζ(γ /2). Here, ζ is the Weierstrass ζ -function corresponding to

the periodicity cell Q. In the case N = 1, we have S2 = S2 = 2γ −1ζ(γ /2), where
S2 stands for the standard lattice sum when all points ak are produced from
z = 0 by translations on the fundamental lattice vectors. In the case of the square
cell, S2 = S2 = π .

Substitution of equation (4.33) instead of S2(n) into equation (4.26) and simple
transformations up to O(ν3) yield

λx = 1 + 2ρν

1 − ρ(α + ν((1 + α2)/(1 − α2))N −1Re S2/π)
+ O(ν3),

and

λxy = − 2ρ2ν2

(1 − ρα)2

1 + α2

1 − α2

N −1Im S2

π
+ O(ν3).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.34)

Using relations between the sums calculated in the perpendicular direction, we
obtain

λy = 1 + 2ρν

1 − ρ(α + ν((1 + α2)/(1 − α2))(2π − N −1Re S2)/π)
+ O(ν3). (4.35)

In the case N = 1, we have S2 = S2. The value S2 = 2γ −1ζ(γ /2) is a real number
for a rectangular array (see Rylko (2000)). For small α, formulae (4.34) and (4.35)
are coincided to equations (1.9).
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Along similar lines, equation (4.29) implies that

〈λx − iλxy〉 = 1 + 2ρν

1 − ρ2α2 − ρν((1 + α2)/(1 − α2))N −1S2/π
+ O(ν3) (4.36)

for randomly distributed ellipses with major semi-axes parallel to the x-axis. For
the square array, N = 1 and S2 = π . Then equation (4.36) becomes

λe = 1 + 2ρν

1 − ρ2α2 − ρν(1 + α2)/(1 − α2)
+ O(ν3). (4.37)

A discrepancy between equations (1.9) and (4.34) with N = 1 can be explained
in terms of the iterative schemes (4.11) and (4.12). Rayleigh’s method is based
on representations of the unknown functions and on the addition theorems that
produce an infinite system of linear algebraic equations. Analysis of Rayleigh’s
infinite system for circular inclusions made by Rylko (2000) shows that
Rayleigh’s method corresponds to the iterative scheme (4.11) with α = 0, i.e.,
Rayleigh’s method presented in continuous form via functional equations yields
a series on ρ. In this section, we use the iterative scheme (4.12) that produces, in
general, other approximate formulae.

Remark 4.1. The above formulae are derived for any λ satisfying the inequality
0 < λ < ∞. One can pass to the limit cases λ = 0 and λ = ∞ by direct substitution
of ρ = ±1 in equations (4.34)–(4.37).

5. Conclusion and discussion

Exact and approximate formulae for the effective conductivity tensor Λ of a
two-dimensional medium containing elliptical inclusions are important in many
applications. In this paper, we specialize the terminology of electric or thermal
conductivity to make the discussion more concrete.

The Maxwell approach concerning the dilute regime yields various approximate
formulae for Λ presented in §1. These formulae are valid up to O(ν2), where each
inclusion independently influences the macroscopic properties of the medium.
According to the homogenization theory, higher approximations require the study
of a medium with infinitely many inclusions, in particular, periodically arranged.
Such higher approximations would involve interactions between inclusions written
via the lattice sums, the correlation functions, etc.

In this paper, the method of the functional equation is developed to boundary
value problems with elliptical inclusions. The investigation is confined to the
case when the first-order interactions between inclusions are taken into account.
New analytical approximate formulae for Λ are derived. These formulae take
into account the shape, the sizes and the location of the inclusions. The influence
of the geometry is expressed by the sum (4.25), by the limit (4.30) and by the
sum (4.33) for doubly periodic composites. The final formulae (4.26), (4.27) and
(4.34)–(4.37) for Λ are valid up to O(ν3). Formulae (4.21) and (4.22) are universal
for any distribution of the centres of inclusions. One can directly consider them
from the statistical point of view as is done in §4e. Formulae (4.34)–(4.37) can
also be treated as a statistical result. Theoretically, this procedure is equivalent to
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estimate the pair correlation function P(z |0) discussed by Milton (2002). From
a practical point of view, it is convenient instead of P(z |0) (or of S2 given by
equation (4.30)) to estimate S2 by equation (4.33) for sufficiently large N . It is
also possible to investigate the expression in the right-hand side of equation (4.33)
and formulae involving this expression for any N in symbolic form. After, one can
put N infinitely large as it was done by Berlyand & Mityushev (2001, 2005) for
circular inclusions.

Formulae (4.34)–(4.37) explicitly express the dependence of the effective
conductivity tensor on the centres ak of inclusions. If ak are located at the sites
of a regular array, S2 from equation (4.33) becomes the standard lattice sum
S2 and we arrive at formulae by McPhedran & Nicorovici (1997), Nicorovici &
McPhedran (1996) and Yardley et al. (1999, 2001) deduced for special regular
locations of ellipses. It is worth noting that the later papers contain higher-
order approximations in ν for a regular array of ellipses. The method proposed
in this paper can also be applied to higher-order approximations for an arbitrary
distribution of inclusions. This can be done for numerically fixed ak . However,
direct computations with ak in symbolic form yield enormous formulae that
should be written in a simple form via the generalized lattice sums Sk (k ≥ 2). This
requires advanced symbolic computations. Such computations were performed
for circular inclusions (α = 0) by Mityushev (2001), Mityushev et al. (2008) and
Berlyand & Mityushev (2001, 2005) with a practically arbitrary precision in
ν. The obtained analytical formulae are consistent with the results presented
by Milton (2002), McPhedran (1986) and McPhedran & Milton (1987). One can
believe that such computations could be developed to the general case of elliptical
inclusions to derive higher-order formulae for the tensor Λ.

I am grateful to referees for remarks improving the presentation of the results.
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