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On the Riemann-Hilbert Problem with a
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Abstract. A constructive solution to the Riemann–Hilbert boundary value problem
as well as to the C-linear conjugation problem (or Riemann problem) with a special
piecewise constant matrix for a multiply connected domain is obtained. The result
is based on a vector generalization of the scalar method of functional equations in
complex domain and on application of the Christoffel–Schwarz transformation of the
half-plane onto a circular polygon.
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1. Introduction

The aim of this paper is the construction of solution to the vector-matrix Rie-
mann boundary value problem for circular multiply connected domains. We
develop here the proposed method only for the case of constant matrix coeffi-
cients on each connected component of the boundary under some restrictions,
but it can be done also for more general coefficients. The main idea of the
method is the reduction to a system of functional equations in complex domain
as generalization of the results for scalar case presented in the monograph [25].
We restrict our considerations to the model case in order to get the solution in
the most simple form which is very important for applications.

The solvability of boundary value problems with matrix coefficients has
connection to different problems of analysis. The most natural of them are
Fredholm (Noether) properties of the singular integral operators [9, 10, 17], and
the solvability of the systems of singular integral equations [16, 29]. One of the
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basic method for studying these problems is a factorization of matrix-functions
in different function spaces settings as developed in [23] (see also the recent
contribution by Ehrhardt and Spitkovsky [11] and references therein).

The factorization of matrix functions is closely related to the question on
existence and construction of a linear differential equation with given singular
points and a given monodromy group (for extended exposition on this relation-
ship see, e.g., [11]). In Fuchsian case (i.e., when all given singularities are simple
poles) the latter problem coincides with celebrated 21st Hilbert problem (or the
Riemann–Hilbert problem) (see, e.g., [5]). Existence seemed to be proven by
Plemelj in 1908 [27]. His idea was the reduction of the factorization problem to
the following homogeneous boundary value problem

Φ+(t) = G(t)Φ−(t), t ∈ Γ, (1.1)

with respect to vectors Φ+(z),Φ−(z) analytic in domains D+ = int Γ, D− =
ext Γ, respectively. Here, Γ is a piecewise linear contour connecting the given
singular points and G(t) is a piecewise constant matrix, which is constructed on
the basis of the given monodromy. The problem (1.1) is usually called vector-
matrix Riemann boundary value problem (or C-linear conjugation problem with
a matrix coefficient). Much later it was shown that the proof by Plemelj is not
complete in the general case (but it is still correct in the case when at least one
of the monodromy matrices can be diagonalized, see, e.g., [3]). Description of
the negative solution to the 21st Hilbert problem is presented in [5]. In contrast
to the Fuchsian linear systems, a similar problem for the class of systems with
regular singular points has always a positive solution (cf., e.g., [6]). The C–
linear conjugation problem (Riemann problem) (1.1) is closely related to the
following one (Riemann–Hilbert problem):

Re {G(t)Φ(t)} = 0, t ∈ Γ, (1.2)

with respect to Φ(z) analytic in D+.

The problem we consider here is a special case of the problem (1.1). Let E
be a unit matrix. The essential restriction is that in our study the matrix G(t)
in (1.1) satisfies the condition

G2(t) = E, t ∈ Γ, (1.3)

and G(t) = E on certain components of Γ (hence we deal with the problem for
multiply connected domain). The problem (1.2) is solved without the restric-
tion (1.3). Therefore, we are always in the situation when the existence proof
by Plemelj is still valid. We only present a constructive solution to boundary
value problems, and thus a construction of a factorization problem in the above
said special case.
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Among the applications of the theory of vector-matrix boundary value prob-
lems (as well as Riemann–Hilbert problem and factorization of matrix functions)
we have to point out those in the elasticity theory [19, 20, 32], and in the re-
lated to it diffraction problems [24], in the quantum gravity [13], and in the
approximation theory [2].

In this paper we use the symmetric properties of the domain of our boundary
value problem. This allows us to reduce the problem to a system of functional
equations on multiply connected circular domains. Further, we generalize the
method proposed in the scalar case in [25] to vector-matrix problems and con-
struct solution of this problem. The final form of the solution involves the
Christoffel–Schwarz transformation of the half-plane onto a circular polygon
which contains undetermined parameters satisfying some equations. Solution
of the functional equations is obtained in the form of the matrix Poincaré series.

2. C-linear conjugation problem on a finite number of real
intervals

In this section we consider the C-linear conjugation problem (or Riemann
boundary value problem) on n intervals of real line with respect to analytic
N -vectors. We reformulate this problem in the form of the Riemann–Hilbert
boundary value problem with respect to analytic 2N -vectors with suitably cho-
sen matrix coefficient.

Let −∞ < A0 < A1 < . . . < A2n−2 < A2n−1 < ∞ be given points on the
real line. Denote by Lk = (A2k−2, A2k−1) the open intervals on the real line R

with the end points A2k−2, A2k−1, L =
⋃n

k=1 clLk, D̃ = C \ L, where clLk is
the closure of Lk. Let a constant nonsingular N ×N matrix Gk satisfying the
condition G2

k = E be given on each interval Lk.

Consider the following C-linear conjugation problem: Find a vector-function
Φ(z), which is analytic in D̃, continuously extended up to both sides of Lk,
bounded at each point Ak, having at most polynomial growth of order (n− 1)
at infinity, and satisfying the following boundary conditions

Φ+(t) = GkΦ
−(t), t ∈ Lk. (2.1)

By defining the vector-function in the upper half-plane C
+

φ(z) ≡ −i

(
Φ(z)

Φ(z)

)
(2.2)

we can reformulate boundary condition (2.1) in the form of the boundary condi-
tion of the Riemann–Hilbert boundary value problem with respect to 2N -vector
φ(z):

Re
{
λkφ(t)

}
= 0, t ∈ Lk, k = 1, . . . , n, (2.3)
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where the matrices λk satisfy the relation

λkgk = λk, (2.4)

with gk :=
( 0 Gk

G−1

k
0

)
. In order to see that the above reduction from problem (2.1)

to (2.3) is correct we do some calculation. First, transform the expression λkφ(t)
on the upper side of k-th interval:

λkφ(t) = −iλk

(
Φ+(t)

Φ−(t)

)
.

It follows from the boundary condition (2.1) that the right-hand side of the
latter is equal

−iλk

(
Gk · Φ

−(t)

G−1
k · Φ+(t)

)
= −iλk

(
0 Gk

G−1
k 0

)(
Φ+(t)

Φ−(t)

)
.

By (2.4) it is equal to −λkφ(t). Therefore, λkφ(t) ≡ −λkφ(t), t ∈ Lk, hence
the boundary condition (2.3) follows. In the same manner one can check, that
vector function (2.2) defined in the lower half-plane satisfies also boundary
condition (2.3) on the lower side of the interval with the matrix λk chosen
according to relation (2.4) providing the validity of boundary condition (2.1).

Since the matrix gk satisfies the condition g−1
k = gk the problems (2.1)

and (2.3) are equivalent in the following sense. Any solution Φ(z) to prob-
lem (2.1) determines via representation (2.2) the solution to problem (2.3). Vice
versa, any solution to problem (2.3) satisfies the relation (φ1(z), . . . , φN(z))

T ≡(
φN+1(z), . . . , φ2N (z)

)T
. Therefore, the first N components of the solution φ(z)

to problem (2.3) constitute the solution to problem (2.1).

The choice of the matrix λk satisfying relation (2.4) is in fact not unique.
One can take λk as a square root of the matrix gk, i.e.,

λk
2 = gk. (2.5)

Then it follows from (2.4) that such matrix λk does satisfy the following relation

λkλk = E, (2.6)

where E is a unit 2N × 2N -matrix.

3. Reduction to the problem for a multiply connected
circular domain

By using the Christoffel–Schwarz formula for the considered domain prob-
lem (2.3) is reduced here to the Riemann–Hilbert problem for a multiply con-
nected circular domain with the same unknown 2N analytic vector. This prob-
lem will be studied then in the next sections.
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Consider 2n points Bj (j = 0, 1, . . . , 2n− 1) on the real axis of the complex
plane ζ. Here we assume that Bj0+1 < Bj0+2 < . . . < B2n−1 < B0 < B1 < ... <

Bj0 for some j0. Consider the segments (Bj, Bj+1), where j = 2k− 1, 2k+1, . . .
(mod 2n) (including (Bj0 , Bj0+1) = (Bj0 ,+∞) ∪ (−∞, Bj0+1) if j0 is odd), and
the semi-circles y(Bj, Bj+1) := {ζ ∈ C : Im ζ ≥ 0, |ζ − dj| = Rj}, where

j = 2k − 2, 2k, . . . (mod 2n), dj =
Bj+1+Bj

2
, Rj =

Bj+1−Bj

2
for j 6= j0 and

Rj0 =
Bj0

−Bj0+1

2
if j0 is even. Therefore, we obtain the domain D′ bounded by

the segments (B2k−1, B2k) and semi-circles y(B2k−2, B2k−1), where the semi–
circle y(Bj0 , Bj0+1) is exterior for D

′ if j0 is even.

We construct a conformal mapping ζ = f(z) of the upper half-plane Im z >

0 onto D′ in such a way that f(Al) = Bl (l = 0, 1, . . . , 2n − 1). Here the
given points Al lie on the real axis (see Sec. 2), and Bl are undetermined real
constants. The function f(z) can be represented in the form [26]

f(z) =
y1(z)

y2(z)
+ c, (3.1)

where y1(z), y2(z) are two fixed linearly independent solutions of the ordinary
differential equation

y′′(z) +
2n−1∑

l=0

(
1− α2

l

4(z − dl)2
+

1

2

βl

z − dl

)
y(z) = 0, (3.2)

c is a constant. Here βl (l = 0, 1, . . . , 2n − 1) are undetermined real constants
satisfying the relations

2n−1∑

l=0

βl = 0,
2n−1∑

l=0

(2dlβl + 1− α2
l ) = 0,

2n−1∑

l=0

(d2
l βl + dl(1− α2

l )) = 0, (3.3)

παl (l = 0, 1, . . . , 2n − 1) are angles of the polygon D′ at the vertices Bl,
respectively. In our case all αl =

1
2
, hence (3.2) becomes

y′′(z) +
1

2
R(z)y(z) = 0, (3.4)

where R(z) =
∑2n−1

l=0

(
3
8

1
(z−dl)2

+ βl

z−dl

)
. The conditions (3.3) become

2n−1∑

l=0

βl = 0,
2n−1∑

l=0

dlβl = −
3

8
,

2n−1∑

l=0

d2
l βl = −

3

4

2n−1∑

l=0

dl. (3.5)

Moreover, the Schwarzian derivative is equal
(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2
= R(z).

It is worth to note that in our case the dl are given, contrary to the clas-
sical problem of the Christoffel–Schwarz transformation. Various values of the



58 V. V. Mityushev and S. V. Rogosin

real constants β0, β1, . . . , β2n−1,Re c, Im c correspond to various circular poly-
gons B0B1 . . . B2n−1 with angles π

2
on the plane ζ (generally speaking on the

Riemann surface of the function ζ = f(z)). We are now looking for additional
restrictions on the undetermined parameters which yield the required polygon
B0B1 . . . B2n−1 described at the beginning of the section. Existence of the con-
formal mapping ζ = f(z) follows from the existence of the conformal mapping of
the multiply connected domain C \

⋃n

k=1 Lk onto a circular domain. Moreover,
the symmetry line on the plane z has to be transformed onto the symmetry line
of the domain D′. Therefore, the real axis on the plane z is transformed onto
the real axis on the plane ζ.

We assume that the segments (Aj, Aj+1) with odd j = 2k − 1, i.e., the
segments (A2k−1, A2k), are transformed onto the segments (Bj, Bj+1). Then
the segments Lk = (A2k−2, A2k−1) with even j = 2k are transformed onto the
semi-circles y(B2k−2, B2k−1). In particular, the infinite point z =∞ belonging
to the segment (A2n−1, A0), is transformed to a point ζ∞ ∈ (B2n−1, B0) ∈ R.
Then, using (3.1) we have

Im c = −Im
y1(∞)

y2(∞)
. (3.6)

We assume that Re c = 0, since the term Re c in (3.1) corresponds to the shift
of the plane ζ parallel to the real axis.

The conditions

Im f(Al) = 0, l = 0, 1, . . . , 2n− 1, (3.7)

mean that all points Bl lie on the real line. However, two of 2n conditions (3.7)
are redundant. First, we have f(A0) = B0 ∈ R, due to (3.6), i.e., the segment
(B2n−1, ζ∞) lies on the real axis and can be continued to the point B0 if only
B0 ∈ R. Second, if Bj0+1 < Bj0+2 < . . . < B2n−1 < B0 < B1 < . . . < Bj0−1,
and all these Bj are real, then Bj0 is real too. It is so, since the real axis is
tangent to a boundary arc (Bj0−1, Bj0) at Bj0−1 and it is perpendicular to the
semi-circle y(Bj0 , Bj0+1) whose diameter lies on the real axis. Hence, this arc
(Bj0−1, Bj0) can be only a segment of the real axis. Thus, instead of (3.7) it is
sufficient to take the conditions

Im f(Al) = 0, l = 1, 2, . . . , 2n− 1; l 6= j0. (3.8)

Ultimately we have 2n + 1 undetermined real constants β0, β1, . . . , β2n−1, Im c

satisfying 2n + 2 conditions (3.5), (3.6), (3.8). Our conjecture is that (3.8)
contains only one redundant condition, but we cannot prove it yet.

Equation (3.4) is the classical Fuchsian ordinary differential equation with
singular points. The method of the series expansion can be successfully applied
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to construct its fundamental solutions y1(z) and y2(z) [18]. The functions y1(z)
and y2(z) depend on the parameters βl (l = 0, 1, . . . , 2n − 1). Three of these
parameters, e.g., β2n−3, β2n−2, β2n−1, can be expressed from linear relations (3.5)
via βl (l = 0, 1, . . . , 2n − 4). Then the conditions (3.8) yield the non-linear
equations

Im

(
y1(Al)

y2(Al)
−
y1(∞)

y2(∞)

)
= 0, l = 1, 2, . . . , 2n− 1; l 6= j0, (3.9)

with respect to real unknowns βl (l = 0, 1, . . . , 2n − 4). Each solution βl (l =
0, 1, . . . , 2n− 4) of (3.9) determines a conformal mapping ζ = f(z) of C

+ onto
a domain D′ of the required type. Moreover, there exists at least one solution
to the system (3.9), since there exists the required conformal mapping.

Further, it is convenient to deal with an unbounded domain D′. For this (in
the case when j0 is even) we map D′ onto the half of a circular domain D 3 ∞

by the mapping ζ 7→
R2

j0

ζ−dj0

. Next, we construct the conformal mapping

ω(z) =
R2
j0

f(z)− dj0
(3.10)

and reduce the problem (2.3) to the following equivalent form:

Re
{
λkϕ(τ)

}
= 0, τ ∈ L+

k , k = 1, . . . , n, (3.11)

with respect to the function ϕ analytic in D
+ determined by the relation φ =

ϕ ◦ ω. Here L+
k = {τ ∈ C

+ : |τ − ak| = rk}.

Using the analytic continuation of ϕ(ζ) into the lower half-plane C
− by (2.2)

and by the symmetry property of the conformal mapping ζ = f(z) we obtain
that

ϕ(τ) + g−1
k ϕ(τ) = 0, τ ∈ L−

k = {τ ∈ C
− : |τ − ak| = rk}. (3.12)

If we additionally impose the condition (1.3), then g−1
k = gk and (3.11), (3.12)

yield the Riemann–Hilbert problems for multiply connected circular domain

Re
{
λkϕ(τ)

}
= 0, |τ − ak| = rk, k = 1, . . . , n. (3.13)

The condition (1.3) is necessary to justify the reduction of the C-linear
problem to the Riemann–Hilbert problem. However, it is not used in the solu-
tion to the problem (3.13). Therefore, below we do not use (1.3) and we solve
(3.13) with general λk satisfying the condition (2.6) which is natural for this
type of problem.
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4. Solution of the Riemann–Hilbert problem for a
multiply connected circular domain

4.1. Schottky groups and spaces for solutions. Let us briefly outline some
notation and facts from the theory of functional equations in complex domains
following [25].

Consider the family of disjoint discs Dk = {ζ ∈ C : |ζ − ak| < rk}, k =

1, . . . , n, D ≡ Ĉ \
⋃n

k=1 clDk. Denote also Tk ≡ ∂Dk, k = 1, . . . , n. Introduce

transformations z∗(km,km−1,...,k1) ≡
(
z∗(km−1,...,k1)

)∗
(km)

, where z∗(k) ≡
r2
k

z−ak
+ ak is

the symmetry mapping with respect to k-th circle Tk. If in the sequence
km, km−1, . . . , k1 no two consequent numbers are equal then m is called the
level of the transformation. All such transformations generate the so called
Schottky group of symmetries K (for shortness we denote the elements of this
group by γj in accordance to certain fixed order relevant to the increase of their
level) (see [14]). The collection of all γj of even level forms the subgroup G, and
those of odd level form the conjugate class F = K\G. Elements of G are simply

Möbius transformations, i.e., they have the form γj(ζ) =
âjz+b̂j

ĉjz+d̂j
, âj d̂j− b̂j ĉj = 1.

Elements of F are anti-Möbius transformations, i.e., Möbius with respect to ζ.

Introduce the Banach space of vector-functions f(ζ) = (f1(ζ), . . . , fM(ζ))T

∈ C (
⋃n

k=1 Tk) with the norm

‖f‖ = sup
k=1,...,n

sup
ζ∈Tk

(
|f1(ζ)|

2 + · · ·+ |fM(ζ)|2
) 1

2 , (4.1)

and its closed subspace CA (
⋃n

k=1 Tk) of all vector-functions admitting an an-
alytic continuation into all domains Dk, k = 1, . . . , n, endowed with the norm
(4.1). From the maximum principle it follows that the space CA (

⋃n

k=1 Tk) co-
incides with the space CA (

⋃n

k=1 clDk) of all vector functions analytic in the do-
mains Dk, k = 1, . . . , n and continuous up to their boundaries Tk, k = 1, . . . , n.
Hereafter we fix a point w ∈ D\{∞}.

4.2. Reduction of the problem to functional equations. Following [25,
p. 161] we rewrite boundary conditions (3.11) in the following form:

λkϕ(τ) = ϕk(τ)− ϕk(τ), τ ∈ Tk ≡ {τ ∈ C : |τ − ak| = rk}, k = 1, . . . , n,

where auxiliary vector-functions ϕk(ζ) are analytic in the discs Dk ≡ {ζ ∈ C :
|ζ − ak| < rk}, continuous in clDk. The unknown vector-function ϕ has to be
analytic in the outer multiply connected circular domain D ≡ C \

∑n

k=1 clDk

having polynomial growth of order (n− 1) at infinity.

Let us introduce the following vector-function

Ω(ζ) ≡





λkϕk(ζ) +
∑
m6=k

λmϕm(ζ∗(m)), ζ ∈ clDk

ϕ(ζ) +
n∑

m=1

λmϕm(ζ∗(m)), ζ ∈ D.
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Since on all circles Tk we have Ω+(τ) = Ω−(τ), τ ∈ Tk, k = 1, . . . , n, then
analytic continuation principle and the Liouville theorem imply that Ω is simply
a polynomial vector, i.e.,

Ω(ζ) = P̂n−1(ζ) ≡
(
P

(1)
n−1(ζ), . . . , P

(2N)
n−1 (ζ)

)T
. (4.2)

By using definition of the function Ω and the relation λkλk = E we arrive then
to system of functional equations on each closed disc Dk (k = 1, . . . , n)

ϕk(ζ) = −λk
∑

m6=k

λmϕm(ζ∗(m)) + λkP̂n−1(ζ), ζ ∈ clDk. (4.3)

4.3. Solution to functional equations. Introduce the vector functions ψk(ζ)
in such a way that

ϕk(ζ) =
∞∑

j=0

αjk(ζ − ak)
j = PM−1,k(ζ) +

(
ζ − ak

rk

)M
ψk(ζ), (4.4)

with the polynomial vector

PM−1,k(ζ) =
M−1∑

j=0

αjk(ζ − ak)
j. (4.5)

Let ψ(ζ) = ψk(ζ), ζ ∈ clDk. Substituting (4.4) into (4.3) we arrive at the
functional equations with respect to ψ ∈ CA (

⋃n

k=1 Tk)

ψk(ζ) = −λk
∑

m6=k

λm

(
rkrm

(ζ − ak)(ζ − am)

)M
ψm(ζ∗(m))

+

(
rk

ζ − ak

)M
h(ζ), ζ ∈ clDk,

(4.6)

where
h(ζ) = λkP̂n−1(ζ)−PM−1,k(ζ)− λk

∑

m6=k

λmPM−1,m(ζ∗(m)). (4.7)

By Cauchy’s formula,

ψm(ζ
∗
(m)) =

1

2πi

∫

Tm

ψm(τ)

τ − ζ∗(m)

dτ, ζ ∈ clDk (m 6= k). (4.8)

Substituting (4.8) into (4.6) we arrive at the integral equations

Ψk(ζ) =− λk
∑

m6=k

λm

(
rkrm

(ζ − ak)(ζ − am)

)M
1

2πi

∫

Tm

Ψm(τ)

τ − ζ∗(m)

dτ

+

(
rk

ζ − ak

)M
h(ζ), ζ ∈ clTk (k = 1, 2, . . . , n).

(4.9)
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Instead of ψk(ζ), Ψk(ζ) is written. Formally equations (4.9) can be consid-
ered as Fredholm’s integral equations with respect to Ψ ∈ C (

⋃n

k=1 Tk). First,
equations (4.9) will be solved in C (

⋃n

k=1 Tk). Then it will be checked, that con-
tinuous vector-function Ψ can be analytically continued in the corresponding
domains, i.e., Ψ ∈ CA (

⋃n

k=1 Tk). If so then Ψk(ζ) = ψk(ζ) satisfy the functional
equations (4.6).

Let us rewrite (4.9) in the following compact form:

Ψ = AΨ+ ĥ, (4.10)

where the linear operator A and ĥ are determined by the right-hand side of
the system (4.9). As it was shown in [25, p. 148] the operator A is compact in
C (
⋃n

k=1 Tk). It is easily seen that
∣∣∣∣

rkrm

(ζ − ak)(ζ − am)

∣∣∣∣ ≤
∣∣∣∣

rm

ak − am

∣∣∣∣ ≤ q < 1, ζ ∈ clTk (m 6= k).

Therefore, for sufficiently largeM the norm of the operator A is less than unity.
Then equation (4.10) can be solved by the method of successive approximations
which yield the solution in the form of the series

Ψ =
∞∑

j=0

Ajĥ. (4.11)

In order to write (4.11) in expanded form we note that the right hand part
of (4.9) is analytic in all |ζ − ak| < rk except ak where it has a pole of order M .
Then (4.9) implies that Ψk(ζ) also belongs to the same class and

1

2πi

∫

Tm

Ψm(τ)

τ − ζ∗(m)

dτ = Ψm(ζ
∗
(m)) + resam

Ψm(τ)

τ − ζ∗(m)

.

Calculation of the residium yields

1

2πi

∫

Tm

Ψm(τ)

τ − ζ∗(m)

dτ = Ψm(ζ
∗
(m))− {Ψm}(ζ

∗
(m)),

where the principal part {Ψm} of Ψm is introduced. More precisely, {Ψm}(ζ) =
ψ−M

(ζ−am)M + · · ·+ ψ−1

ζ−am
, where Ψm(ζ) is presented via its Laurent’s series

Ψm(ζ) =
ψ−M

(ζ − am)M
+ · · ·+

ψ−1

ζ − am
+ ψ0 + ψ1(ζ − am) + · · · .

The iteration scheme corresponding to the series (4.11) can be written in the
following form. The zero-th term has the form

(
ζ − ak

rk

)M
Ψ

(0)
k (ζ) = λkh(ζ). (4.12)
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The iteration formula for the term p+ 1 has the form
(
ζ − ak

rk

)M [
Ψ

(p+1)
k (ζ)− {Ψ

(p+1)
k }(ζ)

]

= −λk
∑

m6=k

λm

(
rm

ζ − am

)M[
Ψ

(p)
m (ζ∗(m))− {Ψ

(p)
m }(ζ∗(m))

]

+ h(ζ)− λk

(
ζ − ak

rk

)M
{Ψ

(p+1)
k }(ζ).

(4.13)

Applying the iteration scheme (4.12)–(4.13) we arrive at the formula

Ψk(ζ) =

(
rk

ζ − ak

)M
Akh(ζ) + {Ψk}(ζ), (4.14)

where the operator Ak is introduced as follows

Akh(ζ) ≡ λk

∞∑

m=1

(−1)m
∑

k1 6=k

∑

k2 6=k1

. . .
∑

km 6=km−1

λk1λk2 · . . . ·
(
Cm−2λkm−1

)

·
(
Cm−1λkm

)
·Cm

[
h
(
ζ∗(km,...,k1)

)
− {h

(
ζ∗(km,...,k1)

)
}
]
+ h(ζ).

(4.15)

Here C is the operator of the complex conjugation. The principal part {Ψk}(ζ)
stays undetermined. The operator Ak is analogous to that proposed in the scalar
case in [25, p. 162]. It realizes the method of the successive approximations in
the considered case.

It follows from (4.14) that Ψk(ζ) is analytical at ak (in other words Ψk(ζ) =
ψk(ζ)) if and only if Akh(ζ) has zero of order M at ak. This condition can be
written in the form∫

Tk

Akh(ζ)(ζ − ak)
−jdζ = 0, j = 1, 2, . . . ,M. (4.16)

Therefore, the functional equations (4.6) are solvable if and only if the con-
ditions (4.16) are fulfilled. If they are fulfilled the solution has the form
ψk(ζ) = ( rk

ζ−ak
)MAkh(ζ). It follows from (4.7) and (4.15) that that the con-

ditions (4.16) are linear algebraic equations with respect to the coefficients of
the vector polynomials P̂n−1(ζ) and PM−1,k(ζ). Some of them can be stay un-
determined after satisfaction of the system (4.16). The vector functions ϕk(ζ)
are found from (4.4)

ϕk(ζ) = PM−1,k(ζ) + Akh(ζ). (4.17)

Finally, from the definition of the function Ω it follows that the general solution
to the problem (3.11) is presented in the form

ϕ(ζ) = P̂n−1(ζ)−
n∑

m=1

λmϕm(ζ∗(m)), ζ ∈ D,
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The general solution to problem (2.3) is given by the formula

φ(z) ≡ ϕ(ω(z)), z ∈ D̃,

where ω is the conformal mapping of D̃ onto D constructed in Section 3 via
formulas (3.10) and (3.1). The first N components of the vector iφ(z) form the
solution Φ(z) of the starting C-linear conjugation problem (2.1) with piecewise
constant matrix coefficient.

Note added in proof. In the scalar case (when the unknown functions take
their values in C), the system of functional equations (4.3) with constants λk
(|λk| = 1) has always a unique solution. This solution can be found by successive
approximations [25]. If we assume that the matrices λk have such a structure
that successive approximations converge in the vector–matrix case, thenM = 0.
Hence the vector polynomial (4.5) vanishes and representation (4.17) becomes
ϕk(ζ) = Akh(ζ).

In general vector–matrix case, successive approximations applied to func-
tional equations (4.3) can be divergent. Therefore, the method fit for the scalar
case have to be modified as it is done in Subsec. 4.3. For better presentation of
the modified scheme we add auxiliary notations and facts in Subsec. 4.1.
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[11] Ehrhardt, T. and Spitkovskĭı, I. M., Factorization of piecewise constant matrix-
valued functions, and systems of linear differential equations (in Russian).
Algebra i Analiz 13 (2001)(6), 56 – 123; transl. in: St. Petersburg Math. J.

13 (2001)(6), 939 – 991.

[12] Ehrhardt, T. and Speck, F.-O., Transformation techniques towards the factor-
ization of 2×2 matrix functions. Linear Algebra Appl. 353 (2002)(1–3), 53 – 90.

[13] Fokas, A. S., Its, A. R. and Kitaev, A. V., The isomonodromy approach
to matrix models in 2D quantum gravity. Comm. Math. Phys. 147 (1992),
395 – 430.

[14] Ford, L. R., Automorphic Functions. New York: McGraw-Hill 1929.

[15] Fuchs, B. A. and Shabat, B. V., Functions of a Complex Variable and Some
of Their Applications. Vol. 1. Oxford: Pergamon Press 1964.

[16] Gohberg, I., The factorization problem for operator functions (in Russian). Izv.
Akad. Nauk SSSR, Ser. Mat. 28 (1964), 1055 – 1082.

[17] Gohberg, I., Kaashoek, M. A. and Spitkovskĭı, I. M., An overview of matrix
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