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Abstract

The R–linear conjugation problem for a disk in the class of doubly

periodic functions, i.e., the R–linear problem on the torus, is solved

in the form of series by Eisenstein’s functions. The result is applied

to the calculation of the effective conductivity of composites with cir-

cular inclusions.
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1 Introduction

Let Dk be mutually disjoint simply connected domains in the complex
plane C bounded by smooth curves ∂Dk (k = 1, 2, . . . , n), D be the
complement of all the closures of ∂Dk with respect to the extended
complex plane C ∪ {∞}. Let ∂Dk be oriented in counter clockwise
direction. Let a(t), b(t) and c(t) be given Hölder continuous functions
on ∂D = − ∪n

k=1
∂Dk; a(t) != 0.

R–linear conjugation problem: Find a function ϕ(z) analytic
in D,D1, . . . , Dn, continuous in the closures of the considered domains
with the following conjugation condition

ϕ+(t) = a(t)ϕ−(t) + b(t)ϕ−(t) + c(t), t ∈ ∂D. (1)

In the case b(t) = 0 we arrive at the C–linear conjugation problem
[9].
Noether’s theory for problem (1) has been constructed by Mikha-

jlov [14] by reducing it to a singular integral equation. Litvinchuk &
Spitkovskii [11] studied the problem (1) for a circle by its reduction to
a two-dimensional C–linear problem with a certain matrix coefficient.
This paper is devoted to constructive solution to the problem (1).

First, we point to the case a(t) ≡ b(t) in which Mikhajlov [14] has
solved this problem by reduction it to the Riemann–Hilbert problem.
Special cases of problem (1) when it is possible to construct its

solution are selected in [15], for instance, the R–linear conjugation
problem with constant coefficients and circular inclusions ∂Dk. In
this case (1) can be written in the form

ϕ−(t) = ϕ+(t)− ρkϕ+(t) + c(t), t ∈ ∂Dk, k = 1, 2, . . . , n, (2)

where ρk are constants. Frequently (2) is written in the following form
[15]

ψ−(t) = ψ+(t) + ρk

(

n(t)
2
)

ψ+(t) + c′(t), t ∈ ∂Dk, (3)

where n(t) is the unit normal vector to ∂Dk written in the form of com-
plex value, ψ(z) = ϕ′(z). The R–linear problem (2) with −1 ≤ ρk ≤ 1
corresponds to the problem of perfect contact for composite materials
with inclusions occupying the domains Dk. It has been solved in [15]
by the method of functional equations for circular inclusions Dk.
Recently, Craster & Obnosov in a series of brilliant papers [5]–

[8] have solved the problem (3) for contours forming checkerboard
periodic structures on the plane.
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As it follows from the homogenization theory [1] in order to de-
termine the effective properties of the composites one has to consider
the so-called cell periodicity problem. In the case of the conductivity
of two-dimensional materials we arrive at the R–linear problem (3) in
a class of doubly periodic functions. There are two interpretations of
the latter problem. First, one can consider it as an R–linear prob-
lem on a torus represented by a rectangle with glued opposite sides
[9, 26]. On the other hand this problem can be stated as a problem
for infinitely connected domains [9, 24]. In the present paper we apply
the first approach. The homogeneous R–linear problem for a disk on
torus has been solved by reducing it to a functional equation. Fol-
lowing [16] we use Eisenstein’s series to construct exact solution of
the functional equation. This solution yields an exact formula for the
effective conductivity of the square array of disks.

2 R–linear problem on a torus

Let M ∼= Z
2 be the set of complex numbers with integer real and

imaginary parts. Consider a square lattice Q which is defined by two
fundamental translation vectors expressed by the complex numbers
1 and i on the complex plane C. Introduce the zero-th cell Q0 :=
{z = t1 + it2 : −1/2 < tj < 1/2 (j = 1, 2)}. The lattice Q consists
of the cell Qm := {z ∈ C : z −m ∈ Q0}, where m ∈ M. Let the disk
D1 = {z ∈ C : |z| < r} lie in the cell Q0, D be the complement of
the closure of D1 to Q0. To find a function ψ(z) analytic in D,D1,
continuous in the closure of the considered domains with the following
conjugation condition

ψ−(t) = ψ+(t) + ρ
(r

t

)2

ψ+(t), |t| = r, (4)

where ψ(z) is doubly periodic with respect to Q

ψ(z + 1) = ψ(z) = ψ(z + i). (5)

The equality (3) is reduced to (4) for |t| = r and c′(t) = 0. The given
constant ρ satisfies the inequality −1 < ρ < 1. The problem (4)–(5)
can be considered as the homogeneous R–linear problem for the unit
circle on the torus represented by the cell Q0. It can be also considered
as an R–linear problem for the infinitely connected domain bounded
by |t−m| = r (m = m1 + im2 ∈M, i.e., m1 and m2 are integers).
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In mechanics, the problem (4)–(5) corresponds to a problem for a
composite material, when the conductivity of the matrix is normalized
by unity and λ1 =

1+ρ
1−ρ

is the respective conductivity of the inclusions.

3 Classical Eisenstein-Rayleigh sums

and Eisenstein series for the square lat-

tice

In the present section we introduce the fundamental constants and
functions of the elliptic function theory followingWeil [25] and Akhiezer
[2].
The Eisenstein summation method is defined as follows

∑

m1,m2

= lim
N→∞

m2=N
∑

m2=−N



 lim
M→∞

m1=M
∑

m1=−M



 . (6)

Using this summation we introduce the conditionally convergent sum

S2 :=
∑

m1,m2

′ (m1 + im2)
−2 =

∑

m

′ m−2, (7)

where m1 and m2 run over all integer numbers except the pair m1 =
m2 = 0. It is known [18] that S2 = π. Following Eisenstein and
Rayleigh we introduce the absolutely convergent sums

Sn :=
∑

m

′ m−n, n = 3, 4, . . . . (8)

It is known that Sn = 0 for odd n. For even n an efficient algorithm
has been proposed in [17] to calculate (8).
The Eisenstein series are defined as follows

En(z) :=
∑

m

(z −m)−n , n = 2, 3, . . . . (9)

The Eisenstein summation method (6) is applied to E2(z). The series
En(z) for n = 3, 4, . . . as a function in z converge absolutely and almost
uniformly in the domain C\M. Each of the functions (9) is doubly
periodic and has a pole of order n at z = 0.
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The Eisenstein series and the Weierstrass function ℘ (z) are related
by the identities

E2(z) = ℘ (z) + π, (10)

En(z) =
(−1)n

(n− 1)!

dn−2℘ (z)

dzn−2
, n = 3, 4, . . . (11)

The Eisenstein functions of the even order E2n(z) can be presented in
the form of the series

E2n(z) =
1

z2n
+
∞

∑

k=0

σ
(n)
k

z2(k−1), (12)

where

σ
(n)
k
=

(2n+ 2k − 3)!

(2n− 1)!(2k − 2)!
S2(n+k−1). (13)

4 Reduction of the R–linear problem

to a functional equation

In the present section we reduce the R–linear problem (4)–(5) to a
functional equation. At first, we introduce the operator

Tmψ(z) :=

(

r

z −m

)2
(

ψ

(

r2

z −m

)

− ψ(0)

)

, (14)

where m ∈ M.
Introduce the Banach space CA of functions continuous in |z| ≤ r

and analytic in |z| < r with the norm ||ψ(z)|| = max|t|=r |ψ(z)|.

Theorem [20] Let
∑

m
and

∑′
m

denote Eisenstein’s summation, re-

spectively with the term m = 0 and without it.

(i) The series

Ψ0(z) =
∑

m

′ Tmψ(z)

converges absolutely and uniformly in the closure of the cell Q0 for

each ψ ∈ CA to a function analytic in Q0 and continuous in its closure.

(ii) The series

Ψ(z) =
∑

m

Tmψ(z) (15)
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converges absolutely and uniformly in each compact subset of D to a

function analytic in D continuous in its closure and doubly periodic

with respect to the considered lattice.

(iii) The linear operator

T =
∑

m

′ Tm (16)

is compact in CA.

Using Eisenstein’s summation one can rewrite (15) in the form

Ψ(z) =
∑

m

(

r

z −m

)2

ψ

(

r2

z −m

)

− ψ(0)r2E2(z), (17)

since the sum

Ψe(z) =
∑

m

(

r

z −m

)2

ψ

(

r2

z −m

)

(18)

is correctly defined by Eisenstein’s summation. It is commutative with
integrals, it can be differentiated term by term as an absolutely and
uniformly convergent series (15). However, it is forbidden to change
the order of summation in (18).
We present the unknown function ψ(z) in the form of its Taylor

expansion

ψ(z) =
∞

∑

k=0

ψkz
k. (19)

Then

ψ

(

r2

z −m

)

=
∞

∑

k=0

ψkr
2k 1

(z −m)k
(20)

for each m. Substitution of (20) in (18) yields

Ψe(z) =
∞

∑

k=0

ψkr
2kEk+2(z). (21)

Introduce the function

Φ(z) =























ψ(z)− ρ
∞
∑

k=0

ψkr
2k(Ek+2(z)− z

−k−2), |z| ≤ r,

ψ(z)− ρ
∞
∑

k=0

ψkr
2kEk+2(z), z ∈ D,

(22)
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analytic in D and in the disk |z| < r. Calculate the jump of Φ(z)
across |t| = r

∆ = Φ+(t)− Φ−(t) = ψ+(t)− ψ−(t)− ρ
(r

t

)2
ψ−(t). (23)

Using (4) one can see that ∆ = 0. Applying the principle of analytic
continuation and Liouville’s theorem we obtain that Φ(z) is a constant,
say c. This complex constant corresponds to the vector of the external
flux applied to the composite [19]. Then the definition of Φ(z) in
|z| ≤ r yields the following functional equation with respect to ψ ∈ CA

ψ(z) = ρ

∞
∑

k=0

ψkr
2k(Ek+2(z)− z

−k−2) + c, |z| ≤ r, (24)

which can be also written in the form

ψ(z) = ρ
∑

m

′

(

r

z −m

)2

ψ

(

r2

z −m

)

+ c, |z| ≤ r. (25)

We have

ψ

(

r2

z −m

)

= ψ(z∗ −m),

where z∗ = r2

(z−m)
+m is the inversion with respect to the circle |z −

m| = r. The inversion z∗ transforms the disk |z| ≤ r onto a closed
disk D∗ from |z −m| < r when m #= 0. The translation z $→ z −m

returns D∗ to |z| < r. Therefore, the shift r2

z−m
maps |z| ≤ r onto a

closed disk lying in |z| < r. Equations with shifts into the domain are
called iterative functional equations [10].
Theorem [20] Equation (24) with |ρ| < 1 has a unique solution in CA.

This solution can be found by the method of successive approximations

converging in CA, i.e., uniformly convergent in |z| ≤ r.

5 Solution to the functional equation

In the previous section we have noted that it is possible to apply the
method of successive approximations to the functional equation (24)
and hence to construct an approximate solution in symbolic form as
it was done in [4, 19, 23]. However, in this case of one inclusion in
the periodicity cell it is possible also to write explicitly each term of
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this approximation, i.e., it is possible to write the exact solution of
the functional equation in form of a series with explicitly given terms.
It is convenient to perform it using the functional equation (25).

We are looking for ψ(z) in the form of the series

ψ(z) = c

∞
∑

k=1

(

ρr2
)k

ψk(z). (26)

Then (25) yields the following recurrence relations

ψ0(z) = 1,

ψk(z) =
∑

m

′
1

(z −m)2
ψk−1

(

r2

z −m

)

, k = 1, 2, . . . . (27)

Applying (27) we obtain

ψk(z) =
∑

ν1

′

∑

ν2

′
· · ·

∑

νk

′ (ν1 − z)−2

(

ν2 −
r2

ν1 − z

)−2

×

(

ν3 −
r2

ν2−
r2

ν1−z

)

−2

. . .











νk −
r2

νk−1−

r2

νk−2 −
r2

...











−2

,

(28)

where νl corresponds to m from (27). For definiteness (28) is written
for even k.

We apply (9), (12) and (13) to the latest term from (28)

∑

νk

′






νk −

r2

νk−1 −
r2

νk−2−
r2

...







−2

=

∞
∑

n1=1

σ(1)
n1

r4(n1−1)

(

νk−1 −
r2

νk−2−
r2

...

)2(n1−1)
.

(29)
Substitution of (29) in (28) yields

ψk(z) =
∞

∑

n1=1

σ(1)
n1

r4(n1−1)
∑

ν1,ν2,...,νk

′ (ν1 − z)−2

(

ν2 −
r2

ν1 − z

)−2

×

(

ν3 −
r2

ν2−
r2

ν1−z

)

−2

. . .

(

νk−1 −
r2

νk−2 −
r2

...

)

−2n1

,

(30)
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We now apply (9), (12) and (13) to the latest term from (30)

∑

νk−1

′



νk−1 −
r2

νk−2 −
r2

νk−3−
r2

...





−2n1

=
∞∑

n2=1

σ(n1)
n2

r4(n2−1)

(
νk−1 −

r2

νk−2−
r2

...

)2(n2−1)
.

(31)

Then (30) becomes

ψk(z) =
∞∑

n1=1

∞∑

n2=1

σ(1)
n1
σ(n1)

n2
r4(n1+n2−1) . . .

×

∑

ν1,ν2,...,νk−2

′ (ν1 − z)−2

(
ν2 −

r2

ν1 − z

)−2

. . .

(
νk−2 −

r2

νk−3 −
r2

...

)
−2n2

.

(32)
We again apply (9), (12) and (13) to (32) and so forth. At the end we
obtain the desired formula

ψ(z) = c

∞∑

k=0

(ρr2)k
∑

n1,n2,...,nk

σ(1)
n1
σ(n1)

n2
. . . σ

(nk−2)
nk−1

×Enk
(z)r4(n1+n2+···+nk−k).

(33)

Here we have used (26).
The effective conductivity of the square array is determined by the

following equality [19] (there is also a proof that ψ(0)/c is real)

λ̂ = 1 + 2ρπr2ψ(0)

c
. (34)

Substitution of (26) and (33) to (34) yields the exact formula

λ̂ = 1 + 2π

∞∑

k=0

ρk+1
∑

n1,n2,...,nk

σ(1)
n1
σ(n1)

n2
. . . σ

(nk)
1 r4(n1+n2+···+nk)−2(k−1).

(35)

6 Conclusion

The formula (35) can be considered as an expansion of λ̂ on the con-
centration of the inclusions πr2 and the contrast parameter ρ. This
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analiticity is consistent with the previous general result of Bergman
[3]. The formula (35) includes all known formulas for λ̂ approximated
by πr2 and ρ. However, in the case when r → 1/2 and ρ→ 1 the se-
ries (35) diverges to +∞. Asymptotic formulas for λ̂ in this case were
obtained by McPhedran et al. [12] (see also papers cited therein).
Direct application of (35) to this limit case is doubtful. One can find
some notes on application of the functional equations to this case in
[21].

It could be interesting to estimate ψ(0) without direct solution to
the problem (4) or to the functional equation (24) in the limit case.
The general theory of bounds for λ̂ is presented by Milton [13] without
an address to the R–linear problem.
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