
Couette flow in channels with wavy walls

A. E. Malevich1, V. V. Mityushev2, P. M. Adler3

1 BSU, Minsk, Belarus
2 Department of Mathematics, Pedagogical Academy, Krakow, Poland
3 UPMC-Sisyphe, Paris Cedex 05, France

Received 22 February 2007; Accepted 20 August 2007; Published online 30 October 2007

� Springer-Verlag 2007

Summary. Three–dimensional Couette flows enclosed by a plane and by a wavy wall are addressed; the wave

amplitude is proportional to the mean clearance of the channel multiplied by a small dimensionless parameter e.
A perturbation expansion in terms of the powers of e of the full steady Navier–Stokes equations yields a cascade

of boundary value problems which are solved at each step in closed form. The supremum value of e for which

the expansion converges, is determined as a function of the Reynolds number Re: The analytical-numerical

algorithm is applied to compute the velocity in the channel to O(e4). Even in the first order approximation O(e),
new results are obtained which complement the triple deck theory and its modifications. In particular, the

incipient separation–detachment is discussed using the Prandtl-Schlichting criterion of starting eddies. The value

ee for which eddies start in the channel, is analytically deduced as a function ofRe as well as analytical formulas

for the coordinates of the separation points. These analytical formulas show that ee in 3D channels is always less

than ee in 2D channels. For non-smooth channels, a criterion of infinitesimally small ee is deduced. The critical

value of e up to which bifurcation of the solutions can occur is estimated.

1 Introduction

This paper is devoted to the theoretical study of the stationary Couette flow through periodic

curvilinear channels. This problem is of fundamental interest for fluids mechanics.

The structure of the stationary flow depends on the geometry of the channel which could be very

complicated, on the external forces and on the Reynolds number Re: The vertical coordinates of the

upper and lower walls (denoted by z
± ) are given by

zþ ¼ b 1þ eT
p
L

x;
p
L

y

� �h i
; z� ¼ beB

p
L

x;
p
L

y

� �
; ð1:1Þ

where x and y are the coordinates in the horizontal plane. e is assumed to be a non-negative small

dimensionless parameter. The functions T(x, y) and B(x, y) model the oscillations of the walls with

the amplitude be; T(x, y) and B(x, y) stand for top and bottom, respectively; b is the width of the

plane channel (e ¼ 0); L is the half–period of the channel along the x- and y- directions. The upper

surface moves with the velocity Uo.
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We are interested in the analytical dependence of the velocity field in the channel on e, T, B and

Re: The theoretical results which were already obtained, should be summarized. First, in the Stokes

approximation ðRe ¼ 0Þ; the circular and plane Couette flow past a wavy wall were considered by

Munson et al. [17] by using the stream function. The velocity was determined up to O(e4) by a

perturbation expansion in the channel bounded by the cylinders defined by the radial coordinates R

(moving) and R + b sin ph (rest) where b is the amplitude of the waves and p is the wave number.

Similar solutions for the plane Couette flow past a wavy wall were also obtained. It was shown that

the streamlines follow the wavy wall for small e. The existence of eddies was demonstrated by

calculating the longitudinal velocity near the bottom of the wavy wall. Munson et al. [17] calculated

the critical value ee of the start of an eddy. Various problems for two-dimensional channels were

studied by Scholle et al. [24]–[27] (see also papers cited therein). In particular, Scholle [25] applied

the complex potential method to the plane Couette flow for a channel bounded by the surfaces

z ¼ b; z ¼ �eb cos p
L

x: Scholle’s solution is based on Cauchy’s integral representation of complex

potentials and on the Fourier series for the unknown integral densities. As a result, an infinite linear

algebraic system was obtained and numerically solved by the truncation method. Sisavath et al. [42]

studied the lubrication approximation for a sinusoidal wall. They obtained a simple expression

relating the effective hydraulic aperture of the channel to the mean aperture and to the amplitude and

wavelength of the wall profile.

Stokes flow in wavy three-dimensional channels was systematically investigated in [16] for

arbitrary wall shapes as an extension to the seminal paper of [19]. An analytical-numerical algorithm

proposed in [16] yields efficient formulas for velocities and permeability. These formulas include e
in symbolic form. When e increases, the Poiseuille flow (e ¼ 0) is disturbed and eddies can arise

above a critical value ee which was exactly computed for various channels in [16]. The papers

[24]–[27], [17], [16] contain many other interesting results and an extensive literature devoted to

Stokes flow.

Consider now the role of inertia in such flows. For a fixed geometry, an important threshold

parameter is the value of the critical Reynolds number Re ¼ Ree; for which eddies start in the

channel. The Poiseuille flow with non-zero Reynolds number Re was studied by Zhou et al. [45] for

three 2D channels when one of the walls is sinusoidal, arched or triangular; the second wall is a

plane. An asymptotic expansion up to O(e1) and a finite volume method were used. Ree was

numerically estimated for various e and wave numbers; a heuristic relation between Ree and e was

suggested. For instance, for the sinusoidal wall z ¼ e sin p
L

x;Ree was empirically deduced as

Ree ¼
3:18

p
L2e�2:5: ð1:2Þ

Lenweit and Awerbuch [14] studied numerically and experimentally the conditions under which

eddies arise in symmetric sinusoidal 2D channels bounded by the walls z ¼ �z0 þ e cos p
L

x for

moderate Reynolds numbers. The authors showed that the increase of the separation region with

increasing Re is sensitive to the geometrical parameters. The locations of the separation points for

fixed geometries and fixed Re were studied numerically.

Experimental studies were made by Stephanoff at all [38], Zhou et al. [45], Leneueit [14], Lagrée

at all [11] and many others as cited in these papers.

For larger Reynolds numbers, the triple deck theory was applied to study viscous flow in boundary

layers [20], [29]–[33], [39]–[41]. An extensive review of the stationary problems with historical

notes on the triple deck theory is made by Sobey [37]. The asymptotic analysis when Re tends to

infinity, was performed up to O(e1) and O(b/L) in our notations. According to the triple deck theory,

the velocity was rigorously estimated at the lower and upper walls for Poiseuille flows. Though the

average width b of the channel is small, the flow was not always laminar, especially for larger Re:
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The critical Reynolds number for separation was estimated for asymmetric (T(x0, y0) ¼ 0) and

vertically symmetric (T(x0, y0) ¼ � B(x0, y0)) 2D channels under the additional assumption that

Re1=7b=L is suitably small as follows

e � L

bRe

� �1=3

: ð1:3Þ

The value of e deduced from (1.3) is small, since L
bRe

� �1=3
can be small simultaneously with

Re1=7b=L: The estimation (1.3) yields (compare to the empirical formula (1.2))

Ree ¼ c
L

b
e�3; ð1:4Þ

where the constant c depends on the channel shape. Sobey [37] computed c for various channels. The

location xe ¼ x of the separation point was estimated [37, p. 274] in the channel as

xe ¼ �0:49
L

p
Re1=7 þ d; ð1:5Þ

where d is a suitable constant calculated numerically.

Lagrée et al. [10] deduced the reduced Navier–Stokes equations which are equivalent to the

Prandtl equations with different boundary conditions. A connection was established between their

equations and the other asymptotic descriptions including the triple deck theory discussed above.

The reduced Navier–Stokes equations were also applied to evolution problems [9]–[12].

The interactive boundary layer theory based on the reduced Navier–Stokes equations is a powerful

method to study channel flows ([20], [29]–[33], [39]–[41]). In particular, the important formulas

(1.3)–(1.4) for the critical Reynolds number and (1.5) for the separation point were rigorously

deduced for Re! þ1: Together with empirical formulas like (1.2), they provide qualitative and

quantitative estimations of Ree and xe. Assuming that Re! þ1; the previous authors made

additional restrictions like b << L and e << 1. For the unsteady separation and the onset of

transition, the reader is referred to [5], [21], [44].

In the present paper, the full Navier–Stokes equations are treated in 3D curvilinear channels

considering e as a small parameter without any restriction on the shape of the bottom wall. The

method applied to the linear Stokes equations in [16] which is based on the use of power series in e,
is extended. Though the boundary layer theory [22] and its sophisticated modifications ([20],

[29]–[35], [37]) are not directly used, the method is applied to the same questions such as the

incipient separation–detachment, with the same criteria such as the Prandtl-Schlichting criterion of

starting eddies. The main advantage of the proposed method is that the flow is analytically described

in terms of the geometry of the channels for any Reynolds numbers in contrast with the triple deck

theory. This allows us to correct the flow characteristics in curvilinear channels derived by the

previous authors, and to extend them. Among other results, new features relative to steady flow are

presented, such as a criterion for the existence of an eddy in channels with non-smooth bottoms and

flow sensitivity to 2D and 3D perturbations.

This paper is organized as follows. In Sect. 2, we consider the Couette problem for 3D channel

bounded by the walls

z ¼ b; z ¼ ebB
p
L

x;
p
L

y

� �
; ð1:6Þ

where B(x0, y0) is an arbitrary periodic function. A perturbation analysis in e yields a cascade of

boundary value problems. Only the zero-th approximation corresponds to a trivial non-linear

problem, since it is the Couette problem for a straight channel. The higher approximations in e yield

linear boundary value problems where Re enters as a parameter.

Couette flow in channels with wavy walls



In Sect. 3, the problem is reduced to a non-local problem for a set of ordinary differential

equations. A general algorithm for this problem is presented in Sect. 4.1 without any restriction on

geometry, i.e., on B(x0, y0). It is only assumed that B(x0, y0) can be expanded as a double Fourier

series which is uniformly convergent almost everywhere. Sect. 5 is devoted to the study of the first

order approximation for 2D channels. The velocity, the critical e of onset of eddies, the separation

point are calculated analytically to the first order in e. In particular, a criterion for eddies is deduced

for channels with non-smooth walls. Section 6 is devoted to the first order approximation for the

velocity in 3D channels. In Sect. 7, boundary layer separation in 3D channels is discussed and a

theorem is proved which compares separation in 3D and 2D channels. Applications of higher order

expansions in e are presented in Sect. 8 for a sinusoidal channel. Special attention is paid to the

asymptotics when Re tends to infinity. A general formula for the force acting on the upper wall is

deduced up to O(e4). Symbolic–numerical computations are performed up to O(e5) in a sinusoidal

channel. Sect. 9 is devoted to the bifurcation analysis of the problem. It is established that bifurcation

can arise only for e > ec, where ec is the critical value up to which the algorithm converges. The

results are summarized and compared with other works in Sect. 10. Appendix A contains the

estimation of ec.

2 Statement of the problem

Let us consider an arbitrary 3D dimensional channel which is spatially periodic along the x- and y-

directions with periods 2L; the channel is bounded by the walls z ¼ b and z ¼ beB p
L

x; p
L

y
� �

and

represented by the cell displayed in Fig. 1,

Q ¼ fx; y; zg 2 R
3 : �L\x; y\L; beB

p
L

x;
p
L

y

� �
\z\b

n o
; ð2:1Þ

where B(x, y) is a 2p-periodic infinitely differentiable function for which

Zp

�p

Zp

�p

Bðx; yÞdxdy ¼ 0: ð2:2Þ

Let u ¼ u(x, y, z) be the velocity vector, p(x, y, z) the pressure, l the fluid viscosity, and q its

constant density. The flow is governed by the Navier–Stokes equations

x

z

2 L

b

bε

Fig. 1. Schematic diagram and the geometric notations. The axes are denoted by x, y and z; the transversal

coordinate is y. The average aperture is equal to b; the amplitude of the bottom is equal to be
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lr2u ¼ rpþ q u � rð Þu; r � u ¼ 0; ð2:3Þ

which are supplemented by the boundary conditions for a Couette flow

uðx; y; bÞ ¼ U0ð1; 0; 0Þ; u x; y; beB
p
L

x;
p
L

y

� �h i
¼ 0; ð2:4Þ

where U0 is a positive constant. For convenience, dimensionless quantities indicated by primes are

introduced in the three next equations:

x0; y0; z0ð Þ ¼ L

p
x0; y0; z0ð Þ; b ¼ L

p
b0; u ¼ U0u0; p ¼ pU0l

L
p0: ð2:5Þ

Then, Eqs. (2.3) take the following dimensionless form:

r02 u0 ¼ r0p0 þ Reðu0 � r0Þu0; r0 � u0 ¼ 0; ð2:6Þ

where Re ¼ qU0L

pl is the Reynolds number. The boundary conditions (2.4) become

u0ðx0; y0; b0Þ ¼ ð1; 0; 0Þ; u0ðx0; y0; b0eBðx0; y0ÞÞ ¼ 0: ð2:7Þ

For brevity, the primes for dimensionless values are omitted in the rest of this paper. A solution to

Eqs. (2.6)–(2.7) is looked for as an expansion in e

uðx; y; zÞ ¼
X1
n¼0

unðx; y; zÞen; pðx; y; zÞ ¼
X1
n¼0

pnðx; y; zÞen: ð2:8Þ

where u0 and p0 satisfy the zero-th problem, i.e., the Eqs. (2.6) in the channel 0 � z � b with the

following boundary conditions:

u0ðx; y; bÞ ¼ ð1; 0; 0Þ; u0ðx; y; 0Þ ¼ 0: ð2:9Þ

This is the classical Couette problem [22], [23] for a plane channel whose solution is

u0ðx; y; zÞ ¼
z

b
; v0ðx; y; zÞ ¼ 0; w0ðx; y; zÞ ¼ 0; p0ðx; y; zÞ ¼ constant; ð2:10Þ

where un(x, y, z) ¼ [ un(x, y, z), vn(x, y, z), wn(x, y, z)], n ¼ 0,1, . . . Substitute Eqs. (2.10) into

(2.8), and then into (2.6). Further, select coefficients with the same powers in e. The cascade of

equations in the layer 0 < z < b is easily derived,

r2un ¼ rpn þRe ðu0 � rÞun þ ðun � rÞu0ð Þ þ ReFn; r � un ¼ 0; n ¼ 1; 2; . . .; ð2:11Þ

where

Fn ¼
Xn�1

k¼1

ðuk � rÞun�k: ð2:12Þ

In order to deduce the boundary conditions for un, the following formula is valid for a function

g(x, y, z) which is (N + 1) differentiable with respect to z:

g x; y; beBðx; yÞð Þ ¼
XN

k¼1

ðbeBðx; yÞÞk

k!

ok
g

ozk
x; y; 0ð Þ þ OðeNþ1Þ: ð2:13Þ

This formula is true for N ¼ ? for a vanishing correction term if g is analytic with respect to z.

However, this analyticity condition might be unnecessary. Therefore, we use in the following the

formula with N ¼ ? without any correction term as a shortcut notation,
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g x; y; beBðx; yÞð Þ ¼
X1
k¼1

ðbeBðx; yÞÞk

k!

ok
g

ozk
x; y; 0ð Þ: ð2:14Þ

Application of (2.14) and of a similar formula with B(x, y) to (2.7) and use of (2.8) yield (for details,

see [1] and [16])

un x; y; bð Þ ¼ 0; un x; y; 0ð Þ ¼ Hnðx; yÞ; ð2:15Þ

where

Hnðx; yÞ ¼ �
Xn

k¼1

ðbBðx; yÞÞk

k!

ok
un�k

ozk
ðx; y; 0Þ: ð2:16Þ

In each step, linear non-homogeneous equations with respect to un and pn with the boundary

conditions (2.15) have to be solved. The functions u0 and p0 are given by (2.10). uk and pk

(k ¼ 1, 2,. . .,n � 1) are assumed to have been determined in the previous steps.

3 Reduction to ordinary differential equations

The method of separated variables can reduce Eqs. (2.11) and (2.15) to ordinary differential

equations. All the functions are expanded as double Fourier series. It is convenient to use the Fourier

series for real functions in complex form,

unðx; y; zÞ ¼
X1

n;g¼�1
aðnÞng ðzÞe

iðnxþgyÞ;

vnðx; y; zÞ ¼
X1

n;g¼�1
bðnÞng ðzÞe

iðnxþgyÞ;

wnðx; y; zÞ ¼
X1

n;g¼�1
cðnÞng ðzÞe

iðnxþgyÞ;

pnðx; y; zÞ ¼
X1

n;g¼�1
dðnÞng ðzÞe

iðnxþgyÞ;

ð3:1Þ

Fnðx;y;zÞ¼
X1

n;g¼�1
F
ðnÞ
ng ðzÞe

iðnxþgyÞ; Hnðx;yÞ¼
X1

n;g¼�1
H
ðnÞ
ng eiðnxþgyÞ; Bðx;yÞ¼

X1

n;g¼�1
Bnge

iðnxþgyÞ;

where un ¼ (un, vn, wn). In each step n of the cascade, Fng
(n)

Hng
(n) and Bng are known and the

functions ang
(n)(z), bng

(n)(z), cng
(n)(z), dng

(n)(z) are unknown. For instance, Eqs. (3.1) can be detailed as

unðx; y; zÞ ¼ aðnÞ00 ðzÞ þ
X1

n¼1

aðnÞn0 ðzÞe
inx þ aðnÞ�n0ðzÞe

�inx
� �

þ
X1
g¼1

aðnÞ0t ðzÞeigy þ aðnÞ0;�gðzÞe�igy
� �

þ
X1

n;g¼1

aðnÞng ðzÞe
iðnxþgyÞ þ aðnÞn;�gðzÞe

iðnxþgyÞ þ aðnÞ�ngðzÞe
iðnxþgyÞ þ aðnÞ�n;�gðzÞe

�iðnxþgyÞ
� �

:

ð3:2Þ

The function a00
(n)(z) must be real. Consider the first sum in Eq. (3.2),
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X1

n¼1

aðnÞn0 ðzÞe
inx þ aðnÞ�n0ðzÞe

�inx
� �

¼
X1

n¼1

anðzÞ cos nxþ bnðzÞ sin nxð Þ; ð3:3Þ

where anðzÞ ¼ aðnÞn0 ðzÞ þ aðnÞ�n0ðzÞ; bnðzÞ ¼ iðaðnÞn0 ðzÞ � aðnÞ�n0ðzÞÞ: Since Eq. (3.3) is a usual Fourier

series which must be real, one has

aðnÞn0 ðzÞ ¼
1

2
ðanðzÞ � ibnðzÞÞ; aðnÞ�n0ðzÞ ¼

1

2
ðanðzÞ þ ibnðzÞÞ: ð3:4Þ

The same arguments can be applied to the two other sums in (3.2). Therefore, it is possible to apply

the complex ordinary series in (3.2) assuming that the conditions (3.4) are fulfilled. The condition

that the velocity is real can be written as

a�n;�gðzÞ ¼ an;gðzÞ; ð3:5Þ

where the overbar denotes complex conjugation. Similar conditions hold for the coefficients of the

complex series (3.1).

Substitution of (3.1) into (2.11) and (2.15) and selection of the coefficients of the same modes e
i(nx+gy)

yield the four ordinary differential equations

a00ngðzÞ � ,2angðzÞ ¼ indngðzÞ þ
Re

b
iznangðzÞ þ cngðzÞ
� �

þReF
ð1Þ
ng ðzÞ; ð3:6:1Þ

b00ngðzÞ � ,2bngðzÞ ¼ igdngðzÞ þ
Re

b
iznbngðzÞ þ ReF

ð2Þ
ng ðzÞ; ð3:6:2Þ

c00ngðzÞ � ,2cngðzÞ ¼ d0ngðzÞ þ
Re

b
izncngðzÞ þ ReF

ð3Þ
ng ðzÞ; ð3:6:3Þ

inangðzÞ þ igbngðzÞ þ c0ngðzÞ ¼ 0; ð3:6:4Þ

where , ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
; Fng(z) ¼ (F(1)

ng (z), F
(2)
ng (z), F

(3)
ng (z)) is a coordinate form of the vector-function

(2.12). The superscript (n) is omitted for brevity. The boundary conditions follow from (2.15),

angðbÞ ¼ 0; angð0Þ ¼ H
ð1Þ
ng ; ð3:7Þ

bngðbÞ ¼ 0; bngð0Þ ¼ H
ð2Þ
ng ; cngðbÞ ¼ 0; cngð0Þ ¼ H

ð3Þ
ng ; ð3:8Þ

where, for instance, Hng ¼ ðHð1Þng ;H
ð2Þ
ng ;H

ð3Þ
ng Þ (see Eqs. (2.15)–(2.16)).

Equation (3.6.1) is multiplied by in, Eq. (3.6.2) by ig and the results are added. Then, Eq. (3.6.4)

implies

�c
000

ngðzÞ þ ,2cngðzÞ ¼ �,2dngðzÞ �
Re

b
iznc0ngðzÞ þ Re½isF

ð1Þ
ng ðzÞ þ igF

ð2Þ
ng ðzÞ�: ð3:9Þ

Differentiate1 (3.9) and add Eq. (3.6) multiplied by ,2. As a result, a special case of the celebrated

Orr–Sommerfeld equation is obtained [22], [23],

cðIVÞ � 2,2c00 þ ,4c ¼ i
Re

b
znðc00 � ,2cÞ þ Ref ; ð3:10Þ

where

1 We apply the operator of differentiation on the real variable z to complex functions.
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f ðzÞ ¼ ReðinFð1Þ0ðzÞ þ igFð2Þ0ðzÞ þ ,2Fð3ÞðzÞÞ: ð3:11Þ

The subscripts ng are omitted for brevity until the end of the present section. It follows from

(3.7)–(3.8) and Eq. (3.6.4) that c(z) satisfies the boundary conditions

cð0Þ ¼ Hð3Þ; c0ð0Þ ¼ �inHð1Þ � igHð2Þ; ð3:12Þ
cðbÞ ¼ 0; c0ðbÞ ¼ 0: ð3:13Þ

As in [6], Eqs. (3.10)–(3.13) are reduced to a non-local problem with the new unknown function

x(z) defined as

x00ðzÞ � ,2xðzÞ ¼ in
Re

b
zxðzÞ þ Ref ; ð3:14Þ

c00ðzÞ � ,2cðzÞ ¼ xðzÞ: ð3:15Þ

Obviously, c(z) can be written as

cðzÞ ¼ c1ðzÞe,z þ c2ðzÞe�,z: ð3:16Þ

Calculate the derivative

c0ðzÞ ¼ c01ðzÞe,z þ c02ðzÞe�,z þ , c1ðzÞe,z � c2ðzÞe�,zð Þ ð3:17Þ

and put

c01ðzÞe,z þ c02ðzÞe�,z ¼ 0: ð3:18Þ

Calculate the second derivative

c00ðzÞ ¼ ,2 c1ðzÞe,z þ c2ðzÞe�,zð Þ þ , c01ðzÞe,z � c02ðzÞe�,z
� �

: ð3:19Þ

Equations (3.15), (3.16) and (3.19) yield a second equation in c1

0
and c2

0
,

c01ðzÞe,z � c02ðzÞe�,z ¼ 1

,
xðzÞ: ð3:20Þ

Therefore, (3.18) and (3.20) imply

c01ðzÞ ¼
1

2,
xðzÞe�,z; c02ðzÞ ¼ �

1

2,
xðzÞe,z: ð3:21Þ

These two relations can be integrated

c1ðzÞ ¼
1

2,

Zz

0

e�,txðtÞdtþ c1ð0Þ;

c2ðzÞ ¼ �
1

2,

Zz

0

e,txðtÞdtþ c2ð0Þ;

ð3:22Þ

where c1(0) and c2(0) are constants which are determined by z ¼ 0 using (3.12),

cð0Þ ¼ c1ð0Þ þ c2ð0Þ ¼ Hð3Þ; c0ð0Þ ¼ ,ðc1ð0Þ � c2ð0ÞÞ ¼ �inHð1Þ � igHð2Þ: ð3:23Þ

The solution to the system (3.23) has the form

c1ð0Þ ¼
1

2,
ðHð3Þ � inHð1Þ � gHð2ÞÞ; c2ð0Þ ¼

1

2,
ðHð3Þ þ inHð1Þ þ igHð2ÞÞ: ð3:24Þ

Substitution of Eqs. (3.24) and (3.22) into (3.16) implies
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cðzÞ ¼ 1

,

Zz

0

sinhð,ðz� tÞÞxðtÞdtþ 1

,
ðHð3Þ cosh ,z� iðnHð1Þ þ gHð2ÞÞ sinh ,zÞ: ð3:25Þ

Substitution of (3.25) into (3.13) yields the non-local problem for Eq. (3.14),

Zb

0

sinhð,ðb� tÞÞxðtÞdt ¼ �Hð3Þ cosh ,bþ iðnHð1Þ þ gHð2ÞÞ sinh ,b;

Zb

0

coshð,ðb� tÞÞxðtÞdt ¼ �Hð3Þ sinh ,bþ iðnHð1Þ þ gHð2ÞÞ cosh ,b:

ð3:26Þ

Similar non-local forms of the problem were used to study the homogeneous Orr–Sommerfeld

equation (see for instance [6]).

4 Solution

4.1 Solution to the non-local problem

In the present section, the ordinary differential equation (3.14) is solved with the non-local condition

(3.26). First, a general solution of the homogeneous differential equation is found,

x000ðzÞ ¼ ,2 þ iz
nRe

b

� �
x0ðzÞ: ð4:1Þ

The solution can be expressed with the classical Airy’s functions Ai(X) and Bi(X) (see [18]) which

satisfy the ordinary differential equation Ai00ðXÞ ¼ XAiðXÞ

x0ðzÞ ¼ C1Ai ZngðzÞ
	 


þ C2Bi ZngðzÞ
	 


; ð4:2Þ

where C1 and C2 are undetermined constants; Zng(z) is defined as

ZngðzÞ ¼ �
b

nRe

� �2=3

,2 þ iz
nRe

b

� �
: ð4:3Þ

The choice of the fundamental solutions Ai(X) and Bi(X) is not essential from a theoretical point of

view, but it is important in computations, since different pairs of the fundamental solutions are

numerically satisfactory in different domains [18]. In this paper, Ai(X) denotes the commonly used first

Airy’s function. In Sect. 5, the second Airy’s function Bi(X) is used. However, in Sect. 8, Ai(e2p/3
X) is

taken as the second fundamental solution Bi(X). Thus, all forthcoming formulas are valid with different

pairs [Ai(X), Bi(X)]. Only one pair must be fixed for each step of the cascade.

The general solution of the non-homogeneous equation (3.14) is

xðzÞ ¼ x0ðzÞ þ x�ðzÞ; ð4:4Þ

where x*(z) denotes a particular solution of the non-homogeneous Eq. (3.14),

x�ðzÞ ¼ ipRe2=3b1=3

n1=3

Zz

0

Bi ZngðzÞ
	 


Ai ZngðtÞ
	 


�Ai ZngðzÞ
	 


Bi ZngðtÞ
	 
� �

f ðtÞdt: ð4:5Þ

C1 and C2 are given by the conditions (3.26). First, introduce the integrals
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J
ðngÞ
11 ¼

Zb

0

sinhð,ðb� fÞÞAi ZngðfÞ
	 


df;

J
ðngÞ
12 ¼

Zb

0

sinhð,ðb� fÞÞBi ZngðfÞ
	 


df;

J
ðngÞ
21 ¼

Zb

0

coshð,ðb� fÞÞAi ZngðfÞ
	 


df;

J
ðngÞ
22 ¼

Zb

0

coshð,ðb� fÞÞBi ZngðfÞ
	 


df:

ð4:6Þ

Substitution of (4.4) into (3.26) yields linear equations with respect to C1 and C2

J
ðngÞ
11 C1 þ J

ðngÞ
12 C2 ¼ D1; J

ðngÞ
21 C1 þ J

ðngÞ
22 C2 ¼ D2; ð4:7Þ

where

D1 ¼ �
Zb

0

sinhð,ðb� tÞÞx�ðtÞdt� Hð3Þ cosh ,bþ iðnHð1Þ þ gHð2ÞÞ sinh ,b;

D2 ¼ �
Zb

0

coshð,ðb� tÞÞx�ðtÞdt� sinh ,bþ iðnHð1Þ þ gHð2ÞÞ cosh ,b:

ð4:8Þ

The solution of Eqs. (4.7) is

C1 ¼
1

DðngÞ D2J
ðngÞ
12 � D1J

ðngÞ
22

� �
; C2 ¼

1

DðngÞ D1J
ðngÞ
21 � D2J

ðngÞ
11

� �
; ð4:9Þ

where

DðngÞ ¼ J
ðngÞ
11 J

ðngÞ
22 � J

ðngÞ
12 J

ðngÞ
21 : ð4:10Þ

The determinant D(ng) cannot be 0. If D(ng) ¼ 0, a non-zero solution of the Orr–Sommerfeld equation

with zero boundary conditions would be obtained in a stationary case which is impossible according

to [6].

Therefore, the non-local problem ((3.14), (3.26)) has been solved. The unique solution x(z) has

the form (4.2)–(4.4), and C1 and C2 are calculated by (4.9). The function c(z) ¼ c(n)
ng (z)

corresponding to the mode e
i(nx+gy) can be expressed by (3.25).

To determine ang(z) and bng(z) from (3.6) with known cng(z), the Eq. (3.6.1) multiplied by g is

substracted from Eq. (3.6.2) multiplied by n. Then, d(z) is eliminated. Further, we introduce

-ngðzÞ :¼ gangðzÞ � nbngðzÞ: ð4:11Þ

-ngðzÞ verifies the following ordinary differential equation:

-00ngðzÞ � ,2-ngðzÞ ¼
Re

b
inz-ngðzÞ þ

Re

b
gcngðzÞ þ Re gF

ð1Þ
ng ðzÞ � nF

ð2Þ
ng ðzÞ

� �
; ð4:12Þ

with prescribed boundary values -ngð0Þ and -ngðbÞ derived from (3.7)–(3.8). Equation (4.12) has

the same form as (3.14). The boundary value problem has a unique solution which can be written in a
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closed form. Then, angðzÞ and bngðzÞ are easily found from (4.11) and Eq. (3.6.4). This will be done

in Sect. 6 to the first order approximation in e and in Sect. 8 with the precision O(e4).

In the 2D case, the solution to the system (2.15) is simplified since bnðzÞ 	 0 ðg ¼ 0Þ;

-nðzÞ ¼ angðzÞ ¼
i

n
c0ngðzÞ: ð4:13Þ

In Sect. 8, numerical results are presented in the 2D case. This section is ended with the presentation

of the algorithm in details to compute an
(n)(z), cn

(n)(z) through aðkÞn ðzÞ; c
ðkÞ
n ðzÞðk ¼ 0; 1; . . .;n� 1Þ in

the 2D case. We have

aðnÞn ðzÞ ¼ �Bn cosh nzþ
Zz

0

cosh nð1� zÞ C1Ai Znð1Þ½ � þ C2Bi Znð1Þ½ �ð Þd1

0
@

1
A

þ
Zz

0

cosh nð1� zÞXð1Þd1;

cðnÞn ðzÞ ¼ iBn sinh nzþ
Zz

0

sinh nð1� zÞ C1Ai Znð1Þ½ � þ C2Bi Znð1Þ½ �ð Þd1

0
@

1
A

þ
Zz

0

sinh nð1� zÞXð1Þd1;

ð4:14Þ

where

ZnðzÞ ¼ �
b

Re

� �2=3

n1=3 nþ iz
Re

b

� �
: ð4:15Þ

The function X(f) is determined by

XðfÞ ¼ ipRe2=3b1=3

n1=3

Zf

0

Ai ZnðfÞ½ �Bi ZnðfÞ½ � þ Bi ZnðfÞ½ �Ai ZnðfÞ½ �ð Þf ðfÞdf; ð4:16Þ

where f(z) is calculated by (3.11) with

Fð1ÞðzÞ ¼
Xn�1

k¼1

X1
p¼�1

ipaðkÞn�p
ðzÞaðn�kÞ

p ðzÞ þ cðkÞn�p
ðzÞðaðn�kÞ

p ðzÞÞ0
� �

; Fð2ÞðzÞ ¼ 0;

Fð3ÞðzÞ ¼
Xn�1

k¼1

X1
p¼�1

ipaðkÞn�p
ðzÞcðn�kÞ

p ðzÞ þ cðkÞn�p
ðzÞðcðn�kÞ

p ðzÞÞ0
� �

:

ð4:17Þ

The constants C1 and C2 are known from (4.9).

4.2 Convergence of the algorithm

The problem (2.6), (2.7) is now solved and the convergence of the series (2.8) has to be

examined. Since this question is technical in character, it is fully addressed in Appendix A. It is

proved that for a given wavy wall and a given Reynolds number, the supremum ec of e can be

expressed as
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ec ¼ b sup
n;g

an;g max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

qr !" #�1

; ð4:18Þ

where an,g is the maximum modulus from four coefficients of e
±in±ig in the double Fourier series of

2B(x, y). The proof of (4.18) is based on the estimations of the terms from the ordinary differential

equations (3.6).

5 The first-order approximation in e for a two-dimensional channel

5.1 General analytical formulas

As a first application of the previous section, the first-order approximation in e for a two-dimensional

channel with an arbitrary function B(x, y) ¼ B(x) is derived. The velocity can be written as

uðx; zÞ ¼ z

b
; 0

� �
þ e u1ðx; zÞ;w1ðx; zÞð Þ þ Oðe2Þ; ð5:1Þ

where u1(x, z) and w1(x, z) satisfy

r2u1 ¼
op1

ox
þRe

b
z
ou1

ox
þw1

� �
;

r2w1 ¼
op1

oz
þRe

b
z
ow1

ox
;

ou1

ox
þ ow1

oz
¼ 0;

ð5:2Þ

with the boundary conditions

u1 x; bð Þ ¼ 0; w1 x; bð Þ ¼ 0; u1 x; 0ð Þ ¼ BðxÞ; w1 x; 0ð Þ ¼ 0: ð5:3Þ

Therefore, the linear homogeneous problem (5.2)–(5.3) should be solved for the straight channel

0 < z < b (compare with the non-homogeneous equations (3.6)). Formulas (4.14) yield

að1Þn ðzÞ ¼ �Bn cosh nzþ ðB
�ðbÞ � BþðbÞÞA�ðzÞ þ ðAþðbÞ � A�ðbÞÞB�ðzÞ

2D
enz

�

þ ðB
�ðbÞ � BþðbÞÞAþðzÞ þ ðAþðbÞ � A�ðbÞÞBþðzÞ

2D
e�nz

�
;

cð1Þn ðzÞ ¼ iBn sinh nz� ðB
�ðbÞ � BþðbÞÞA�ðzÞ þ ðAþðbÞ � A�ðbÞÞB�ðzÞ

2D
enz

�

þ ðB
�ðbÞ � BþðbÞÞAþðzÞ þ ðAþðbÞ � A�ðbÞÞBþðzÞ

2D
e�nz

�
;

ð5:4Þ

where Bn (n ¼±1, ±2 . . .) are coefficients of the complex Fourier series of B(x) ¼ B(x, y), the

functions A
±(z) and B

±(z) are defined via integrals

A�ðzÞ ¼
Zz

0

Ai ZnðfÞ½ �e�nzdf; B�ðzÞ ¼
Zz

0

Bi ZnðfÞ½ �e�nzdf; ð5:5Þ

and the constant D is introduced as follows:

D ¼ AþðbÞB�ðbÞ � A�ðbÞBþðbÞ: ð5:6Þ

The functions u1 and w1 have the form
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u1ðx; zÞ ¼
X1

n¼�1
að1Þn ðzÞe

inx; w1ðx; zÞ ¼
X1

n¼�1
bð1Þn ðzÞe

inx: ð5:7Þ

The exact formulas (5.4)–(5.7) and the approximate one (5.1) can be used to study the structure of

the flow in the channel up to O(e2). First, the critical value ee ¼ eeðReÞ of the start of an eddy in the

channel is determined, as well as the location of separation points lying on the walls and the curve

limiting the recirculation region.

Introduce the function

f ðx; eÞ ¼ 1

b
þ e

ou1

oz
ðx; 0Þ ð5:8Þ

which is the bottom wall shear stress up to O(e2). According to [22], a separation point is a point

(x, be B(x)) for which

f ðx; eÞ ¼ 0: ð5:9Þ

Use Eqs. (5.4) to calculate

ou1

oz
ðx; 0Þ ¼

X1

n¼�1
ðað1Þn ðzÞÞ

0
z¼0einx ¼ 2Re

X1

n¼1

ðað1Þn ðzÞÞ
0
z¼0einx; ð5:10Þ

where Re stands for the real part. Therefore, f(x,e) can be expressed as

f ðx; eÞ ¼ 1

b
þ e2Re

X1

n¼1
ðað1Þn ðzÞÞ

0
z¼0e

inx: ð5:11Þ

It is assumed that the series (5.11) converges. The case of divergent series will be also considered in

the next Subsection. Equation (5.1) shows that Eq. (5.9) with respect to x has not a solution for all e.
For instance, f ðx; 0Þ ¼ 1

b
[ 0: Hence, for small positive e, the function f(x, e) is positive whatever x.

A minimal value ee is expected to exist for which

f ðx; eeÞ ¼ 0: ð5:12Þ

Let e ¼ ee be the critical point of the start of an eddy in the channel. Then, (5.4) implies

ee ¼ � 4bRe
X1

n¼1
einxe Bn

DðnÞ

Zb

0

Ai Znð0Þ½ �Bi ZnðfÞ½ � � Bi Znð0Þ½ �Ai ZnðfÞ½ �ð Þ sinh nfdf

2
4

3
5
�1

; ð5:13Þ

where xe is the root of Eq. (5.12).

5.2 Dependence of ee on the wall smoothness

In the present subsection, the dependence of ee on the wall smoothness is estimated via the

convergence rate of the Fourier coefficients of B(x). Hereafter, a compact and physically intuitive

notation is adopted:

X 
 Y ; whenever X� cY ;

X�Y ; whenever c�1Y �X� cY ;
ð5:14Þ

for a suitable constant c � 1. The relation 
 is used only for non negative values; � is valid for all

real values.
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Introduce the function FðxÞ via its Fourier series

FðxÞ ¼
Xþ1

n¼�1
BnKne

inx; ð5:15Þ

where

Kn ¼
2

DðnÞ

Zb

0

Ai Znð0Þ½ �Bi ZnðfÞ½ � � Bi Znð0Þ½ �Ai ZnðfÞ½ �ð Þ sinh nfdf; ð5:16Þ

DðnÞ has the form (4.10). Then, according to (5.13), the critical ee at the onset of eddies can be written

as

ee ¼ � bFðxeÞ½ ��1: ð5:17Þ

For small Re; Kn can be estimated as follows. Application of formula Aiðx0 þ DxÞ ¼ Aiðx0Þþ
Ai0ðx0ÞDxþ OðDx2Þ with x0 ¼ Znð0Þ ¼ �ðbn2Re�1Þ2=3

and Dx ¼ �iz ðb�1nReÞ1=3
yields

Ai ZnðzÞ½ � ¼ Ai Znð0Þ½ � þAi0 Znð0Þ½ �ð�izðb�1nReÞ1=3Þ þOððReÞ2=3Þ: ð5:18Þ

This implies

Ai Znð0Þ½ �Bi ZnðzÞ½ � � Bi Znð0Þ½ �Ai ZnðzÞ½ � ¼ iz

p
ðb�1nReÞ1=3 þOððReÞ2=3Þ: ð5:19Þ

Here, the identity AiðxÞBi0ðxÞ � BiðxÞAi0ðxÞ ¼ 1
p is used for the Wronskian of Airy’s functions [18].

Consider the first integral (4.6) for a two dimensional channel

J
ðnÞ
11 ¼

Zb

0

sinhðnðb� fÞÞAi ZnðfÞ½ �df: ð5:20Þ

Application of (5.18) to (5.20) yields

J
ðnÞ
11 ¼ Ai Znð0Þ½ � cosh bn� 1

n
�Ai0 Znð0Þ½ � sinh bn� bn

n2
iðb�1nReÞ1=3 þOððReÞ2=3Þ: ð5:21Þ

The other integrals in (4.6) are estimated in the same way. Then, D(n) (see (4.10)) becomes

DðnÞ ¼ i

pn3
ðb�1nReÞ1=3ð2 cosh bn� bn sinh bn� 2Þ þ OððReÞ2=3Þ: ð5:22Þ

Finally, Kn is obtained by substitution of (5.19) and (5.22) into (5.16),

Kn ¼ n
bn cosh bn� sinh bn

2 cosh bn� bn sinh bn� 2
þ OððReÞ2=3Þ: ð5:23Þ

One can see that Kn is of order n when n tends to infinity.

5.3 Application to walls with non smooth points

Consider a continuous periodic function B(x) with non-smooth points when B0(x) is continuous

except at a finite set of points with finite increments. In this case ([4], p. 270),
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jBnj 

1

n2
as n! þ1: ð5:24Þ

Hence, jBnKnj 
 1
n and the series (5.15) can converge. In order to investigate this situation, it is

sufficient to consider a wall with one corner point, since the behavior of the Fourier series at x0

corresponding to a function f(x) depends only on the values of f(x) in the neighborhood of x0 ([4],

p. 272).

Let B(x) be a continuous 2p-periodic function, continuously differentiable in [�p, p] except at a

point x0, where the limit values B0(x0 + 0) and B0(x0 � 0) are finite, but different. For simplicity, it

is assumed that B
0 0
(x) is continuous in [�p, p], except at x0 where B

0 0
(x0) ¼ ?. Without any loss of

generality, one can choose x0 ¼ 0 since B(x) is periodic.

In order to estimate the Fourier coefficient

Bn ¼
1

2p

Zp

�p

BðxÞe�inx dx ð5:25Þ

integration by parts is applied,

Bn ¼ �
i

2pn

Zp

�p

B0ðxÞe�inx dx: ð5:26Þ

Introduce a small positive parameter d. The function B(x) can be changed on the segment � d < x

< d by a new function B̂ðxÞ in such a way that B̂ðxÞ is twice differentiable in (�p, p). The precise form

of B̂ðxÞ is not important. Divide the segment of integration into three segments (�p, d), (�d, d), (d, p).

Then, (5.26) implies

Bn ¼ B̂n þ Dn; ð5:27Þ

where the Fourier coefficient of B̂ðxÞ is defined as

B̂n ¼ �
i

2pn

Zp

�p

B̂0ðxÞe�inx dx: ð5:28Þ

Moreover,

Dn ¼ �
i

2pn

Zd

�d

ðB0ðxÞ � B̂0ðxÞÞe�inx dx: ð5:29Þ

Estimate now the real part of Dn written in the form

ReDn ¼ �
1

2pn

Zd

0

½B0ðxÞ � B0ð�xÞ � B̂0ðxÞ þ B̂0ð�xÞ� sin nx dx: ð5:30Þ

Application of the second theorem of the mean value to the integral (5.30) yields

ReDn ¼ �
c0

2pn

Zxd

0

sin nx dx ¼ � c0

pn2
sin2 xdn

2
; ð5:31Þ
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where 0 \ xd \ d, c0 ¼ [B0(+0) � B0(�0)] = 0 is the increment of B0(x) when x passes

through x ¼ 0. Therefore, the coefficient of 1
n2 does not vanish. Let sign c0 denote the sign of c0.

Then, (5.31) implies

ReDn��
sign c0

n2
: ð5:32Þ

Application of (5.27) to (5.32) yields

ReBn��
sign c0

n2
; ð5:33Þ

since jB̂nj 
 1

jnj3 are Fourier coefficients of twice differentiable functions [4]. The estimation (5.33)

provides the exact scale for Bn, because one can check that ImDn 
 1
n2 :

The value of FðxÞ defined by (5.15) at the corner point x ¼ 0 is exactly estimated for smallRe as

follows:

Fð0Þ� � 2 sign c0
Xþ1

n¼1

1

n
: ð5:34Þ

One can show that Fð0Þ ¼ 1 with a sign which depends on the sign of c0. This observation can be

used as follows. Instead of B(x) ¼ 2Re
P

n=1
+?

Bn e
inx, consider a truncated sum BM(x) ¼ 2ReP

n=1
M

Bn e
inx. The function BM(x) defines a smooth wall of the channel. The critical value of e can be

calculated by (5.17),

eðMÞe ¼ � bFMðxeÞ½ ��1; ð5:35Þ

where the following function is properly determined on [�p, p]:

FMðxÞ ¼ 2Re
XM

n¼1
BnKne

inx: ð5:36Þ

When M tends to infinity, FMðxÞ becomes unbounded near x ¼ 0 and FMðxÞ½ ��1
tends to zero. The

sign of ee
(M) from (5.35) must be verified, because only the case ee

(M) � 0 is allowed.

If c0 [ 0;Fð0Þ ¼ �1 and (5.35) yields ee ¼ +0. If c0 < 0, FMð0Þ tends to þ1;FMðxÞ[ 0 near

x ¼ 0. Then, the tangent component of the velocity on the bottom tends to +? at x ¼ 0; hence, it is

positive near x ¼ 0. Let h+ be the angle between the curve B(x) and the axis OX at the point x ¼ 0

from the right hand side, h� from the left hand side. Then, c0 ¼ tan h+ � tan h� and the sign of c0

admits the following simple geometrical interpretation. If the angle at x ¼ 0 between the edges of

the bottom wall is acute, eddies occur for infinitesimally small e. The case of an obtuse angle can be

treated as a liquid jet (see [13], p. 210 for details).

Thus, eddies always arise for Re ¼ 0 in a non–smooth channel near a corner point with acute

interior angle (compare to [15]).

Consider a channel with a smooth wall, i.e., a function B(x) continuously differentiable on [�p, p]

with the period 2p. In this case, the Fourier coefficients satisfy the asymptotics

jBnj�
1

n3
as n! þ1: ð5:37Þ

Then, the series (5.15) always converges for any fixed Reynolds number. This means that for smooth

walls eddies do not arise suddenly near e ¼ 0 as for non–smooth walls. The value of ee is calculated

by (5.13) which yields a finite number.

Finally, it is important to recall that the calculations of this section are performed in the range

e < ec where ec ¼ (b supn |2Bnn|)�1 � b
�1 is given by (4.18).
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6 The first-order approximation for 3D channels

The general algorithm presented in Sect. 4 is now used to derive the first-order approximation in e for

the 3D channels bounded by the walls z ¼ 0 and z ¼ B(x, y), where B(x, y) is an arbitrary function

expanded as a Fourier series. The velocity can be written as

uðx; y; zÞ ¼ z

b
; 0; 0

� �
þ e u1ðx; y; zÞ; v1ðx; y; zÞ;w1ðx; y; zÞð Þ þ O e2

� �
; ð6:1Þ

where u1, v1, w1 are Fourier expanded with unknown coefficients satisfying the equation

aðnÞng ðzÞ ¼ aðnÞ�n;�gðzÞ: ð6:2Þ

Hereafter, the superscript n ¼ 1 is omitted. Substitution of (3.1) into (2.11) and (2.15) with n ¼ 1,

and selection of the coefficients of the same modes e
i(nx+gy) imply ordinary differential equations

(see (3.6)) which are different in the following four cases (n=0, g¼0), (n ¼0, g¼0), (n ¼0, g= 0),

(n=0, g=0) which are considered separately.

The case n=0, g¼0 corresponds to the 2D channel studied in Sect. 5 for which the final formulas

of Sect. 5 can be used.

6.1 The case n ¼ g ¼ 0

This case is the simplest one. The coefficients of the constant terms verify

a0000ðzÞ ¼ Rc00ðzÞ;
b0000ðzÞ ¼ 0;

c0000ðzÞ ¼ d000ðzÞ;
c000ðzÞ ¼ 0;

ð6:3Þ

where

R ¼ Re

b
: ð6:4Þ

The functions a00, b00, c00 vanish at the end points z ¼ 0 and z ¼ b, since B(x, y) does not contain

the (0, 0) term in its Fourier expansion (see (2.2)). It is easily seen that the latter boundary value

problem has only the trivial solution d00(z) ¼ constant.

6.2 The case n ¼ 0, g=0

This case n ¼ 0, g = 0 corresponds to a Couette flow bounded by the walls z ¼ b and z ¼ be B(y)

when the wall z ¼ b is moved along the x-direction. This case is not more difficult. The coefficients

of e
igy (g ¼ ±1, ±2, . . .) verify

a000gðzÞ � g2a0gðzÞ ¼ Rc0gðzÞ; ð6:5:1Þ

b000gðzÞ � g2b0gðzÞ ¼ igd0gðzÞ; ð6:5:2Þ

c000gðzÞ � g2c0gðzÞ ¼ d00gðzÞ; ð6:5:3Þ

igb0gðzÞ þ c00gðzÞ ¼ 0; ð6:5:4Þ

with the following boundary conditions:
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a0gð0Þ ¼ �B0g; a0gðbÞ ¼ b0gð0Þ ¼ b0gðbÞ ¼ c0gð0Þ ¼ c0gðbÞ ¼ 0: ð6:6Þ

Elimination of d0g between Eqs. (6.5.2) and (6.5.3) implies

b00gðzÞ � igc0gðzÞ
� �00

�g2 b00gðzÞ � igc0gðzÞ
� �

¼ 0: ð6:7Þ

Elimination of b0g between Eqs. (6.5.4) and (6.7) yields an ordinary differential equation of the

fourth order with constant coefficients with respect to c0g(z),

c000gðzÞ � g2c0gðzÞ
� �00

�g2 c000gðzÞ � g2c0gðzÞ
� �

¼ 0: ð6:8Þ

It follows from Eqs. (6.5.4) and (6.6) that

c0gð0Þ ¼ c0gðbÞ ¼ c00gð0Þ ¼ c00gðbÞ ¼ 0: ð6:9Þ

It is easily seen that the boundary value problem (6.8)–(6.9) has only a trivial solution. Then,

Eq. (6.5.4) implies that b0g(z) ¼ 0; hence, because of Eq. (6.5.3) d0g(z) ¼ 0.

Thus, the homogeneous equation is obtained,

a000gðzÞ � g2a0gðzÞ ¼ 0; ð6:10Þ

with the boundary conditions

a0gð0Þ ¼ �B0g; a0gðbÞ ¼ 0: ð6:11Þ

The solution of this elementary problem (6.10), (6.11) is

a0gðzÞ ¼ �B0g
sinh gðb� zÞ

sinh gb
: ð6:12Þ

6.3 The case n=0, g=0

This case n=0, g=0 corresponds to the Couette flow in the most general channel bounded by three

dimensional walls. The coefficients of e
i(nx+gy) are selected to obtain (see (3.6))

a00ngðzÞ � ,2angðzÞ ¼ indngðzÞ þ R izangðzÞ þ cngðzÞ
� �

;

b00ngðzÞ � ,2bngðzÞ ¼ igdngðzÞ þ RizbngðzÞ;
c00ngðzÞ � ,2cngðzÞ ¼ d00gðzÞ þ RizcngðzÞ;
inangðzÞ þ igbngðzÞ þ c0ngðzÞ ¼ 0

ð6:13Þ

with the boundary conditions

angð0Þ ¼ �Bng; angðbÞ ¼ bngð0Þ ¼ bngðbÞ ¼ cngð0Þ ¼ cngðbÞ ¼ 0: ð6:14Þ

The function cng(z) is given in Section 3 by formula (3.25) which becomes

cngðzÞ ¼
1

,

Zz

0

sinh ,ðz� sÞxngðsÞdsþ in
,

Bng sinh ,z; ð6:15Þ

where xng({z}) has the form (4.2)–(4.4). In formula (4.2), the constants C1 and C2 are calculated by

(49) where Jpq
(ng) is introduced in (4.6) and
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D1 ¼ �
Zb

0

sinh ,ðb� sÞx�ðsÞds� inBng sinh ,b;

D2 ¼ �
Zb

0

cosh ,ðb� sÞx�ðsÞds� inBng cosh ,b;

where x*(s) has the form (4.5). ang and bng can be obtained by the ordinary differential equation

derived from (4.12),

-00ngðzÞ � ,2-ngðzÞ ¼ inR-ngðzÞ þ RgcngðzÞ: ð6:16Þ

The boundary conditions are given by (3.7)–(3.8),

-ngð0Þ ¼ �Bng; -ngðbÞ ¼ 0: ð6:17Þ

Equation (6.16) is similar to (3.14). Its solution is found by the same method

-ngðzÞ ¼ C3 þ CBðzÞð ÞAi ZngðzÞ
	 �

þ C4 � CAðzÞð ÞBi ZngðzÞ
� �

; ð6:18Þ

where

CAðzÞ ¼ �ipz

ffiffiffiffiffiffi
R2

n
3

s Zz

0

Ai ZngðsÞ
	 �

cngðsÞds;

CBðzÞ ¼ �ipz

ffiffiffiffiffiffi
R2

n
3

s Zz

0

Bi ZngðsÞ
	 �

cngðsÞds;

C3 ¼
1

Dng
Bi ZngðbÞ
	 �

C0AðbÞ þ
n2 � g2

n2 þ g2
Ai ZngðbÞ
	 �

C0AðbÞ
 !

Bi Zngð0Þ
	 �

þ gBngBi ZngðbÞ
	 �" #

;

C4 ¼ �
1

Dng
Bi ZngðbÞ
	 �

C0AðbÞ þ
n2 � g2

n2 þ g2
Ai ZngðbÞ
	 �

C0AðbÞ
 !

Ai Zngð0Þ
	 �

þ gBngAi ZngðbÞ
	 �" #

;

and

Dng ¼ Ai ZngðbÞ
	 �

Bi Zngð0Þ
	 �

�Ai Zngð0Þ
	 �

Bi ZngðbÞ
	 �

: ð6:19Þ

The functions ang(z) and bng(z) are the solutions of the set of equations (see the last equality (2.15)

and (4.11))

nangðzÞ þ gbngðzÞ ¼ ic0ngðzÞ;

gangðzÞ � gbngðzÞ ¼ -ngðzÞ:
ð6:20Þ

Ultimately,

angðzÞ ¼
1

,2
inc0ngðzÞ þ g-ngðzÞ
� �

;

bngðzÞ ¼ �
1

,2
n-ngðzÞ � igc0ngðzÞ
� �

;

where cng
0(z) is calculated by (6.15) as
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c0ngðzÞ ¼
Zz

0

cosh ,ðz� sÞxngðsÞdsþ inBng cosh ,z: ð6:21Þ

xng(z) has the form (4.2)–(4.4); -ngðzÞ is given by (6.18). It is worth noticing that the above

formulas for ang, bng and cng are exact, i.e., these functions have been found in closed form.

The velocity u(x, y, z) is calculated up to O(e2) by (6.1), where for instance

u1ðx; y; zÞ ¼
X1

n;g¼�1
angðsÞeiðnxþgyÞ: ð6:22Þ

Using (6.2), it is sufficient to calculate ang(z) only for non-negative n. Then, (6.22) becomes

u1ðx; y; zÞ ¼ 2Re
X1

n¼1

an0ðzÞeinx þ
X1
g¼1

a0gðzÞeigy þ
X1

n¼1

X1
g¼�1

angðzÞeiðnxþgyÞ

 !
; ð6:23Þ

where the term g ¼ 0 is omitted in the last sum. Here, we use the relation a00(z) ¼ 0 (see Sect. 6.1).

Similar formulas are valid for v1 and w1.

7 Separation in 3D channels

Following Subsect. 5.1 and using the results of Sect. 6 in the present section, the boundary layer

separation flow in 3D channels (according to the terminology of [44], p. 201) is discussed up to

O(e2). First, consider 2D channels bounded by the walls

z ¼ b; z ¼ beB2DðxÞ; ð7:1Þ

where a smooth function B2D(x) is represented by its Fourier series

B2DðxÞ :¼
X1

n¼1

2Re Bn0einx
� �

: ð7:2Þ

Let the Reynolds number be fixed and e be a variable parameter. Let S2D(e) be the projection of the flow

recirculation regions onto the plane (x, y); of course, S2D(e) is a strip parallel to the y-axis. According

to Subsect. 5.1, the set S2D(e) is empty for e \ ee
(2D); it may contain several lines parallel to the y-axis2

for e ¼ ee
(2D). For e [ ee

(2D), it consists of strips and lines parallel to the y-axis.

Consider now a perturbation of the 2D channel (7.1) which is a 3D channel bounded by the walls

z ¼ b; z ¼ beBðx; yÞ; ð7:3Þ

where

Bðx; yÞ ¼ B2DðxÞ þ Gðx; yÞ: ð7:4Þ

Here, the double Fourier series of G(x, y) consists of the terms Bng e
i(nx+gy) with g=0. Further, we

say that the 2D channel (7.1) corresponds to the 3D channel (7.3).

Define the set S(e) on the plane (x, y) in the following way. Let Px0y0
be the plane tangent to the

surface z ¼ beB(x, y) at the point (x0, y0). Let n be the unit normal vector to Px0y0
, and t(x0, y0) a

unit vector normal to n and such that its y-component vanishes. ut is the component of the velocity u

at (x0 y0, beB(x0 y0)) along t. The boundary of S(e) is defined by

2 In most cases, the set S2D(ee
(2D)) for the critical value of e contains only one line.
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out

on
¼ 0: ð7:5Þ

As in the 2D dimensional case, Eq. (7.5) up to O(e2) can be written in the form

1

b
þ e

ou1

oz
ðx; y; 0Þ ¼ 0; ð7:6Þ

where u1(x, y, z) is the coefficient in e of the x-component of the velocity in the 3D channel. Now

we deduce a formula connecting u1(x, y, z) for the 3D channel and u2D(x, z), the coefficient in e of

the x component of the velocity of the corresponding 2D channel. The coefficient ang(z) from (6.23)

is proportional to Bng. For Bn0, it follows directly from (5.4). For Bng (g = 0), it follows from the

structure of ang(z) described in the previous section. This linear property of the first order

approximation yields

u1ðx; y; zÞ ¼ u2Dðx; zÞ þ gðx; y; zÞ; ð7:7Þ

where u2D(x, z) and g(x, y, z) correspond to B2D(x) and G(x, y), respectively. Here, u2D(x, z) is the

first-order component of the velocity calculated by B2D(x) in accordance with formulas of Sect. 5.

Hence, Eq. (7.6) can be used to define an implicit function f ¼ f(x, y),

1

b
þ f

ou2D

oz
ðx; 0Þ þ og

oz
ðx; y; 0Þ

� �
¼ 0; ð7:8Þ

where G(x, y) is assumed to be sufficiently smooth so that g(x, y, z) and og

oz
ðx; y; zÞ can be

represented by their Fourier series. The minimal positive value of g (for fixed values of x and y) is

the critical ee
(3D) for which regions arise where the flow is opposite to the bulk flow.

According to Subsect. 5.1, there exists a minimal positive ee
(2D) such that

1

b
þ eð2DÞ

e

ou2D

oz
ðxe; 0Þ ¼ 0 ð7:9Þ

with some xe. Substitute x ¼ xe into (7.8), eliminate ou2D

oz
ðxe; 0Þ from (7.8), (7.9) and calculate

fðxe; yÞ ¼
1

1

eð2DÞ
e

� b
og

oz
ðxe; y; 0Þ

: ð7:10Þ

The function G(x, y) from (7.4) does not contain the zero-th term in its Fourier expansion in y.

Hence, the function g(x, y, z) constructed by G(x, y) has the same property. Therefore, the zero-th

term in the Fourier expansion of b
og

oz
ðx; y; 0Þ vanishes and it can be written as

Zp

�p

b
og

oz
ðx; y; 0Þdy ¼ 0; �p 6 x 6 p: ð7:11Þ

The latter equality implies that b
og

oz
ðx; y; 0Þ for any fixed x can take negative, zero and positive

values for some y [ [�p,p]. This implies that any sign from ‘‘ < ’’, ‘‘ ¼ ’’, ‘‘ > ’’ between f(xe, y)

and ee
(2D) takes place for any fixed xe [ S2D and appropriate y [ [�p, p ]. This implies

eð3DÞ
e ¼ min

x;y
fðx; yÞ� min

y
fðxe; yÞ\eð2DÞ

e : ð7:12Þ

This yields the following

Theorem. For a given value of Re, in any 3D channel, the critical value of ee
(3D) when eddies start,

is always less than the critical value e(2D)
e for the corresponding 2D channel.
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The equality ee
(3D) ¼ e(2D)

e is possible if and only if b
og

oz
ðx; y; 0Þdy 	 0, Gðx; yÞ 	 0; i.e., when

the 3D channel degenerates into a 2D channel. We emphasize that this assertion has been rigorously

justified for sufficiently small e. This theorem is analogous to Squire’s theorem for the stability

theory in time ([22], [23]) which states that if a 3D mode is unstable, a 2D mode is unstable at a

lower Re:

In order to illustrate these derivations, let us consider the case where B(x, y) is given by (compare

to (7.4))

Bðx; yÞ ¼ B2DðxÞ þ GðyÞ: ð7:13Þ

Equation (7.7) becomes

u1ðx; y; zÞ ¼ u2Dðx; zÞ þ gðy; zÞ; ð7:14Þ

where

gðy; zÞ ¼ �2
X1
g¼1

B0g
sinh gðb� zÞ

sinh gb
cos gy: ð7:15Þ

Here, B0g are coefficients of the Fourier series of GðyÞ,

GðyÞ ¼ 2
X1
g¼1

B0g cos gy:

Equation (6.12) was used to deduce (7.15). Calculation of og

oz
ðy; zÞ from (7.15) yields (compare to

(7.10))

gðx; yÞ ¼ 1

e2DðxÞ
þ 2b

X1
g¼1

gB0g coth gb cos gy

 !�1

: ð7:16Þ

The difference between e(x, y) and e2D(x) can also be estimated from (7.16). It is interesting to note

that for channels (7.13), this difference does not depend on Re: Moreover, this difference can be

significant for non-smooth functions G(y) (see Subsect. 5.2).

8 Symbolic and numerical computations

In Sect. 2, the full Navier–Stokes equations (2.6) with the boundary conditions (2.7) are reduced to a

cascade of linear boundary value problems. The n-th solution un satisfies the linear equations (2.11)

with the boundary conditions (2.15).

In Sect. 3, each boundary value problem (2.11), (2.15) is reduced to the non–local problem which

is solved in Sect. 4.1 in closed form. In 2D channels, the components of the velocity un and wn are

given by (3.1), where an
(n)(z) and cn

(n)(z) have the form (4.14). At each step n of the cascade, the

constants C1, C2 and the function f(z) have to be determined. The constants C1, C2 are given by (4.9),

where D(ng) is the same at any step, but D1 and D2 from (4.8) depend on f(z) via (4.5) and on

Hn(x, y). These functions f(z) and Hn(x, y) change at each step of the cascade, since they depend on

the previous approximations (see (2.16), (3.11) and (2.12)). Though all modes are separated in (3.1)

at each step n, the functions Fn and Hn are constructed by modes produced by all modes of the

previous steps as detailed by (2.12) and (2.16). The construction of Fn and Hn by converting all

modes from the previous steps and their repartition onto new modes (3.1) is the most expensive part

of the algorithm because the number of modes increases exponentially with n. Moreover, the

frequency n is multiplied by Re (see (4.3) and other formulas). Hence, for large n, one can obtain
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expressions involving Airy’s functions with large n is nRe even for moderate Re: Thus, a large

number of frequencies in B(x), large n or large Re yield the same numerical difficulties.

In order to improve the computations, numerically satisfactory pairs of fundamental solutions of

Airy’s equation and integral are used [18]. Symbolic–numerical computations were performed for

B(x) containing few modes with the precision O(e4) for Re not exceeding 100 and e less than 1.

Actually, the Reynolds number can be taken very large ðRe � 1000Þ: The program is written in

Mathematica�.

In the following subsections, the velocity is derived in the channel bounded by the surfaces

z ¼ b; z ¼ �be cos x; ð8:1Þ

i.e., B1 ¼ B�1 ¼ � 1
2
;Bn ¼ 0 ðn ¼ �2;�3; . . .Þ: For such a wavy wall, the supremum of e given by

(4.18) is reduced to

ec ¼ Re�
1
2: ð8:2Þ

Therefore, the critical wall oscillations are of the usual order of the thickness of the boundary layer

[22] though there is no boundary layer properly speaking in this paper.

8.1 Analytical formulas in the first order approximation

The first order approximation is discussed separately since analytical formulas can be obtained for an

arbitrary channel. The formulas (5.7) imply that

u1ðx; zÞ ¼ að1Þ1 ðzÞeix þ að1Þ�1ðzÞe�ix;

w1ðx; zÞ ¼ cð1Þ1 ðzÞeix þ cð1Þ�1ðzÞe�ix: ð8:3Þ

In this example, Eq. (5.9) becomes

1

b
þ ðPðReÞ cos xþ QðReÞ sin xÞe ¼ 0; ð8:4Þ

where the real values PðReÞ and QðReÞ are defined by

PðReÞ ¼ 2Re að1Þ01 ð0Þ
� �

;

QðReÞ ¼ �2Im að1Þ01 ð0Þ
� �

;
ð8:5Þ

að1Þ01 ð0Þ ¼
2

Dð1Þ

Zb

0

Ai Z1ð0Þ½ ÞBi Z1ðsÞ½ Þ � Bi Z1ð0Þ½ ÞAi Z1ðsÞ½ Þð Þ sinh s ds: ð8:6Þ

Here, the relation a�1ðzÞ ¼ a1ðzÞ is used (see 3.5). Direct calculations show that always PðReÞ\0

and QðReÞ[ 0; except

Qð0Þ ¼ 0: ð8:7Þ

Consider (8.4) as an equation in x. Introduce the value

x0 ¼ arcsin
QðReÞ

2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðReÞ2 þ QðReÞ2

q ð8:8Þ

which belongs to the segment [0, p /2). Then, Eq. (8.4) becomes
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cosðxþ x0Þ ¼
1

be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðReÞ2 þ QðReÞ2

q : ð8:9Þ

This equation has a solution x if and only if e� ee, where

ee ¼
1

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðReÞ2 þ QðReÞ2

q : ð8:10Þ

Hence, for 0� e� ee, there is no eddy. An eddy starts at e ¼ ee given by (8.10). For e[ ee,

separation and detachment points exist in the representative cell at x ¼ xe given by (8.9),

xe ¼ �x0 � arc cos
1

be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðReÞ2 þQðReÞ2

q : ð8:11Þ

Equation (8.8) and the properties of the functions PðReÞ and QðReÞ imply that x0 ¼ 0 only

for Re ¼ 0: Therefore, an eddy arises at the lowest point of the channel (0, �be) only for

the Stokes (linear) equations. For positive Re; the value x0 is always positive. Hence, in

this case, the geometrical symmetry is disturbed and an eddy always arises upstream of the lowest

point.

Figures illustrating formulas (8.10)–(8.11) will be provided in Sect. 8.3 with a better precision

in e.

8.2 Asymptotic analysis for large Reynolds numbers

In the present section, the asymptotic behavior of ee is deduced from (8.10) for large Re: The main

difficulty is to estimate the integrals (8.6). For definiteness, the case b ¼ 1 is studied. Hereafter, in

this section, Re is assumed to be large. Consider one of the integrals

JðReÞ ¼
Z1

0

Ai Z1ðfÞ½ �efdf: ð8:12Þ

It follows from (4.15) that

Z1ðfÞ� � ifRe1=3: ð8:13Þ

For Z ? ? along the imaginary axis, Ai(Z) can be written as [18]

Ai½ZÞ ¼
expð� 2

3 Z2=3Þ
2
ffiffiffi
p
p

Z1=4

1

Z1=4
þO

1

Z5=4

� �� �
: ð8:14Þ

The integral (8.12) is transformed into

JðReÞ�
Z1

0

ð�1Þ1=8 expð2
3
ð�1Þ1=4

ffiffiffiffiffi
R
p

ef3=2Þ
4pRe1=6f1=2

ð1þ fÞdf; ð8:15Þ

where the formula exp f�1 + f is used. All other polynomial approximations

exp f�1þ fþ f2

2! þ � � � þ
fn

n! give the same order for JðReÞ; but with another factor which can be

calculated. The roots of �1 are fixed in such a way that their positive arguments are minimal. For

instance, (�1)1/4 ¼ e
p i/4. The predominant terms in (8.15) imply that
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JðReÞ�Re�2=3 exp
2

3
ð�1Þ1=4

ffiffiffiffiffi
R
p

e

� �
: ð8:16Þ

The following formulas can be derived along similar lines,

Z1

0

Ai Z1ðfÞ½ �e�fdf�Re�2=3 �3iþ 22=331=3C 1=3ð ÞRe1=3
� �

;

Z1

0

Ai Z1ðfÞ½ � sinh fdf�Re�2=3 exp
2

3
ð�1Þ1=4

ffiffiffiffiffi
R
p

e

� �
;

Z1

0

Bi Z1ðfÞ½ �e�fdf � Re�2=3 �3ð�1Þ5=6 þ 22=331=3C 1=3ð ÞRe1=3
� �

: ð8:17Þ

The asymptotics (8.16)–(8.17) can be substituted into (8.5)–(8.6),

PðReÞ þ iQðReÞ� � 0:516541þ ð0:0406019� 0:296042iÞRe1=3: ð8:18Þ

Then, (8.10) yields the following asymptotic formulas:

ee � Re�1=3 ð8:19Þ

and

Re � e�3ð1þ 0:516541eÞ3: ð8:20Þ

It follows from the convergence result that ee has to be smaller than the limit of convergence ec.

This condition is fulfilled if in addition bang

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q
�Re�1=6; where ang is the amplitude of the

Fourier series of 2B(x, y) with the mode (n, g) (see the end of the Appendix). This restriction is less

strong than Sobey’s restrictions for the Poiseuille flow (see [37], p. 227) e � Re�1=3 and n � Re�1=7

in our notations.

8.3 Analytical formulas for higher order approximations

According to the algorithm described in Sect. 4.1 and 5, and to the remarks given at the beginning of

Sect. 8, the results concerning higher order approximations for the channel are presented in this

Subsection. The velocity is calculated up to O(e5),

uðx; zÞ ¼ z

b
; 0

� �
þ eu1ðx; zÞ þ e2u2ðx; zÞ þ e3uðx; zÞ þ e4u4ðx; zÞ þ Oðe5Þ: ð8:21Þ

The function u1 is given by (8.3) The functions uj (j ¼ 2, 3, 4) are also obtained in symbolic form.

However, they are expressed by formulas which are so long that they cannot be given. The results

presented in the following pictures are obtained by (8.21).

Some results are illustrated in Figs. 2–6. They are obtained with Padé approximations which allow

in certain cases to continue the formulae for e[ ec which here is estimated to be equal to 0.125 in

application of (4.18). In Fig. 2, the streamlines are shown for Re ¼ 64 and e ¼ 0.33. The

components of the velocity u and w for Re ¼ 64 and various e are displayed in Fig. 3–Fig. 5 in the

curvilinear coordinates z(x, t) ¼ b[t � e (1 � t) cos x] along the lines t ¼ constant. One can see

here the change of the velocity with increasing e. For e ¼ 0:35 the u-component becomes negative

(see Fig. 4) and this corresponds to an eddy.
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An interesting pattern displayed in Fig. 6 was obtained for the streamlines forRe ¼ 64 and e ¼ 0.45.

The eddy appears to be almost separated from the solid surface. Detailed computations show that

the normal derivative of the tangent velocity is negative only on the very small part of the wall

when �0:15p\x\�0:24p.

The analytical formulas (8.10) and (8.11) valid up to O(e2) can be essentially improved by

application of (8.21). In Fig. 7, the normal derivative at the wall of the tangential component of the

velocity is displayed for Re ¼ 64 and various e. One can observe in this picture the onset of eddies

with the increase of e. For e\0:25, the streamlines follow the wavy wall; for 0:25\e\0:425, one

eddy arises; for e[ 0:425, a second small eddy arises near the point x ¼ p
2
:

In Fig. 8, the dependence of ee on Re is displayed. The solid line in Fig. 8 corresponds to the

critical curve ecðReÞ given by (8.2). Hence, points lying above ecðReÞ should be considered with

care despite the use of the Padé approximations. For small Reynolds number the calculations are

consistent; for instance, the value eeðRe ¼ 0Þ ¼ 0:303094 is obtained with an excellent precision

already with the second order approximation. It should be noticed that precision problems arise for

Re about 150; this corresponds precisely to the region where the condition (8.2) is not fulfilled at all.

x

z

Fig. 2. Streamlines in the sinusoidal channel for Re ¼ 64 and e ¼ 0.33
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Fig. 3. The horizontal u and vertical w components of the velocity along the x-axis.Re ¼ 64; e ¼ 0.2. Data

are for various depth levels: t ¼ 0 (dotted line), t ¼ 0.17 (dash-dotted), t ¼ 0.33 (dash-double-dotted),

t ¼ 0.5 (thick solid), t ¼ 0.67 (short-dashed), t ¼ 0.83 (long-dashed) t ¼ 1 (solid)
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For larger values of Re; the precision problems disappear and the curves for e3 and e4 which belong

to the region e\ecðReÞ; coincide for Re [ 600:

8.4 Drag on the top surface

The drag acting on the top wall is calculated by

s ¼ l
Zp

�p

ou

oz
ðx; bÞdx: ð8:22Þ

In the present Section, the force is explicitly written up to O(e4) for an arbitrary channel in analytic

form. Numerical results are presented up to O(e6) for a sinusoidal channel. When applied to 2D, (2.8)

and (3.1) imply
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Fig. 4. The horizontal Ux and vertical Uz components of the velocity along the the x-axis. Re ¼ 64;
e ¼ 0.35. Same convention as in Fig. 3
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Fig. 5. The horizontal Ux and vertical Uz components of the velocity along the x-axis. Re ¼ 64; e ¼ 0.45.

Same convention as in Fig. 3
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ou

oz
ðx; bÞ ¼

X1
n¼0

en
X1

n¼�1
aðnÞ

0

n ðbÞe
inx: ð8:23Þ

Substitution of (8.23) into (8.22) yields

s ¼ l
X1
n¼0

aðnÞ
0

n ðbÞe
n: ð8:24Þ

With the general algorithm described above to compute an
(n)0(b), we deduce the formula

x

z

Fig. 6. An eddy almost strictly inside the channel; Re ¼ 64 and e ¼ 0.45

−π −π /2 /20 π π
x

0

0.5

1

1.5

2

2.5

∂Ut⎯⎯
∂n

Fig. 7. The shear stress out

on
at the bottom wall as a function of the longitudinal coordinate s. Re ¼ 64. Data

are for: e ¼ 0.2 (dotted line), 0.25 (thick solid), 0.35 (dashed), 0.425 (thick dashed), 0.45 (long dashes)
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s ¼ 2pl
b
� 2pl

b

X1
n¼1

en aðnÞ0 ð0Þ þ
2Re

b

Xn�1

k¼1

X1

n¼1

Re

Zb

0

c1nðsÞa1nðsÞds

2
4

3
5

0
@

1
A: ð8:25Þ

The e1-term of (8.25) is equal to zero, since a0
(1)(0) ¼ 0. It follows from (5.4) with

B0 ¼
Rp
�p

BðxÞdx ¼ 0 (compare to (2.2)).

Let us now calculate the e2-term of (8.25). First, a0
(2)(0) is determined. (2.15) and (2.16) imply

u2ðx; 0Þ ¼ �bBðxÞ ou1

oz
ðx; 0Þ: ð8:26Þ

The constant a0
(2)(0) is the zero-th term in the Fourier expansion of (8.26). Hence,

að2Þ0 ð0Þ ¼ �b
X1

n¼�1
Bna

ð1Þ0
�n ð0Þ ¼ 2b

X1

n¼1

Re Bna
ð1Þ0
n ð0Þ

h i
; ð8:27Þ

where the relations B�n ¼ Bn and a�n ¼ an have been used (see (3.5)). Introduction of (5.4) yields

the formula

að2Þ0 ð0Þ ¼ �2b
X1

n¼1

jBnj2Im
ðB�ðbÞ � BþðbÞÞAi ZnðfÞ½ � þ ðAþðbÞ � A�ðbÞÞAi e2pi=3ZnðfÞ

	 


DðnÞ
; ð8:28Þ

where the notations (5.5), (5.6) are used.

Consider now the integral from (8.25) with n ¼ 2 and k ¼ 1. Application of the formulas (5.4)

yields after tedious computations

200 400 600 800 1000

Re

0.05

0.1

0.15

0.2

0.25

0.3

εe

Fig. 8. ee as a function of Re: Data are for: expansions to e (dotted line), e2 (dashed), e3 (long dashes), e4

(dots). The solid line corresponds to the critical convergence value ec ¼ 1ffiffiffiffiffi
Re
p
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Re c1nðzÞa1nðzÞ
h i

¼ Bnj j2 Im
B�ðbÞ � BþðbÞ

D
ðAþðzÞ � A�ðzÞÞ

� �
þ Im

AþðbÞ � A�ðbÞ
D

ðBþðzÞ � B�ðzÞÞ
� ��

þ jB
�ðbÞ � BþðbÞj2

2jDj2
Im AþðzÞA�ðzÞ
h i

þ jA
þðbÞ � A

�ðbÞj2

2jDj2
Im BþðzÞB�ðzÞ
h i

þ 1

2jDj2
Im ðB�ðbÞ � BþðbÞÞðAþðbÞ � A

�ðbÞÞBþðzÞA�ðzÞ
h i

þ 1

2jDj2
Im ðB�ðbÞ � BþðbÞÞðAþðbÞ � A�ðbÞÞAþðzÞB�ðzÞ
h i!

: ð8:29Þ

This function has to be integrated over (0,b) and the result has to be substituted into (8.25). The six

corresponding double integrals are calculated numerically. This enables us to derive the following

analytical approximate formulas for the drag force sðRe; eÞ ðRe is fixed in each formula):

sð0; eÞ ¼ 1þ 2:134439e2 � 0:202097e4; sð8; eÞ ¼ 1þ 2:139841e2 � 0:165907e4;

sð64; eÞ ¼ 1þ 2:378837e2 � 18:189731e4  1þ 10:0253e2

1þ 7:64648e4
; sð108:82; eÞ ¼ 1þ 2:616069e2;

sð125; eÞ ¼ 1:þ 2:692240e2 þ 19:937528e4  1� 4:71332e2

1� 7:40555e4
:

The Padé approximation [3] of the order (2, 2) for higher Reynolds numbers is used. One can see that

the coefficient of e4 is equal to zero forRe ¼ 108:82: It is interesting to plot the data in various ways

with the convergence criterion (8.2) in mind. For small values of e, a wide range of Re can

be studied. Results are displayed in Figs. 9 and 10 for e� 0.1 and Re� 100: When e is very small,

20 40 60 80 100

1.005

1.01

1.015

1.02

1.025

Re

τ

Fig. 9. Drag force s calculated for: e ¼ 0.01 (dotted), e ¼ 0.04 (short-dashed), e ¼ 0.07 (long-dashed),

e ¼ 0.1 (solid)
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the wavy wall is almost flat and the influence of Re is very weak as seen in these two figures. It is

only for values of e larger than a few percents that this influence is significant.

Let us derive an expansion formula for the drag for values of e and Re close to zero. Let

s(Re) ¼ s0 + s1 Re
d. The function ln(s(Re) � s0) ¼ d lnRe + lns1 is displayed in Fig. 11 for

various values of e. It shows that d ¼ 2.

When e is large, the possible range of Re is limited by (8.2). Figure 12 shows that for e up to 0.3

the drags for Re equal to 1, 10 and 20 are practically equal.

9 Multiple solutions and ec

The critical convergence value ec given by (4.18) can be applied to the analysis of possible multiple

solutions of the stationary problem (2.6)–(2.7) in the following way. It is known that the Couette

flow for a straight channel (e ¼ 0) is stable [23], [6]; hence, the zero-th problem (2.6), (2.9) has the

unique solution (2.10). It follows from the algorithm derived in Sect. 2–4.1 that each boundary value

problem (2.11), (2.15)–(2.16) of the cascade has as many solutions as boundary value problems from

the previous steps of the cascade. Hence, it has a unique solution as well as the problem (2.6), (2.7)

due to (2.8). Therefore, it is justified that multiple solutions (equivalently bifurcation) can arise only

for e[ ec, when the algorithm is not applied directly.

This idea is further developed for the 2D step channels described by

BðxÞ ¼ 1; jxj\ph

�1; ph\jxj\p:


ð9:1Þ

For this channel, formula (4.18) becomes

0.02 0.04 0.06 0.08 0.1

ε

1.005

1.01

1.015
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Fig. 10. Drag force s(e) calculated for: Re ¼ 1 (dotted), Re ¼ 50 (dashed), Re ¼ 100 (solid)
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ec ¼
p

2b supn An
; ð9:2Þ

where

An ¼ j sin phnjmax 1;

ffiffiffiffiffiffiffi
n
Re

r !
: ð9:3Þ

For definiteness, consider sufficiently large Re (it will follow from the forthcoming observations

that Re [ 1Þ: Then, (9.3) becomes

An ¼
j sin phnjffiffiffi

n
p

ffiffiffiffiffiffiffi
Re
p

: ð9:4Þ

Introduce the ratio of the height of the step, eb, to the distance between the cavities, 2p(1 � h),

r ¼ eb
2pð1� hÞ : ð9:5Þ

Then, Eq. (9.2) can be written as

rc ¼
ecb

2pð1� hÞ ¼ f ðhÞ 1ffiffiffiffiffiffiffi
Re
p ; ð9:6Þ

where

f ðhÞ ¼ 4ð1� hÞ sup
n2N

j sin phnjffiffiffi
n
p

� ��1

: ð9:7Þ

The critical value rc corresponds to ec. The plot of the function f(h) is presented in Fig. 13. The slope

discontinuity is due to a change in the supremum of discrete values.

1.2 1.4 1.6 1.8 2
ln Re

-12
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-8

ln (          )τ − τ0

Fig. 11. ln(s(Re)�s0) as a function of ln Re. Data are for: e ¼ 0.1 (dotted line), 0.2 (short-dashed), 0.3

(long-dashed)
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Therefore, in the step channels, bifurcation can occur only if

r� rc ¼ f ðhÞ 1ffiffiffiffiffiffiffi
Re
p : ð9:8Þ
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Fig. 12. The drag forces s(e) for Re ¼ 1 , Re ¼ 10 and Re ¼ 20 are almost exactly superposed
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Fig. 13. The function f(h) defined by Eq. (9:7)
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10 Comparison with other results and discussion

Our results imply (see Sect. 8) that in horizontally symmetric channels an eddy arises at the bottom

of the channel (a symmetry point of the channel) if and only if Re ¼ 0: For any Re [ 0; symmetry

is disturbed and the separation point moves upstream; its location is a continuous function of Re:

This contradicts the numerical simulations of [14] where separation was supposed to be symmetrical

for small Re:

Formula (8.20) rigorously deduced for the Couette flow is surprisingly similar to the empirical

Sobey’s formula [36] for Poiseuille flow

Ree ¼ 0:592e�3
e 1� eeð Þ2: ð10:1Þ

Application of higher order expansions in e should yield higher order approximate analytical

formulas for velocity, and for all detailed flow characteristics as done in [16]. However,

numerical difficulties confine the application of our algorithm up to O(e5). It is worth noting that

analytical formulas for flow characteristics were given by previous authors in the framework of

the linearized theory of boundary layer [31], i.e., up to O(e1) in our notations. Therefore, even

the case O(e1) contains new results, since it is not limited by any geometrical restriction.

Moreover, we stress that the dependence of the critical Ree and ee is explicitly determined using

the Fourier coefficients of B(x, y) in symbolic form. Analytical formulas for the separation point

xe in 2D and separation set in 3D channels are deduced. For instance, the comparison of the

separations in 2D and 3D channels implies that ee
(3D) is always less than ee

(2D). This assertion is

analogous to the famous Squire’s theorem from the classical stability theory [22], [23]. The

obtained formulas are valid for geometries more general than in these works. Hovewer, a

comparison is not always possible, since only the Couette problem is discussed here. Therefore,

our results can be compared with [17], but not directly with Smith [29]–[33], Sobey [36], Zhou

[45] who discussed Poiseuille flows.

A criterion of eddies in non–smooth channels is given in Subsection 5.2. This is not in agreement

with Moffat’s eddies [15] which do not arise for all angles. The reason of this discrepancy is due to

different external flows.

Zhou et al. [45] did not observe eddies for Re ¼ 0 in a triangular channel. They calculated the

velocity up to O(e1) and took e ¼ 0.1. Actually, 10 modes in the Fourier series for the triangular

channel were taken, i.e., flow in a smooth channel was investigated for which ee > 0. This is the

reason why they did not observe any eddy. An eddy was obtained in [45] forRe ¼ 4000 in the same

channel in agreement with our formula (8.19).

The calculations up to O(e5) for the channel (8.1) give a detailed picture of the flow for various e
andRe (see Sect. 8). These analytical formulas are very convenient for fast numerical computations.

This allows to describe systematically the complex behaviour of viscous fluids near the boundary

and to easily find various unusual situations which can occur in a channel flow.

Appendix

Convergence of the algorithm

In [16], Poiseuille flows are investigated for the Stokes equations ðRe ¼ 0Þ by the e–expansion (2.8).

In particular, the series (2.8) is shown to converge for
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e\ec ¼ b sup
n;g

an;g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2

q" #�1

; ð10:2Þ

where an,g is the maximum modulus from four coefficients of e
±n±g in the double Fourier series of

2B(x, y). Such formulas can be extended to non zero Reynolds numbers. It is the purpose of this

Appendix to prove formula (4.18).

Let us fix a pair (n, g), i.e., a mode of the wavy channel and compare the orders of the terms in

(3.6). The following relation can be easily proved by application of Leibnitz’s rule by induction.

The order of a function f(z) and of its derivatives are related by jf ðnÞj 
 Mnjf j; if

M ¼ supz jAðzÞj[ 1 and all derivatives of A(z) ¼ f0(z)/f(z) are bounded. Then, the orders in

(3.6) are obtained as

ja00ngj 
 maxðM2jangj;Mjdngj;M2jcngjÞ; ð10:3:1Þ

jb00ngðzÞj 
 maxðM2jbngj;MjdngjÞ; ð10:3:2Þ

jc00ngj 
 maxðM2jcngj; jd0ngjÞ; ð10:3:3Þ

jc0ngj 
 maxðMjangj;MjbngjÞ: ð10:3:4Þ

Let ja0ngj 
 M1jangj; jb0ngj 
 M2jbngj; jc0ngj 
 M3jcngj; jd0ngj 
 M4jdngj: Based on (10.3) let us now

prove that Mj ¼ M (j ¼ 1, 2, 3, 4). We consider various relations between Mj and M. For

definiteness, let us take

M1 [ M2 [ M3 [ M4 [ M: ð10:4Þ

The other cases can be considered in the same way. Relation (10.3.2) implies that

M2
2 jbngj 
 maxðM2jbngj;MjdngjÞ; therefore, by (10.4)

jbngj 
 MM�2
2 jdngj: ð10:5Þ

Along similar lines, the relation (10.3.3) yields

jcngj 
 M4M�2
3 jdngj: ð10:6Þ

Introduction of (10.5) and (10.6) into relation (10.3.4) yields

jangj 
 M4M�1
3 M�1jdngj; ð10:7Þ

since M
2

M2
�2 < M4 M3

�1. Substitution of (10.5)–(10.7) into the relation (10.3.1) shows that at least

two of the following terms M2
1M4M�1

3 M�1jdngj;Mjdngj;M2M4M�2
3 jdngj have the same order.

Therefore, at least two of the three numbers M1
2

M4 M3
�1

M
�1, M, M

2
M4 M3

�2 must be equal in

contradiction with the inequalities (10.4).

Therefore, Mj ¼ M, i.e., jangj 
 jbngj 
 jcngj 
 M�1jdngj and

ja0ngj 
 Mjangj; jb0ngj 
 Mjbngj; jc0ngj 
 Mjcngj: ð10:8Þ

Let us now determine the order of un (2.11). For convenience, we introduce e0 ¼ b e and find the

critical value e0c. In this case, we can assume that jBðx; yÞj 
 1 and b ¼ 1. We prove using induction

on n that

op
un

ozp
ðx; y; zÞ

����
���� 
 sup

ng
an

ngM
nþp�1: ð10:9Þ
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For n ¼ 1 and p ¼ 0, we have

ju1ðx; y; 0Þj ¼ �Bðx; yÞ ou0

oz
ðx; y; 0Þ

����
���� 
 sup

ng
ang: ð10:10Þ

The estimation (10.10) on the boundary yields the same estimation as interior of the channel.

Application of (10.8) p times to (10.10) implies

op
u1

ozp
ðx; y; zÞ

����
���� 
 sup

ng
angM

p ð10:11Þ

for p ¼ 0, 1, . . . If by induction (10.9) is assumed to be valid for all n ¼ 0, 1, . . ., m � 1, it can be

proved for n ¼ m. (2.16) implies

jumðx; y; 0Þj 
 sup
ng

X
k¼1

ak
ng

k!
Mm�1 
 sup

ng
an

ngM
m�1: ð10:12Þ

Then, (10.8) implies again (10.9) for n ¼ m. The conditions of the induction are fulfilled and (10.9)

is proved.

Taking p ¼ 0 in (10.9) and substituting it to (2.8), the series (2.8) is seen to converge if

supng angMe0\1: This implies (4.18).

In [16], the Padé approximations were applied to transform a polynomial in e into a rational

function; this extends the validity of the formulas for e� ec. The Padé approximations are also used

in the present paper with the same purpose. However, the Padé approximations degenerate into the

first order approximation especially in the present paper. For instance, consider the formula (8.19).

ee � Re�1=3: The value ee satisfies the restriction (4.18) if only bangj � Re�1=6:
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