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Abstract

We discuss Arnold’s problem on the topologically elementary func-

tions. We prove that the P–function of Weierstrass cannot be home-

omorphically conjugated to the exponential function.

1 Introduction

One can hear first from the secondary school that it is impossible to express
roots of the algebraic equations of degree 5 or higher in terms of the coef-
ficients using only arithmetic operations and radicals. This assertion were
proved by Ruffini in 1799 with minor gaps (see historical note [3]) and it is
known in our days as the Abel (–Ruffini) theorem.

In 1963 Vladimir Igorevich Arnold gave the special course Abel’s theo-

rem for pupils of the College of the Moscow State University. Latter V. B.
Alekseev prepared the book [2] according to this course. In 1963-64 V. I.
Arnold has proved that equation x5 + ax + 1 = 0 cannot be solved in wider
sense, namely the roots of this equation cannot be presented as a topolog-
ically elementary function x(a). In what follows elementary functions are
those which can be obtained from the basic elementary functions (polynomi-
als, exp, log, trigonometric functions and root extractions) by finite number
of arithmetic operations and compositions. The notation of the topologically
elementary function will be given below. In 1963 V. I. Arnold had stated the
following question. Are the elliptic integral and the Weierstrass P–function
topologically elementary? He also proposed a plan of the long proof of this
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conjecture not realized yet. One can find discussion devoted to this question
and to many other interesting facts in [2]–[8].

We recall that the elliptic integral is defined as follows [1]

u(w) =

∫ ∞

w

dt√
4t3 − g2t − g3

, (1)

where g2 and g3 are given constants. The Weierstrass P–function with the
periods ω1, ω2 (Im ω2/ω1 > 0) can be defined as the series

P(z) =
1

z2
+

∑

m2+n2 6=0

(
1

(z − mω1 − nω2)2
−

1

(mω1 + nω2)2

)
. (2)

It satisfies the differential equation

dz = −
dP(z)√

4[P(z)]3 − g2P(z) − g3

, (3)

where g2 and g3 are related with the periods ω1 and ω2. Comparing (1) and
(3) one can see that the elliptic integral u(w) is the inverse function to P(z).

In the present note we demonstrate that the P–function is not topolog-
ically conjugated to exponent. This proof constitutes the main part of the
theorem from [9], where we prove that the P–function is not topologically
elementary.

At the beginning we give the fundamental definitions and notations used
in the present note. It is convenient to use four copies Cj (j = 1, 2, 3, 4) of
the complex plane C.

Definition 1 A function f̃ : C3 → C4 is called the topologically conjugated

to f(z) if there exist homeomorphisms h, k of the complex plane such that

the following diagram is commutative

f
C1 −→ C2

h ↓ ↓ k

f̃
C3 −→ C4

(4)
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Definition 2 A function f̃ : C3 → C4 is called the topologically elementary

if there exist an elementary function f topologically conjugated to f̃ .

In order to distinguish the behavior of the curves at infinity we introduce
the following definition.

Definition 3 Let a continuous curve γ is defined by the parametrization

x 7→ g(x), where 0 ≤ x < 1, g(x) ∈ C. One says that the curve γ tends to

infinity if the following limit exists

lim
x→1−0

g(x) = ∞. (5)

In the same time, one says that γ goes by infinity if for any R > 0 there

exist points of γ which do not lie in the disk |z| < R.

Theorem 4 The exponential function and the Weierstrass P–function are

not topologically conjugated.

Proof is given by reductio ad absurdum. Assume that the Weierstrass
P–function is topologically conjugated to the exponent exp(z) = ez, i.e.,

the diagram (4) is commutative with f = exp, f̃ = P and some k i h. In
other words k ◦ exp = P ◦ h. The function exp transforms the half–plane
D1 = {z ∈ C1 : Re z > 0} onto D2 = {z ∈ C2 : |z| > 1}. Introduce
D3 = h(D1), D4 = k(D2) and denote by ∂D3, ∂D4 the boundaries of these
domains. The curve ∂D3 goes by infinity in the both directions and divides
the plane C3 onto two domains, since h is homeomorphism D1 onto D3.
The curve ∂D4 divides C4 onto two domains. Moreover, the domain D4

contains infinity and its complement to C4 is a bounded domain. Therefore,
γ4 = (a, +∞) for sufficiently large positive a entirely lies in the domain D4.

According to the definition γ4 tends to infinity. Introduce the curve γ2 =
k−1 ◦ γ4 on the plane C2, the curve γ1 = exp−1 ◦γ2 = log ◦γ2 in the strip
{z ∈ C1 : 0 ≤ Im z < 2π}, and the curve γ3 = h ◦ γ1 on the plane C3.
The curves γ1, γ2 and γ3 go by infinity, since h and k are homeomorphisms
of the complex plane and they are not necessary continuous at infinity. The
diagram (4) yields γ4 = k ◦ exp ◦γ1 = P ◦ h ◦ γ1.

We construct a doubly periodic lattice with the periods 1
2
ω1, ω2 on the

plane C3. Consider the parallelograms Π(m,n) = Π(0,0) + m
2
ω1 + nω2 with

(m, n) ∈ Z
2, where Π(0,0) has the vertices −1

2
ω1−

1
2
ω2, −

1
2
ω1+

1
2
ω2,

1
2
ω2, −

1
2
ω2.
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The P–function is univalent in each Π(m,n) and has the double poles at one of
the sides of each parallelogram (see formula (2) and Figure 1). We note that
the parallelograms Π(m,n) are one half of the periodicity parallelograms, say
Q(2m,n), of the P–function. The Weierstrass function maps any parallelogram
Π(m,n) onto the plane with a cut (see Figure 2).

The curve γ3 goes by infinity intersecting the sides of Q(2m,n) at points
denoted by W . The range of these points P(W ) must belong to the supporter
of the curve γ4 = P ◦ γ3 and simultaneously to L1 ∪L3 ∪L4. This yields the
contradiction.

The theorem is proved.

The topological non–elementary of the roots of x5 + ax + 1 = 0 discussed
above was presented in 1960 years by V. I. Arnold to pupils of the secondary
school of the USSR (exceptional school created by A. N. Kolmogorov for
gifted children). The presented here theorem could be also treated as un-
derstandable by a gifted schoolboy may be up to the Weierstrass function.
However, I have to say with regret that for a schoolboy from 1960 years.
Unfortunately, the complex numbers are out of the secondary school pro-
gram. The complex analysis with traditional applications to mechanics of
continuum and to fluids is not popular in high education. Absolvent of the
mathematics does not hear about the Weierstrass function. Usually the com-
plex analysis is given in Polish Universities only in the second semester of
IV years that complicates to prepare the magister diploma in this topics.
As a result one can meet scientific papers with complicated solutions of the
problems which can be easily solved by conformal mappings or papers with
chaos in the definitions of the logarithmic brunches.

I am grateful to V. I. Arnold for explanations concerning the problem of
topological non–elementary functions and for the literature.
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Figure 1: Complex plane C3. Univalent parallelogram of the P–function
with sides Γ1, Γ2, Γ3, Γ4. The side Γ2 contains the pole of the P–function.
Two univalent parallelograms generate a periodicity parallelogram of the P–
function
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Figure 2: Plane C4. The segments Lk with up and down boundaries are
ranges of the sides Γk, i.e., Lk = P(Γk) for k = 1, 2, 3, 4
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