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Representative cell in mechanics of composites

and generalized Eisenstein–Rayleigh sumsy

VLADIMIR MITYUSHEV*

Department of Mathematics, Pedagogical Academy
ul. Podcharazych 2, Cracow 30-084 Poland

Communicated by R.P. Gilbert

(Received in final form 14 March 2006)

Consider a two-dimensional two-component periodic composite made from a collection of
non-overlapping, identical, circular disks, embedded in a matrix. The effective conductivity
tensor can be written in the form of expansion on ‘basic elements’ which depend only on
locations of the disks. These elements are expressed in terms of the Eisenstein series. The
representative cell of a composite is defined as the minimal size periodicity cell corresponding
to the set of basic elements calculated for the composite. An algorithm to determine the
representative cell for a given composite is constructed.
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1. Introduction

One of the most important notations of composite materials is the representative volume
element (RVE). One can give a vague physical definition of this term as follows.
The RVE is a part of the material which is small enough from a macroscopical point
of view and can thus be treated as a typical element of the heterogeneous medium.
On the other hand, it is sufficiently large in the microscopical scale, and it represents
a typical microstructure of the material under consideration. In the present article
first we give a rigorous definition of the representative element. Then, we determine
its minimal size. The geometrical interpretation of the problem is shown in figures 1
and 2. The large cell Q0

ð0, 0Þ presented in figure 1 is replaced by a smaller one, Qð0, 0Þ

(see figure 2) with three inclusions per periodicity cell.
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Drugan and Willis [1] estimated the minimal RVE size of the composite with
uniformly distributed spherical inclusions considering the ensemble average of stress
and strain ‘at finite’ and ‘at infinite length’. The infinite length corresponds to the
overall elastic constants of the homogenized materials. The RVE was introduced as
a finite element, the mean constants of which are numerically closed to the mean
constants at the infinite length. The authors derived quantitative estimates for the
minimal RVE size in the case when matrix is reinforced by a random dispersion of
non-overlapping identical spheres. Gusev [2] numerically calculated the overall elastic
constants of individual Monte Carlo realizations with 8, 27 and 64 spheres and
established that the scatter among the individual elastic constants is very small for
the same uniform distribution of spheres. Adler [3] discussed questions of the
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Figure 1. Large cell Q0
ð0, 0Þ with 60 inclusions.
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Figure 2. Small cell Qð0, 0Þ with three inclusions centered at a1 ¼ �0:92, a2 ¼ �0:36þ 0:36i, a3¼ 0.
It represents the large cell from the previous picture.
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reconstruction of porous media by statistical data and numerically constructed RVE.
Kolodziej [4] systematically applied the collocation method to compute effective
conductivity of various two-dimensional composites.

In this study we consider two-dimensional two-component periodic composite
medium made from a collection of non-overlapping, identical, circular disks, embedded
in an otherwise uniform matrix. We discuss fields governed by the Laplace equation,
when the inclusions have scalar conductivity � and separated by a matrix of unit
conductivity. Let � ¼ ð�� 1Þ=ð�þ 1Þ be the contrast parameter introduced by
Bergman [5]. Mityushev [6], and Berlyand and Mityushev [7] established that the effec-
tive conductivity tensor �e of the composites considered has the form of a double series
on the concentration of inclusions and on ‘basic elements’ which depend only on the
locations of the inclusions. These basic elements are written in terms of the
Eisenstein series [8]. Coefficients in the double series depend on �. We say that two com-
posites are equivalent if expansions of their �e have the same basic elements. Therefore,
we divide the set of the composites with circular identical inclusions into classes of
equivalence determined only by geometrical structure of the composite. In particular,
composites with the same locations of inclusions but with different � belong to the
same class of equivalence. Note that composites belonging to a class of equivalence
can have different �e; and composites from different classes can have the same �e.
Each composite material is represented by a periodicity cell. In each class of equivalence
we choose a composite having the minimal size cell. This cell is called the representative
cell of the considered class of equivalent composite materials.

We propose a constructive algorithm to determine the representative cell for any
distribution of inclusions using only pure geometrical parameters. More precisely,
at the beginning we calculate the generalized Eisenstein–Rayleigh sums depending on
the centers of circular inclusions for a given large cell. Then using these sums we
construct the (minimal) representative cell, i.e., we calculate its fundamental translation
vectors and determine the positions of inclusions within this cell.

We use the elliptic (doubly periodic meromorphic) functions in the form of the
Eisenstein series introduced by Eisenstein in 1847 and developed by Weil [8].
The classical lattice sums (the Eisenstein sums) were applied to the calculation of the
effective conductivity tensor by Rayleigh [9] when a representative cell contains
one inclusion. In section 2 we recall the classical Eisenstein–Rayleigh sums, the
Eisenstein series and introduce the generalized Eisenstein–Rayleigh sums. The latter
sums can be considered as a generalization of the classical sums to a cell with few
inclusions. Section 3 is devoted to the effective conductivity tensor represented by
a cell with few identical circular disks. In section 4 we describe a method on how to
replace a periodic composite by another one with the same effective properties but
with smaller size of the periodicity cell. Numerical examples illustrating the general
theory are presented in subsections 4.2 and 4.3.

2. Generalized Eisenstein–Rayleigh sums

2.1. Classical Eisenstein–Rayleigh sums

In the present subsection, we introduce the fundamental parameters of the elliptic func-
tion theory following Weil [8] and Akhiezer [10]. Consider a lattice Q which is defined
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by two fundamental translation vectors expressed by complex numbers !1 and !2 on
the complex plane C. For the definiteness we assume that Im � > 0, where � ¼ !2=!1.
Introduce the (0, 0)-cell Qð0, 0Þ :¼ fz ¼ t1!1 þ t2!2 : �1=2 < tj < 1=2 ð j ¼ 1, 2Þg. The
lattice Q consists of the cell Qðm1,m2Þ :¼ fz 2 C : z�m1!1 �m2!2 2 Qð0, 0Þg, where m1

and m2 run over integer numbers.
The Eisenstein summation method is defined as follows:

X
m1,m2

¼ lim
N!1

Xm2¼N

m2¼�N

lim
M!1

Xm1¼M

m1¼�M

 !
: ð1Þ

Using this summation, we introduce the conditionally convergent sum

S2ð!1,!2Þ :¼
X
m1,m2

0ðm1!1 þm2!2Þ
�2, ð2Þ

where m1 and m2 run over all integer numbers except the pair m1 ¼ m2 ¼ 0.
The sum (2) is slowly convergent. An efficient computations formula for S2ð!1,!2Þ

was deduced in [11]

S2ð!1,!2Þ ¼
2

!1
�
!1

2

� �
, ð3Þ

where �(z) is the Weierstrass �-function. Rylko [12] deduced another efficient formula

S2ð!1,!2Þ ¼
�

!1

� �2
1

3
� 8

X1
m¼1

mh2m

1� h2m

 !
, where h ¼ exp �i�ð Þ: ð4Þ

Following Eisenstein and Rayleigh, we introduce the absolutely convergent sums

Snð!1,!2Þ :¼
X
m1,m2

0ðm1!1 þm2!2Þ
�n, n ¼ 3, 4, . . . : ð5Þ

It is known that Snð!1,!2Þ ¼ 0 for odd n. For even n the Eisenstein–Rayleigh
sums (5) can easily be calculated through the rapidly convergent infinite sums:

g2ð!1,!2Þ :¼
�

!1

� �4
4

3
þ 320

X1
m¼1

m3h2m

1� h2m

 !
, ð6Þ

g3ð!1,!2Þ :¼
�

!1

� �6
8

27
�
448

3

X1
m¼1

m5h2m

1� h2m

 !
: ð7Þ

Then

S4ð!1,!2Þ ¼
g2ð!1,!2Þ

60
, S6ð!1,!2Þ ¼

g3ð!1,!2Þ

1400
: ð8Þ
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The sums S2nð!1,!2Þ (n� 4) are calculated by the recurrence formula

S2nð!1,!2Þ ¼
3

2nþ 1ð Þ 2n� 1ð Þ n� 3ð Þ

Xn�2

m¼2

2m� 1ð Þ 2n� 2m� 1ð ÞS2mS2ðn�mÞ: ð9Þ

2.2. Eisenstein series

In the present subsection we summarize the main facts of the Eisenstein series theory
following Weil [8]. The Eisenstein series are defined as follows:

Enðz;!1,!2Þ :¼
X
m1,m2

ðz�m1!1 �m2!2Þ
�n, n ¼ 2, 3, . . . : ð10Þ

The Eisenstein summation method (1) is applied to E2ðz;!1,!2Þ. The series Enðz;!1,!2Þ

for n ¼ 3, 4, . . . as a function in z converge absolutely and almost uniformly in the
domain Cn [m1,m2

ðm1!1 þm2!2). Each of the functions (10) is doubly periodic and
has a pole of order n at z¼ 0. However, further it will be convenient to define the
value of Enðz;!1,!2Þ at the point zero as follows:

Enð0;!1,!2Þ :¼ Snð!1,!2Þ: ð11Þ

The Eisenstein series and the Weierstrass function Pðz;!1,!2Þ are related by the
identities

E2ðz;!1,!2Þ ¼ Pðz;!1,!2Þ þ S2ð!1,!2Þ, ð12Þ

Enðz;!1,!2Þ ¼
ð�1Þn

ðn� 1Þ!

dn�2

dzn�2
Pðz;!1,!2Þ: ð13Þ

2.3. Generalized Eisenstein–Rayleigh sums

We now proceed to introduce one of the most important mathematical objects of
this study, the generalized Eisenstein–Rayleigh sums. Consider a set of points ak
(k ¼ 1, 2, . . . ,N) in the cell Qð0, 0Þ. Let p be a natural number; ks runs over 1 to N,
nj ¼ 2, 3, . . . . Let C be the operator of complex conjugation. The value

en1...np ð!1,!2Þ :¼
1

Npþ1

X
k0k1...kp

En1 ðak0 � ak1ÞEn2ðak1 � ak2 Þ � � �C
pEnp ðakp�1

� akpÞ ð14Þ

is called the generalized Eisenstein–Rayleigh sum. The parameters !1 and !2 are
omitted in En.

For instance, for p¼ 1 (14) implies

enð!1,!2Þ :¼
1

N 2

X
k0, k1

Enðak0 � ak1 Þ: ð15Þ
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According to (11) enð!1,!2Þ becomes the classical Eisenstein–Rayleigh sum Snð!1,!2Þ

in the case N¼ 1.
All sums and series introduced in this section are constructed basing on the fixed

fundamental translation vectors !1 and !2. We are also interested in the normalized
Eisenstein series

Enðz; 1, �Þ :¼
X
m1,m2

ðz�m1 �m2�Þ
�n, n ¼ 2, 3, . . . : ð16Þ

We have the relations

Enðz;!1,!2Þ ¼ !�n
1 En

z

!1
; 1, �

� �
, ð17Þ

en1...np ð!1,!2Þ ¼ !�2k
1 en1...npð1, �Þ, ð18Þ

where 2k :¼ n1 þ � � � þ np. Note that further we need only the even sums n1 þ � � � þ np.

3. Structure of the effective conductivity tensor

The results of this section are based on the papers [6,7]. Consider the cell Qð0, 0Þ with N
non-overlapping circular disks Dk of the radius r with the centers ak2Qð0, 0Þ

(k ¼ 1, 2, . . . ,N). Let D0 be the complement of the closure of all disks Dk to Qð0, 0Þ.
We study the conductivity of the doubly periodic composite material, when the
domains Dper :¼ [ðm1,m2ÞðD0 [ @Qð0, 0Þ þm1!1 þm2!2Þ and Dk þm1!1 þm2!2 (m1,m2

are integers) are occupied by materials of conductivities �0 and �, respectively. The
conductivity of the inclusions � is expressed relative to �0. Hence, the conductivity
of the matrix can be taken as unity ð�0 ¼ 1Þ. The local potential potential uðzÞ
in Qð0, 0Þ satisfies the conjugation conditions:

uþðtÞ ¼ u�ðtÞ,
@uþ

@n
ðtÞ ¼ �

@u�

@n
ðtÞ on @Dk ¼ ft 2 C : t� akj j ¼ rg, k ¼ 1, 2, . . . ,N,

ð19Þ

where ð@=@nÞ is the outward normal derivative and, for instance,

uþðtÞ :¼ lim
z!t,
z2D0

uðzÞ, u�ðtÞ :¼ lim
z!t,
z2Dk

uðzÞ: ð20Þ

The potential u(z) satisfies the quasi-periodicity conditions

uðzþ !1Þ ¼ uðzÞ þ�1, uðzþ !2Þ ¼ uðzÞ þ�2: ð21Þ

Here, the function u(z) is harmonic in Qð0, 0Þ except @Dk (k ¼ 1, 2, . . . ,N), the circles
@Dk are orientated in the clockwise direction. Equations (19) model the perfect contact
between matrix and inclusions. Equations (21) mean that the external field has the
gradient ð�1,�2Þ in the coordinates based on the vectors !1 and !2. In order to
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determine the effective conductivity tensor �e it is sufficient to solve problem (19), (21)
with two linear independent vectors ð�1,�2Þ.

The effective conductivity tensor �e of the composite considered has the following
structure:

�e ¼ ð1þ 2�vÞIþ 2�v
X1
k¼1

Pkv
k, ð22Þ

where v ¼ ðN�r2=jQð0, 0Þj) is the concentration of the disks in the cell Qð0, 0Þ, Qð0, 0Þ

�� �� is the
area of Qð0, 0Þ, I is the identity tensor,

Pk ¼
ReAk ImAk

ImAk Ck

 !
,

Ak ¼ Qð0, 0Þ

�� ��k X
n1...np

B kð Þ
n1...np

en1...np ð!1,!2Þ, ð23Þ

The constants B kð Þ
n1...np

depend only on k, � and n1, . . . , np. Here, nj ¼ 2, 3, . . .;
k ¼ 1, 2, . . . . The values Ck have an analogous form. The terms en1...np ð!1,!2Þ only
depend on the centers of inclusions ak in the representation (22)–(23) of �e. Few first
coefficients Ak have the form

A1 ¼
�

�
e2, A2 ¼

�2

�2
e22, A3 ¼

1

�3
�2�2e33 þ �

3e222
� �

,

A4 ¼
1

�4
½3�2e44 � 2�3ðe332 þ e233Þ þ �

4e2222�,

A5 ¼
1

�5
½�4�2e55 þ �

3ð3e442 þ 6e343 þ 3e244Þ

þ 2�4ðe3322 þ e2332 þ e2233Þ þ �
5e22222�,

A6 ¼
1

�6
½5�2e66 � �

3ð4e255 þ 12e354 þ 12e453 þ 4e552Þ þ �
4ð3e2244

þ 6e2343 þ 4e3333 þ 3e2442 þ 6e3432 þ 3e4422Þ � 2�5ðe22233 þ e22332

þ e23322 þ e33222Þ þ �
6e222222�, ð24Þ

where the argument ð!1,!2Þ is omitted. It follows from (23) that each coefficient Ak

involves a set of en1...npð!1,!2Þ. The mapping k� ðn1, . . . , npÞ has been described
precisely in [6,7]. In particular, the following conditions are fulfilled:

(i) n1 þ � � � þ np ¼ 2k;
(ii) nj � k� p ( j ¼ 1, 2, . . . , pÞ;
(iii) nj � 2 ( j ¼ 1, 2, . . . , pÞ.

Hence, in order to calculate the tensor �e up to OðvLþ1Þ, we have to find Ak

(k ¼ 1, 2, . . . ,L� 1Þ. Therefore, we have to calculate a finite number of the generalized
Eisenstein–Rayleigh sums en1...np ð!1,!2Þ.
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4. Representative cell

4.1. General equations

Consider a large fundamental region Q0
ð0, 0Þ constructed by the fundamental translation

vectors !0
1 and !

0
2. Let Q

0
ð0, 0Þ contain N0 non-overlapping circular disks D0

k of the radius
r with the centers a0k 2 Qð0, 0Þ (k ¼ 1, 2, . . . ,N0). Let �0

e be the effective conductivity
tensor of the composite material represented by the region Q0

ð0, 0Þ with inclusions D0
k.

We are interested in the following question: To replace Q0
ð0, 0Þ by another small cell

Qð0, 0Þ which contains inclusions Dk ¼ fz 2 C : z� akj j < rg (k ¼ 1, 2, . . . ,N) and
which has an effective conductivity tensor �e closed to �0

e. We assume that the
concentration v of the inclusions in both materials is the same. Closeness is defined
by the accuracy OðvLþ1Þ for the difference ��e ¼ �e ��0

e with prescribed L. We say
that Qð0, 0Þ is a representative cell for the region Q0

ð0, 0Þ with the accuracy OðvLþ1Þ

if ��e ¼ OðvLþ1Þ. We say that Qð0, 0Þ is the minimal representative cell for the region
Q0

ð0, 0Þ if Qð0, 0Þ is a representative cell with minimal possible area jQð0, 0Þj. For brevity,
we further call the minimal representative cell by the representative cell. The existence
of the representative cell is evident, since in the worst case one can take Qð0, 0Þ ¼ Q0

ð0, 0Þ.
We adopt the designations (22), (23) for the representative cell. Consider the

corresponding formulas for �0
e

�0
e ¼ ð1þ 2�vÞIþ 2�v

X1
k¼1

P0
kv

k, ð25Þ

A0
k ¼ Q0

ð0, 0Þ

��� ���k X
n1...np

B kð Þ
n1...np

en1...npð!
0
1,!

0
2Þ: ð26Þ

Note that the coefficients B kð Þ
n1...np

has the same form in (23) and (26). ��e is of order
OðvLþ1Þ if A0

k ¼ Ak for k ¼ 1, 2, . . . ,L� 1. Therefore, ��e is of order OðvLþ1Þ if and
only if

Qð0, 0Þ

�� ��ken1...np ð!1,!2Þ ¼ Q0
ð0, 0Þ

��� ���ken1...npð!0
1,!

0
2Þ ð27Þ

for k ¼ 1, 2, . . . ,L� 1 and corresponding sets of the numbers n1, . . . , np. According to
our definition Qð0, 0Þ is a representative cell for the region Q0

ð0, 0Þ with the accuracy
OðvLþ1Þ if and only if the relations (27) are fulfilled.

One can consider (27) as a system of equations with respect to !1,!2, a1, a2, . . . , aN
including the unknown number N with the restriction aj � am

�� �� � 2r (j 6¼ m). One can
assume that one of the centers, say aN, lies at the origin, since geometrically any cell
is determined up to translation. The fundamental region Qð0, 0Þ as well as the translation
vectors !1, !2 can be chosen by infinitely many ways [10]. For any doubly periodic
structure on the plane it is always possible to construct a pair !1, !2 such that
!1 > 0 and Im � > 0.

The area of Qð0, 0Þ is calculated by !1 and !2

Qð0, 0Þ

�� �� ¼ !2
1Im �: ð28Þ
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On the other hand, we also have

Qð0, 0Þ

�� �� ¼ N�r2

v
ð29Þ

that yields the formula

!1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
N�r2

vIm �

r
: ð30Þ

In order to construct the representative cell with the prescribed accuracy OðvLþ1Þ, we
propose to solve the system (27) with fixed L increasing the number of inclusions in the
cell N from 1 to N0. Then N is fixed in each step of the study of (27).

Applying (18) and (28) we rewrite (27) in the form

Im �ð Þ
ken1...np ð1, �Þ ¼ Q0

ð0, 0Þ

��� ���ken1...np ð!0
1,!

0
2Þ, k ¼ 1, 2, . . . ,L� 1: ð31Þ

We can consider (31) as a system with respect to �, a1, a2, . . . , aN�1 (aN ¼ 0) with the
restriction aj � am

�� �� � 2r ( j 6¼ m). The right-hand part of (31) is known. If we know
a solution of (31), we can calculate !1 from (30).

It is also possible to state the problem of the representative cell with prescribed form
of the cell Qð0, 0Þ. Let us consider the case when Qð0, 0Þ is a rectangle. Then � ¼ i�, where
� is positive and (30) implies

!1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
N�r2

�v

r
: ð32Þ

Equation (31) becomes

�ken1...np ð1, i�Þ ¼ Q0
ð0, 0Þ

��� ���ken1...np ð!0
1,!

0
2Þ, k ¼ 1, 2, . . . ,L� 1: ð33Þ

It is hard to investigate analytically the systems (31), (33) in general form, since it is
difficult to extract independent equations from the sets (31), (33). In the next subsection
simple examples of (33) are considered.

4.2. Two inclusions in the representative cell

Consider two inclusions in a rectangular cell (N¼ 2). In this case, the positions of the
inclusions are determined by one complex parameter a ¼ a2 � a1. By direct calculation
one can check that

enð1, �Þ ¼

1

2
ðSnð1, �Þ þ Enða; 1, �ÞÞ if n is even,

0 if n is odd,

8<
: ð34Þ

emnð1, �Þ ¼ emð1, �Þenð1, �Þ, emnpð1, �Þ ¼ emð1, �Þenð1, �Þepð1, �Þ, ð35Þ
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and so on. Therefore, instead of the general Eisenstein–Rayleigh sums in (33) it is
sufficient to consider equations with simple sums

�kekð1, i�Þ ¼ Q0
ð0, 0Þ

��� ���kekð!0
1,!

0
2Þ, k ¼ 2, 4, . . . : ð36Þ

Substitution of (34) into (36) in the case � ¼ i� yields

�k½Skð1, i�Þ þ Ekða; 1, i�Þ� ¼ pk, k ¼ 2, 4, . . . , ð37Þ

where

pk ¼ 2 Q0
ð0, 0Þ

��� ���kekð!0
1,!

0
2Þ

are known constants. Equation (37) with k¼ 2, 4 becomes

�2½S2ð1, i�Þ þ E2ða; 1, i�Þ� ¼ p2, �4½S4ð1, i�Þ þ E4ða; 1, i�Þ� ¼ p4: ð38Þ

Using the relations [8,10]

E4ðz; 1, i�Þ ¼
1

6

d2

dz2
E2ðz; 1, i�Þ,

d2

dz2
E2ðz; 1, i�Þ ¼ 6 E2ða; 1, i�Þ � S2ð1, i�Þð Þ

2
�
1

2
g2ð1, i�Þ

and (8) we obtain

E4ðz; 1, i�Þ ¼ E2ða; 1, i�Þ � S2ð1, i�Þð Þ
2
�5S4ð1, i�Þ: ð39Þ

Then the second equation (38) is transformed to the following:

�4½ E2ða; 1, i�Þ � S2ð1, i�Þð Þ
2
�4S4ð1, i�Þ� ¼ p4: ð40Þ

We express E2ða; 1, i�Þ from the first equation (38)

E2ða; 1, i�Þ ¼
p2
�2

� S2ð1, i�Þ ð41Þ

and substitute it in (40)

�4
p2
�2

� 2S2ð1, i�Þ
� �2

�4ðS4ð1, i�Þ

	 

¼ p4: ð42Þ

The latter equation is real, since S2 and S4 are real for rectangular arrays. Hence,
we have obtained the real number equation (42) with respect to real unknown �.
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Let us consider a numerical example with p2 ¼ 10, p4 ¼ 50, r¼ 0.15, v ¼ 0:3.
Equation (42) has the solution �¼ 0.820. Substituting � in (41) and solving the obtained
equation with respect to a we get a¼ 0.331. Then (32) implies !1 ¼ 0:758. Therefore,
the representative cell is described by the fundamental vectors !1 ¼ 0:934,
!2 ¼ i0:820 with two inclusions with the centers a1 ¼ 0 and a2 ¼ 0:331.

4.3. Three inclusions in the representative cell

Consider now three inclusions in the cell (N¼ 3). In this case the positions of the
inclusions are determined by two complex parameter a1 and a2 (a3 ¼ 0). It follows
from equation (30) that

!2
1 ¼ c0ðIm �Þ

�1, ð43Þ

where c0 ¼ 3�r2=v. Equation (31) becomes

Im �ð Þ
ke2kð1, �Þ ¼ p2k, k ¼ 1, 2, 3, ð44Þ

where e2k are calculated by (15). For numerical computations it is convenient to use
formulas (12) involving the Weierstrass function PðzÞ and its derivatives. Then
e2kð1, �Þ become

e2ð1, �Þ ¼ S2ð1, �Þ þ
2

9
Pða1Þ þ Pða2Þ þ Pða1 � a2Þð Þ, ð45Þ

e4ð1, �Þ ¼ �3S4ð1, �Þ þ
2

9
P2ða1Þ þ P2ða2Þ þ P2ða1 � a2Þ
� �

, ð46Þ

e6ð1, �Þ ¼
1121

3
S6ð1, �Þ þ 6S4ð1, �Þ Pða1Þ þ Pða2Þ þ Pða1 � a2Þð Þ

�
22

45
P3ða1Þ þ P3ða2Þ þ P3ða1 � a2Þ
� �

: ð47Þ

Here we use the relations (12) and the following formulas from [8,10]

E4ðzÞ ¼
1

6
P00ðzÞ ¼ P2ðzÞ � 5S4ð1, �Þ, ð48Þ

E6ðzÞ ¼ �
11

5
P3ðzÞ þ 27S4ð1, �ÞPðzÞ þ 560S6ð1, �Þ: ð49Þ

Therefore, we arrive at three equations (44) where e2k have the form (45)–(47) with
respect to three unknowns a1, a2 and �.

Consider a numerical example in which the large cell Q0
ð0, 0Þ (see figure 1) with N0 ¼ 60

inclusions of the radius r¼ 0.12 and the concentration v¼ 0.1 is determined by the
translation vector !0

1 ¼ 4, !0
2 ¼ 4i. In this case p2 ¼ 0:78� 0:66i, p4 ¼ �2:15þ 2:27i,

p6 ¼ �6:28� 51i. The cell Q0
ð0, 0Þ is replaced by a smaller cell Qð0, 0Þ with N¼ 3

inclusions. In order to find parameters of Qð0, 0Þ we solve the system (44). One of the
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solutions has the form a1 ¼ �0:92, a2 ¼ �0:36þ 0:36i, � ¼ 0:06þ 0:39i. Then (30)
yields !1 ¼ 1:08. The cell Qð0, 0Þ is presented in figure 2.

5. Conclusion and discussion

In the present article a rigorous theory of the representative cell in mechanics of
periodic composites is proposed. We restrict ourselves by conductivity of two-
dimensional two-component composite materials made from a collection of
non-overlapping, identical, circular disks, arbitrarily embedded in a matrix. The
definition of the representative cell is based on the representation of the effective
conductivity tensor (22)–(23). We say that the cells Qð0, 0Þ and Q0

ð0, 0Þ are equivalent
if they have the same basic elements in the representation (22)–(23). Thus all the
composites are divided onto classes of equivalences. The minimal size cell in each
class is called the representative cell. The basic elements of (22)–(23) are expressed in
terms of the generalized Eisenstein–Rayleigh sums (14).

The problem of determination of the representative cell is reduced to the finite system
of equation (31) with respect to parameters of the representative cell. Partial cases of
this system are considered.

We investigate here the problem of numerical solution to the system (31) with N¼ 2
and N¼ 3. We can give some remarks about the general system (31). First, it is
evident that it has infinite number of solutions, since any doubly periodic structure is
determined by infinite number of the pairs of the fundamental translation vectors.
Moreover, as it follows from relations (34)–(35), the system (31) can contain redundant
equations. Note also that, for rectangular cell, a symmetric map of the location of
inclusions could not change the effective conductivity tensor. Hence, if the fundamental
translation vectors are fixed, the system (31) with respect to a1, a2, . . . , aN�1 can have
non-unique solution.

In the present study we discussed the conductivity two-dimensional problem with
circular inclusions. Now we briefly explain why the method can be developed and
applied to other problems of the theory of composites.

First, let us consider the same problem but with inclusions having another shape S.
Any plane domain S can be approximated by packing disks of the radius r. This
approximation can be expressed by appropriate conditions on the centers of the packing
disks b1, b2, . . . , bP. We write them in the form of the constraints on bj

bj � b1 ¼ Bje
i , j ¼ 3, 4, . . . ,P, jB2j ¼ jb2 � b1j: ð50Þ

Here, the constants B2,B3, . . . , BP are given,  ¼ argðB2=ðb2 � b1ÞÞ. The constrains (50)
mean that the points b1, b2, . . . , bP are tied and may only translate and rotate as a stiff
body. We can replace all inclusions (say M inclusions per cell) by a set of points
a1, a2, . . . , aN divided onto M subsets each of them contains P points. We assume
that points of each subset satisfy the constrains (50), i.e., each subset of the disks
approximates an inclusion of the form S. These constrains on a1, a2, . . . , aN should be
added to equations (31) in order to obtain a system of equations corresponding to
the representative cell with M inclusions of the shape S.
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The proposed method could also be applied to elastic problems. In addition to the
classical Eisenstein functions, we should consider the following series [13,14]:

EpqðzÞ ¼
X
m1,m2

¼
X
m1,m2

ðz�m1 � im2Þ
�p
ðz�m1 � im2Þ

�q: ð51Þ

The lattice sums (51) were presented in [14] in rapidly convergent forms by Fourier
transform methods.

Berdichevskij [15] constructed three-dimensional counterparts of the elliptic functions
which could be used for three-dimensional conductivity and elasticity problems.
Huang [16] proposed exact integral formulas for three-dimensional lattice sums. The
examples therein show that simple quadrature rules with modest numbers of nodes
yield highly accurate results. One can find a review of the various numerical methods
to calculate three-dimensional lattice sums in [16].
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