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1 Introduction

The mathematical questions of convergence, numerically effective algorithm
and closed-form evaluation of the lattice sums were discussed in the funda-
mental book Borwein et al [1] and works cited therein. The present paper is
devoted to closed-form evaluation of the conditionally convergent 2D lattice
sums. One of them, S2, defined by (2.1), was considered by Lord Rayleigh
[2]. Numerically effective series for Rayleigh’s sum based on the elliptic func-
tions are outlined in Borwein et al [1, Sec.3.2]. McPhedran et al [3], Movchan
et al [5] and Greengard et al [4] developed the Rayleigh method to elasto-
static (see lattice sum (2.2)) and elastodynamic problems having paid the
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main attention to computationally convenient and accurate expressions for
the lattice sums constructed for the square array.

The effective properties of unidirectional fibrous composites can be ex-
pressed in terms of the series in concentration f . The famous Clausius-
Mossotti approximation also known as the Maxwell formula [6, Ch. 10] is
valid in the first order approximation. The second order approximation in-
cludes the value of S2. In order to shortly describe these approximations
following Rayleigh we consider a doubly periodic rectangular array of disks
of conductivity λ1 embedded in matrix of conductivity λ. Let λxx and λyy

be the principal components of the effective conductivity tensor. Then [2],
[7], [8]

λxx

λ
= 1 + 2ρf + 2ρ2f 2S2

π
+O((|ρ|f)3), (1.1)

λyy

λ
= 1 + 2ρf + 2ρ2f 2

(

2− S2

π

)

+O((|ρ|f)3), (1.2)

where ρ = λ1−λ
λ1+λ

denotes the contrast parameter. For the square array, the
medium becomes macroscopically isotropic, i.e., λe = λxx = λyy and the
above formulae becomes the Clausius-Mossotti approximation

λe

λ
= 1 + 2ρf + 2ρ2f 2 +O((|ρ|f)3) = 1 + ρf

1− ρf
+O((|ρ|f)3). (1.3)

Actually, the approximation in the right part of (1.3) holds up to O((|ρ|f)5)
(see formula (28) from [11] where the correction in the fifth order term should

be 6S2
4π

−2 f5

(1−f)2
).

The same rule holds for elastostatic problems [12]. An analytic formula for
the macroscopic elastic constants must include lattice sums (2.1) and (2.2) in
the second order term O(f 2). Such formulae for elastic problems are similar
to (1.1)-(1.3). They are described in Sec.4. Therefore, analytical formulae
for the lattice sums (2.1) and (2.2) have the fundamental applications in 2D
composites.

In the present paper, employing properties of the complete elliptic in-
tegrals of the first and second kind, we deduce closed-form formulae for the
lattice sums (2.1), (2.2) and other new formulae. Applications to the effective
properties of regular and random composites are discussed.
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2 Eisenstein summation method and Rayleigh

integral

Let Z and C denote the sets of integer and complex numbers, respectively, i
the imaginary unit. Consider a lattice {mω1 + nω2 ∈ C : m,n run over Z}
determined by two fundamental translation vectors expressed by complex
numbers ω1, ω2. Without loss of generality we assume that ω1 > 0 and
Imτ > 0 where τ = ω2

ω1

. Let the area of the fundamental parallelogram be

normalized to unity, hence, ω2
1Imτ = 1. The main object of the present paper

is the conditionally convergent lattice sums

S2 =
∑e

(m,n)∈Z2\{(0,0)}

1

(mω1 + nω2)2
= Imτ

∑e

(m,n)∈Z2\{(0,0)}

1

(m+ nτ)2
(2.1)

and

T2 =
∑e

(m,n)∈Z2\{(0,0)}

mω1 + nω2

(mω1 + nω2)3
= Imτ

∑e

(m,n)∈Z2\{(0,0)}

m+ nτ

(m+ nτ)3
, (2.2)

where the Eisenstein summation method [15] is used

∑e

m,n

:= lim
M2→∞

M2
∑

n=−M2

(

lim
M1→∞

M1
∑

m=−M1

)

. (2.3)

Having used the summation method (2.3) Rayleigh deduced the formula

S2(τ) = π2Im τ

[

1

3
+ 2

∞
∑

m=1

1

sin2(πmτ)

]

(2.4)

for an rectangular array. It can be easily extended to other shapes of the fun-
damental cell. A physical justification of the Eisenstein summation method
was presented in [9] and [10]. A rigorous mathematical proof can be found
in [13]. Rayleigh (1892) did not cite Eisensteins result (1847) and addressed
to Weierstrass investigations (1856). Perhaps, it is related to that Eisen-
stein treated formally his series without uniform convergence introduced by
Weierstrass.

Moreover, Rayleigh [2] found the beautiful formula S2(i) = π where τ = i
corresponds to the square array. The method of calculation was based on
the reduction of the sum S2(i) to the integral

S2(i) = 2

∫ ∞

v

dx

∫ v

−v

dy

(x+ iy)2
= π. (2.5)
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The integral over the central square (−v, v)× (−v, v) is eliminated in (2.5)
since it vanishes. Further, the equality S2 = π was proved in [10] for the
hexagonal array (under the normalization of the area of the fundamental cell
to unity).

The following formula was independently deduced in [14]

S2(τ) =
2

ω1
ζ
(ω1

2

)

= π2Im τ

[

1

3
− 8

∞
∑

m=1

m exp(2iπmτ)

1− exp(2iπmτ)

]

, (2.6)

where the ζ-Weierstrass function is used. The equality S2(i) = π was proved
by Legendre’s identity. Though formulae (2.4) and (2.6) are similar a reduc-
tion of one to other can be justified only through the Eisenstein summation
method applied to the ζ-Weierstrass function.

We now proceed to discuss the lattice sum (2.2) beginning form the rela-
tion [15]

∑

m∈Z\{0}

1

(m+ τ)3
= π3 cos(πτ)

sin3(πτ)
. (2.7)

Consider the general term of the series (2.2)

m+ nτ

(m+ nτ)3
=

1

(m+ nτ)2
− 2iImτ

n

(m+ nτ)3
. (2.8)

Substitution of (2.7) and (2.8) into (2.2) and use of (2.1) yields the compu-
tationally effective formula

T2(τ) = S2(τ)− 4iπ3(Im τ)2
∞
∑

n=1

n
cos(nπτ)

sin3(nπτ)
. (2.9)

Surprisingly, that Rayleigh’s integral gives a wrong result

T2(i) = 2

∫ ∞

v

dx

∫ v

−v

x− iy

(x+ iy)3
dy = 2 (2.10)

though it formally corresponds to the Eisenstein summation method. This
is because the Rayleigh reduction to the integral is formal. Moreover, by
simple substitution we observe that iterated integrals (2.5), (2.10) do not
depend on v and the corresponding double integrals diverge. Therefore, only
formula (2.9) was in our disposal to get numerical values of T2(τ). However,
in the sequel we will give a rigorous proof of the closed-form formulae for
the lattice sums (2.1), (2.2) on the imaginary axis and on the vertical lines
Re τ = ±1/2, basing on the theory of the complete elliptic integrals of the
first and second kind.
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3 Closed-form formulae

Let R, R+ be the sets of real and real positive numbers, respectively. Let
x ∈ R+ be given by the formula

x ≡ x(k) =
K(k′)

K(k)
, k ∈ (0, 1), k′ =

√
1− k2, (3.1)

where K(k) is the complete elliptic integral of the first kind [19], [22], Vol.
II, [26]

K(k) =

∫ 1

0

dt
√

(1− t2)(1− k2t2)
. (3.2)

The parameter k is called the elliptic modulus and k′ is the complimentary
modulus. As we see the function x as a function of k ∈ (0, 1) is monotone
decreasing and continuously differentiable bijective map x : (0, 1) → R+.
Therefore any x > 0 is uniquely defined by the corresponding modulus k.
The complete elliptic integral K(k) satisfies the Legendre relation

E(k)K(k′) + E(k′)K(k)−K(k′)K(k) =
π

2
, (3.3)

where E(k) is the complete elliptic integral of the second kind

E(k) =

∫ 1

0

√

1− k2t2

1− t2
dt. (3.4)

Its derivative can be calculated by formula

dE

dk
=

E(k)−K(k)

k
. (3.5)

It is known [26], that K(k), K(k′) satisfy the differential equation

d

dk

(

k(k′)2
du

dk

)

= ku (3.6)

and E(k), E(k′)−K(k′) are, in turn, solutions of the differential equation

(k′)2
d

dk

(

k
du

dk

)

+ ku = 0. (3.7)

The derivative of K(k) can be calculated by the formula

dK

dk
=

E(k)− (k′)2K(k)

k(k′)2
. (3.8)
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Let kr be an elliptic modulus such that x(kr) =
√
r (see (3.1)). In the

sequel we will use such values for small r and the corresponding elliptic
integral singular values K(kr) (see [20], [21]), namely

k1 =
1√
2
, k2 =

√
2− 1, k3 =

1

4

√
2(
√
3− 1), k4 = 3− 2

√
2, (3.9)

K(k1) =
Γ2(1/4)

4
√
π

, K(k2) =
(
√
2 + 1)1/2Γ(1/8)Γ(3/8)

213/4
√
π

, (3.10)

K(k3) =
31/4Γ3(1/3)

27/3π
, K(k4) =

(
√
2 + 1)Γ2(1/4)

27/2
√
π

, (3.11)

where Γ(z) is Euler’s gamma-function [22], Vol. I. According to [21] the
so-called elliptic alpha function for the integral singular values

α(r) =
E(k′

r)

K(kr)
− π

4[K(kr)]2
=

π

4[K(kr)]2
+
√
r

[

1− E(kr)

K(kr)

]

(3.12)

is calculated, in particular, for small values and we have

α(1) =
1

2
, α(2) =

√
2− 1, α(3) =

1

2
(
√
3− 1), α(4) = 2(

√
2− 1)2. (3.13)

Meanwhile, appealing to relations (2.4.3.1), (2.4.3.3) in [24] and the inverse
Mellin transform [25], we derive the following integral representations, related
to the hyperbolic functions which will be useful in the sequel

1

sinh2(cx)
=

2

πi

∫ γ+i∞

γ−i∞
Γ(s)ζ(s− 1)(2cx)−sds, c > 0, γ > 2, (3.14)

1

cosh2(cx)
=

2

πi

∫ γ+i∞

γ−i∞
(1−22−s)Γ(s)ζ(s−1)(2cx)−sds, c > 0, γ > 0, (3.15)

where ζ(s) is the Riemann zeta-function [22], Vol. I, which satisfies the
familiar functional equation

ζ(s) = 2sπs−1 sin
(πs

2

)

Γ(1− s)ζ(1− s). (3.16)
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We begin, recalling the Rayleigh formula (2.4) and recently obtained
formula (2.9) in order to give a rigorous proof of the following functional
equations for S2(τ), T2(τ) on the imaginary positive half- axis and positive
half-lines Reτ = ±1/2.

Theorem 1. Let x ∈ R+. Then

S2(ix) + S2

(

ix−1
)

= 2π, (3.17)

S2

(±1 + ix

2

)

+ S2

(±1 + ix−1

2

)

= S2

(±1 + ix

2

)

+ S2

(∓1 + ix−1

2

)

= 2π, (3.18)

T2(ix) = T2

(

ix−1
)

, (3.19)

T2

(±1 + ix

2

)

− T2

(±1 + ix−1

2

)

= 4

(

S2

(±1 + ix

2

)

− S2 (ix)

)

+
2π2

3

(

x− 1

x

)

. (3.20)

Proof. Indeed, employing integral representation (3.14), we substitute it into
(2.4) to write for τ = ix

S2(ix) = π2x

[

1

3
− 4

πi

∞
∑

m=1

∫ γ+i∞

γ−i∞
Γ(s)ζ(s− 1)(2πmx)−sds

]

. (3.21)

Since γ > 2 and the zeta- function is bounded on the vertical line (γ −
i∞, γ + i∞), i.e. |ζ(s − 1)| ≤ ζ(γ − 1), the interchange of the order of
summation and integration is allowed for each x > 0 via the absolute and
uniform convergence by virtue of the estimate

∞
∑

m=1

∫ γ+i∞

γ−i∞

∣

∣Γ(s)ζ(s− 1)(2πmx)−sds
∣

∣

≤ (2πx)−γζ(γ − 1)

∞
∑

m=1

1

mγ

∫ γ+i∞

γ−i∞
|Γ(s)ds|

= (2πx)−γζ(γ − 1)ζ(γ)

∫ γ+i∞

γ−i∞
|Γ(s)ds| < ∞,
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where the convergence of the latter integral can be easily verified, appealing
to the Stirling asymptotic formula for gamma-function when |Ims| → ∞ (see
[22], Vol. I). Hence with the definition of the Riemann zeta-function in terms
of the series, equality (3.21) becomes

S2(ix) = π2x

[

1

3
− 4

πi

∫ γ+i∞

γ−i∞
Γ(s)ζ(s)ζ(s− 1)(2πx)−sds

]

. (3.22)

On the other hand, the product of zeta-functions ζ(s)ζ(s − 1) can be
represented by the Ramanujan identity [27]

ζ(s)ζ(s− 1) =

∞
∑

m=1

σ(m)

ms
, γ > 2, (3.23)

where σ(m) is the arithmetic function [19], denoting the sum of divisors of
m. Hence, substituting in (3.22) and inverting the order of integration and
summation owing to the same motivation, we obtain

S2(ix) = π2x

[

1

3
− 4

πi

∞
∑

m=1

σ(m)

∫ γ+i∞

γ−i∞
Γ(s)(2πmx)−sds

]

= π2x

[

1

3
− 8

∞
∑

m=1

σ(m)e−2πmx

]

, (3.24)

where the inverse Mellin transform of the gamma-function [25] is used

e−x =
1

2πi

∫ γ+i∞

γ−i∞
Γ(s)x−sds, x > 0.

In the meantime, the Nasim identity [23] says that

∞
∑

m=1

σ(m)e−2πmx + x−2
∞
∑

m=1

σ(m)e−2πm/x =
1

24

(

1 +
1

x2

)

− 1

4πx
, x > 0.

(3.25)
Consequently, from (3.22) we find

S2(ix) + S2

(

ix−1
)

=
π2

3

(

x+
1

x

)

− 8π2

[

x
∞
∑

m=1

σ(m)e−2πmx

+
1

x

∞
∑

m=1

σ(m)e−2πm/x

]

= 2π,
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proving equation (3.17). In order to prove equations (3.18), we invoke rep-
resentation (3.15), motivating all passages analogously to the previous case.
Moreover, as we will see it is sufficient to prove (3.18) for positive real parts.
So, we have (see (2.4))

S2

(

1 + ix

2

)

=
π2x

2

[

1

3
− 2

∞
∑

m=1

1

sinh2(πmx)
+ 2

∞
∑

m=1

1

cosh2(π(m− 1/2)x)

]

=
1

2
S2(ix)− 2πix

∫ γ+i∞

γ−i∞
(1− 22−s)Γ(s)ζ(s− 1)(πx)−s

∞
∑

m=1

1

(2m− 1)s
ds.

But the latter series is easily calculated for γ > 1 via the definition of the
Riemann zeta-function and we obtain

∞
∑

m=1

1

(2m− 1)s
= (1− 2−s)ζ(s).

Hence, recalling the Ramanujan identity (3.23), changing the order of inte-
gration and summation and calculating the inverse Mellin transform of the
gamma-function of different arguments, we deduce

S2

(

1 + ix

2

)

=
1

2
S2(ix)− 2πix

∫ γ+i∞

γ−i∞
(1− 22−s)(1− 2−s)

×Γ(s)ζ(s)ζ(s− 1)(πx)−sds =
1

2
S2(ix)

+4π2x
∞
∑

m=1

σ(m)
[

e−πmx − 5e−2πmx + 4e−4πmx
]

.

Meanwhile, from (3.24) we find

x
∞
∑

m=1

σ(m)e−2πmx =
x

24
− 1

8π2
S2(ix). (3.26)

Therefore, it yields

S2

(

1 + ix

2

)

= S2(ix)−
π2x

6
+ 4π2x

∞
∑

m=1

σ(m)
[

e−πmx − 2e−2πmx
]

9



−4π2x
∞
∑

m=1

σ(m)
[

2e−2πmx − 4e−4πmx
]

. (3.27)

In the meantime, appealing to another Nasim’s formula (see [23], formula
(5.1) with a = x/2, b = x)

∞
∑

m=1

σ(m)

m

[

e−πmx − e−2πmx
]

=

∞
∑

m=1

σ(m)

m

[

e−4πm/x − e−2πm/x
]

+
π

12

(

1

x
+

x

2

)

− 1

2
log 2,

we differentiate it with respect to x, which is permitted via the absolute and
uniform convergence and multiply by x the obtained equality. Thus we get

x

∞
∑

m=1

σ(m)
[

2e−2πmx − e−πmx
]

=
2

x

∞
∑

m=1

σ(m)
[

2e−4πm/x − e−2πm/x
]

+
x

24
− 1

12x
. (3.28)

Substituting in (3.27), we derive

S2

(

1 + ix

2

)

= S2(ix) +
8π2

x

∞
∑

m=1

σ(m)
[

e−2πm/x − 2e−4πm/x
]

−8π2x
∞
∑

m=1

σ(m)
[

e−2πmx − 2e−4πmx
]

. (3.29)

Now, changing in (3.29) x by 1/x and adding these two equalities with the
use of (3.17), we obtain (3.18).

Let us prove (3.19). To do this, we let τ = ix, x > 0 in (2.9) and write
it in the form

T2(ix) = S2(ix) + 4π3x2

∞
∑

n=1

n
cosh(nπx)

sinh3(nπx)
. (3.30)

However, the series in (3.30) can be obtained by termwise differentiation
with respect to x of the series

∑

cosech2(πnx) for x ≥ x0 > 0 due to the
absolute and uniform convergence. Hence

10



T2(ix) = S2(ix)− 2π2x2 d

dx

∞
∑

n=1

1

sinh2(nπx)
. (3.31)

But from (2.4), (3.23), (3.24) and termwise differentiation of the series with
arithmetic function σ(m) in (3.24) by the same reasons, we obtain

T2(ix) = S2(ix) + 16π3x2

∞
∑

n=1

m σ(m)e−2πmx. (3.32)

Meanwhile, differentiating the Nasim identity (3.25) with respect to x and
then multiplying both sides of the obtained equality by −x2/(2π), we find

x2

∞
∑

m=1

m σ(m)e−2πmx = x−2

∞
∑

m=1

m σ(m)e−2πm/x +
1

24πx

− 1

8π2
− 1

πx

∞
∑

m=1

σ(m)e−2πm/x. (3.33)

Substituting the left-hand side of the latter equality in (3.32) and appealing
to (3.26), we write

T2(ix)− S2(ix) = T2

(

ix−1
)

+ S2

(

ix−1
)

− 2π.

Therefore, equality (3.17) leads us to (3.19). In order to establish (3.20), we
employ again (2.9) to get as in (3.31), (3.32)

T2

(±1 + ix

2

)

= S2

(±1 + ix

2

)

+ (πx)2
d

dx

[ ∞
∑

m=1

1

cosh2(π(m− 1/2)x)

−
∞
∑

m=1

1

sinh2(πmx)

]

= S2

(±1 + ix

2

)

+ π3x2

[

1

π

d

dx

∞
∑

m=1

1

cosh2(π(m− 1/2)x)

+8

∞
∑

n=1

m σ(m)e−2πmx

]

.

In the meantime, recalling (3.15), (3.23) and termwise differentiation, we
deduce

d

dx

∞
∑

m=1

1

cosh2(π(m− 1/2)x)
= 4π

∞
∑

n=1

m σ(m)
[

10e−2πmx

11



−16e−4πmx − e−πmx
]

.

Thus

T2

(±1 + ix

2

)

= S2

(±1 + ix

2

)

+ 4π3x2
∞
∑

n=1

m σ(m)
[

12e−2πmx

−16e−4πmx − e−πmx
]

.

Hence,

1

4π3

(

T2

(±1 + ix

2

)

− S2

(±1 + ix

2

))

= 8x2
∞
∑

n=1

m σ(m)e−2πmx

−16x2
∞
∑

n=1

m σ(m)e−4πmx − x2
∞
∑

n=1

m σ(m)
[

e−πmx − 4e−2πmx
]

. (3.34)

Returning to (3.28) and making the termwise differentiation and simple ma-
nipulations, we derive

x2
∞
∑

m=1

m σ(m)
[

e−πmx − 4e−2πmx
]

= − 4

πx

∞
∑

m=1

σ(m)
[

2e−4πm/x − e−2πm/x
]

+
1

6πx
+

4

x2

∞
∑

m=1

m σ(m)
[

4e−4πm/x − e−2πm/x
]

.

Therefore with the use of (3.32), equality (3.34) becomes

1

4π3

(

T2

(±1 + ix

2

)

− S2

(±1 + ix

2

))

=
1

2π3
(T2 (ix)− S2 (ix))

−16x2
∞
∑

n=1

m σ(m)e−4πmx +
4

πx

∞
∑

m=1

σ(m)
[

e−2πm/x − 2e−4πm/x
]

− 1

6πx
− 16

x2

∞
∑

n=1

m σ(m)e−4πm/x +
1

4π3

(

T2

(

ix−1
)

− S2

(

ix−1
))

.
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Hence,

1

4π3

(

T2

(±1 + ix

2

)

− S2

(±1 + ix

2

))

− 1

2π3
(T2 (ix)− S2 (ix))

− 1

4π3

(

T2

(

ix−1
)

− S2

(

ix−1
))

+
1

6πx
− 4

πx

∞
∑

m=1

σ(m)
[

e−2πm/x − 2e−4πm/x
]

=
1

4π3

(

T2

(±1 + ix−1

2

)

− S2

(±1 + ix−1

2

))

− 1

2π3

(

T2

(

ix−1
)

− S2

(

ix−1
))

− 1

4π3
(T2 (ix)− S2 (ix)) +

x

6π
− 4x

π

∞
∑

m=1

σ(m)
[

e−2πmx − 2e−4πmx
]

.

Meanwhile, appealing to (3.29), we find

4

πx

∞
∑

m=1

σ(m)
[

e−2πm/x − 2e−4πm/x
]

− 4x

π

∞
∑

m=1

σ(m)
[

e−2πmx − 2e−4πmx
]

=
1

2π3

(

S2

(

1 + ix

2

)

− S2(ix)

)

.

Thus, accounting (3.19),

T2

(±1 + ix

2

)

− T2

(±1 + ix−1

2

)

+ 3S2 (ix)− S2

(

ix−1
)

= 3 S2

(±1 + ix

2

)

− S2

(±1 + ix−1

2

)

+
2π2

3

(

x− 1

x

)

.

Finally, equalities (3.17), (3.18) drive us at (3.20), completing the proof of
Theorem 1.

The explicit expressions of S2(τ) on the imaginary axis and the lines
Reτ = ±1/2 are given by

Theorem 2. Let x ∈ R\{0}. Then the following formulae hold

S2(ix) =
4

3
sign(x) K(k′)

[

3E(k) + (k2 − 2)K(k)
]

, (3.35)
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S2

(±1 + ix

2

)

= 2 sign(x) K(k′)

[

2 E(k) +
4k2 − 5

3
K(k)

]

, (3.36)

where

|x| = K(k′)

K(k)
, k ∈ (0, 1)

and k′ is defined by (3.1).

Proof. Let us first consider a positive x being defined by (3.1). Fortunately,
the series in (2.4) for τ = ix is calculated in [24], relation (5.3.4.5), and we
have

∞
∑

m=1

1

sinh2(πmx)
=

1

6
+

2(2− k2)

3π2
K2(k)− 2

π2
K(k)E(k). (3.37)

Therefore,

S2(ix) =
4

3
(k2 − 2) xK2(k) + 4xK(k)E(k)

=
4

3
K(k′)

[

3E(k) + (k2 − 2)K(k)
]

.

Hence it proves (3.35) for positive x, and for negative x it can be easily
extended via (2.4). In order to prove (3.36), we employ relation (5.3.6.6) in
[24]

∞
∑

m=1

1

cosh2(πx(m− 1/2))
=

2

π2
K(k)E(k)− 2(1− k2)

π2
K2(k). (3.38)

Then for positive x we find from (2.4), (3.37), (3.38)

S2

(±1 + ix

2

)

= π2x

[

1

6
+

∞
∑

m=1

1

sin2(πm(±1 + ix))

+
∞
∑

m=1

1

sin2(π(2m− 1)(±1 + ix)/2)

]

= π2x

[

1

6
−

∞
∑

m=1

1

sinh2(πmx)
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+
∞
∑

m=1

1

cosh2(πx(m− 1/2))

]

= 4K(k′)E(k)− 2(2− k2)

3
K(k′)K(k)

−2(1− k2) K(k′)K(k) = 2K(k′)

[

2E(k) +
4k2 − 5

3
K(k)

]

.

Hence spreading the latter equalities for negative x, we get (3.36).

Corollary 1. Formula (3.20) can be written in the form

T2

(±1 + ix

2

)

− T2

(±1 + ix−1

2

)

=
4

3

(

4k2 − 2
)

K(k) +
2π2

3

(

x− 1

x

)

.

As we could see above, the only value S2(i) = π was known explicitly.
Now we are able to calculate more interesting particular values of (3.35),
(3.36). Indeed, we have

Corollary 2. The following values take place

S2(±i) = S2

(

1± i

2

)

= ± π, (3.39)

S2(±i
√
2) = ±

[

π +
Γ2(1/8)Γ2(3/8)

48π
√
2

]

, (3.40)

S2

(

1± i
√
2

2

)

= ±
[

π +
(2
√
2− 3) Γ2(1/8)Γ2(3/8)

96 π

]

, (3.41)

S2(±i
√
3) = ±

[

π +

√
3 Γ6(1/3)

16π2 22/3

]

, (3.42)

S2

(

1± i
√
3

2

)

= ± π, (3.43)

S2 (±2i) = ±
[

π +
Γ4(1/4)

16 π

]

, (3.44)

S2

(

1

2
± i

)

= ±
[

π +
(3− 2

√
2) Γ4(1/4)

32 π

]

. (3.45)
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Proof. As we observe from (3.35), (3.36), it is sufficient to establish the
above constants for a positive imaginary part of the corresponding τ . To
do this we employ particular cases (3.9) of the modulus kr and the corre-
sponding singular values (3.10), (3.11) K(kr), r = 1, 2, 3, 4. In fact, letting
x = 1,

√
2,

√
3, 2 and taking in mind (3.12), (3.13), we derive, respectively,

S2(i) =
4

3
K(k1)

[

3

2
K(k1) +

3π

4K(k1)
− 3

2
K(k1)

]

= π;

S2

(

1 + i

2

)

= 2K(k1)

[

K(k1) +
π

2K(k1)
−K(k1)

]

= π;

S2(i
√
2) =

4
√
2

3

[

3√
2
K2(k2) +

3π

4
√
2
+ (1− 2

√
2)K2(k2)

]

= π +
4

3

(√
2− 1

)

K2(k2) = π +
Γ2(1/8)Γ2(3/8)

48 π
√
2

;

S2

(

1 + i
√
2

2

)

= π+
2(7

√
2− 10)

3
K2(k2) = π+

(2
√
2− 3) Γ2(1/8)Γ2(3/8)

96 π
;

S2(i
√
3) = π +K2(k3) = π +

√
3 Γ6(1/3)

16π2 22/3
;

S2

(

1 + i
√
3

2

)

= π + 2K2(k3)(
√
3 + 1)− 2√

3
(3 +

√
3)K2(k3) = π;

S2(2i) = π + 8K2(k4)(3− 2
√
2) = π +

Γ4(1/4)

16 π
;

S2

(

1

2
+ i

)

= π + 4(17− 12
√
2)K2(k4) = π +

(3− 2
√
2) Γ4(1/4)

32 π
.

A more technically difficult task is to find explicit expressions for T2(τ)
on the same lines in the complex plane. To achieve our goal we will involve
the method of termwise differentiation of the series in (2.4) with respect
to the elliptic modulus (for τ = ix(k) or τ = (±1 + ix(k))/2). Indeed,
as we mentioned above, x(k) by formula (3.1) is continuously differentiable
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and when k ∈ [a0, b0], 0 < a0 < b0 < 1, the corresponding series (2.4) is
absolutely and uniformly convergent. Moreover, it is not difficult to show
that the series of the derivatives with respect to k converges absolutely and
uniformly on the segment [a0, b0]. Thus the known theorem from calculus
says that the termwise differentiation of the series is allowed. This leads us
to

Theorem 3. Under conditions of Theorem 2 the following formulae hold

valid

T2(ix) =
4

3
sign(x) K(k′)

[[

1− 2

π
K(k′)E(k)

]

[

3E(k) + (k2 − 2)K(k)
]

−2

π
K(k′)K(k)

[

(1− k2) [K(k)− E(k)]− E(k)
]

]

, (3.46)

T2

(±1 + ix

2

)

=
2

3
sign(x)K(k′)

[(

6E(k) +K(k)(4k2 − 5)
)

×
[

1− 2

π
K(k′)

(

E(k) +K(k)(k2 − 1)
)

]

−2

π
K(k′)K(k)

[

(1− 2k2)E(k) + (4k2 − 1)(1− k2)K(k)
]

]

. (3.47)

Proof. Indeed, concerning the proof of formula (3.37), we let τ = ix, x > 0
in (2.9) and write it in the form

T2(ix) = S2(ix) + 4π3x2
∞
∑

n=1

n
cosh(nπx)

sinh3(nπx)
, (3.48)

where x is a function of k by (3.1) and since the termwise differentiation is
permitted, we obtain

∞
∑

n=1

n
cosh(nπx)

sinh3(nπx)
= − 1

2πx′(k)

d

dk

∞
∑

n=1

1

sinh2(nπx)
. (3.49)

Meanwhile, the derivative x′(k) can be calculated explicitly, employing
twice (3.8). Hence we find

x′(k) = −K(k′)

K2(k)

dK(k)

dk
− k

(1− k2)K(k)

[

E(k′)

k2
−K(k′)

]
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=
1

k(1− k2)K(k)

[

K(k′)

[

1− E(k)

K(k)

]

−E(k′)

]

and the Legendre identity (3.3) leads us to the final result

x′(k) = − π

2k(1− k2)K2(k)
. (3.50)

Therefore, recalling (3.5), (3.8), (3.37), we deduce from (3.49)

4π3x2

∞
∑

n=1

n
cosh(nπx)

sinh3(nπx)
=

8

π
k(1−k2)K2(k′)

d

dk

[

K(k)

(

2− k2

3
K(k)− E(k)

)]

=
8

3π
K2(k′)

(

E(k)− (1− k2)K(k)
) (

(2− k2)K(k)− 3E(k)
)

+
8

3π
K2(k′)K(k)

[

E(k)(2k2 − 1) +K(k)(k2 − 1)2
]

=
8

3π
K2(k′)

[

2E(k)K(k)(2− k2) +K2(k)(k2 − 1)− 3E2(k)
]

.

Hence, appealing to (3.35) and combining with (3.48), we arrive at (3.46)
being valued for positive x. Then we extend it on negative numbers as in
Theorem 2.

In order to establish identity (3.47), we write (2.9) for τ = (±1+ix)/2, x >
0 in the same manner as in the proof of identity (3.20). Nevertheless, we will
employ explicit expressions (3.37) and (3.38) and make the termwise differ-
entiation with respect to the elliptic modulus. Hence, taking in mind (3.36),
(3.50), we obtain

T2

(±1 + ix

2

)

= S2

(±1 + ix

2

)

+
(πx)2

x′(k)

d

dk

[ ∞
∑

m=1

1

cosh2(π(m− 1/2)x)

−
∞
∑

m=1

1

sinh2(πmx)

]

=
2

3
K(k′)

(

6E(k) +K(k)(4k2 − 5)
)

− 4

3π
k(k′)2K2(k′)

d

dk

[

K(k)
(

6E(k) +K(k)(4k2 − 5)
)]

.
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Fulfilling the differentiation with the aid of (3.5), (3.6), (3.8), we find

T2

(±1 + ix

2

)

=
2

3
K(k′)

[(

6E(k) +K(k)(4k2 − 5)
)

×
[

1− 2

π
K(k′)

(

E(k) +K(k)(k2 − 1)
)

]

−2

π
K(k′)K(k)

[

(1− 2k2)E(k) + (4k2 − 1)(1− k2)K(k)
]

]

,

arriving at (3.47) after the same extension on negative numbers x as in
Theorem 3.

As a corollary we calculate particular values of T2 on the mentioned verti-
cal lines, recalling kr in (3.9) andK(kr) in (3.10), (3.11), letting r = 1, 2, 3, 4.
In particular, the value x = 1, corresponding k1 = k′

1 = 1√
2
, gives the inter-

esting and important constant numerical value of which coincides with the
numerical value of T2(i) = 4.078451 computed with (2.9)

T2(i) =
π

2
+

Γ8(1/4)

384 π3
. (3.51)

We note that this numerical result T2(i) = 4.078451 coincides with the nu-
merical value obtained by other approaches [3], [4].

Corollary 3. Certain explicit constants related to T2(τ) are the following

values

T2(±i) = ±
[

π

2
+

Γ8(1/4)

384 π3

]

;

T2

(

1± i

2

)

= ±
[

π

2
− Γ8(1/4)

384 π3

]

;

T2(±i
√
2) = ±

[

π

2
+

Γ4(1/8)Γ4(3/8)

1024 π3

]

;

T2

(

1± i
√
2

2

)

= ±
[

π

2
− Γ4(1/8)Γ4(3/8)(

√
2− 1)

1024 π3

]

;

T2

(

±i
√
3
)

= ±
[

π

2
− 22/3Γ12(1/3)(9 + 4

√
3)

512 π5

]

;
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T2

(

1± i
√
3

2

)

= ±π

2
;

T2 (±2i) = ±
[

π

2
+

Γ8(1/4)

192 π3

]

;

T2

(

1

2
± i

)

= ±
[

π

2
+

Γ8(1/4)(5− 3
√
2)

768 π3

]

;

4 Random lattice sums

Consider a lattice with the fixed periods ω1, ω2 and the corresponding fun-
damental parallelogram

G(0,0) := {t1ω1 + t2ω2 ∈ C : 0 < t1, t2 < 1}

The Eisenstein function of second order [15] is defined by the series

E2(z) =
∑e

(m,n)∈Z2

1

(z −mω1 − nω2)2
. (4.1)

It is related to the ℘-Weierstrass function by formula [15]

E2(z) = ℘(z) + S2. (4.2)

Following (4.1) we introduce the function

G2(z) =
∑e

(m,n)∈Z2

z −mω1 − nω2

(z −mω1 − nω2)3
. (4.3)

This function is related to the Natanzon function [16]

℘′
1(z) = −2

∑

(m,n)∈Z2\{(0,0)}

[

z −mω1 − nω2

(z −mω1 − nω2)3
+

mω1 + nω2

(mω1 + nω2)3

]

(4.4)

by formula

G2(z) = −1

2
z℘′(z) +

1

2
℘′
1(z) + T2. (4.5)

Filshtinsky [17, Appendix 2] found a relation between the Natanzon and
Weierstrass functions which can be written in our case as

π℘′
1(z) =

1

3
℘′′(z) + [ζ(z)− (S2 − π)z]℘′(z)− 2(S2 − π)℘(z)− 10S4, (4.6)
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where ζ(z) is the ζ-Weierstrass function and S4 is defined by the absolutely
convergent series

S4 =
∑

(m,n)∈Z2\{(0,0)}

1

(mω1 + nω2)4
. (4.7)

Substitution of (4.6) into (4.5) yields

G2(z) = −1

2
z℘′(z) +

1

6π
℘′′(z) +

1

2

[

ζ(z)

π
−
(

S2

π
− 1

)

z

]

℘′(z)

−
(

S2

π
− 1

)

℘(z)− 5

π
S4 + T2. (4.8)

Consider N non-overlapping circular disks Dk of radius r with the centers
ak ∈ G(0,0). These centers can be considered as random variables. Introduce
the sums

e2 =
1

N2

N
∑

k=1

N
∑

m=1

E2(ak − am), (4.9)

g2 =
1

N2

N
∑

k=1

N
∑

m=1

F2(ak − am), (4.10)

where it is assumed that E2(0) := S2 and F2(0) := T2. Such a consideration
implies that for N = 1 e2 becomes S2 and g2 becomes T2.

The sums (4.9)-(4.10) play the fundamental role in the theory of random
2D composites, since the effective conductivity tensor of the composite rep-
resented by N discs per periodicity cell can be calculated by the asymptotic
formula [7] (cf. (1.1))

λxx − iλxy

λ
= 1 + 2ρf + 2ρ2f 2 e2

π
+O((|ρ|f)3), (4.11)

λyy + iλxy

λ
= 1 + 2ρf + 2ρ2f 2

(

2− e2
π

)

+O((|ρ|f)3), (4.12)

In the case of macroscopically isotropic composites, λxx = λyy and λxy = 0.
This implies that e2 must be equal to π. One can consider this assertion
as a physical prove of the identity e2 = π for a macroscopically isotropic
distribution of ak.

Analogous formulae take place for the elastic constants. Let elastic fibers
Dk with the shear modulus µ1 and the Poisson ration ν1 are distributed in
the matrix with the constants µ and ν. Let κ = 3− 4ν and κ1 = 3− 4ν1 be
the corresponding Muskhelishvili constants for the plane strain. Consider the
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averaged constant µe =
〈σxx−σyy〉
2〈ǫxx−ǫyy〉 where σαβ and ǫαβ denote the components

of the stress and deformation tensors, respectively (α and β can be x and
y). Here, 〈·〉 denotes the average value (double integral over the periodicity
cell). In particular, for macroscopically isotropic composites µe yields the ef-
fective shear modulus. The value µe can be estimated by asymptotic formula
deduced in [12]

µe

µ(1 + κ)
=

1

1 + κ
+

µ1 − µ

κµ1 + µ
f +

(

µ1 − µ

κµ1 + µ

)2(

κ− 2Re g2
π

)

f 2 +O(f 3).

(4.13)
One can see that the value g2 from (4.10) occurs in the coefficient on f 2.

Numerical simulations of e2 were performed in [18] for macroscopically
isotropic composites generated by the RSA algorithm and by random walks.
Using the RSA protocol we compute 100 times g2 for r = 0.003 when f is
about 0.09, N is about 3250. More precisely, f and N slightly change in each
simulation of location in accordance with the RSA protocol [18]. The mean
value of g2 − π

2
holds 0.00457824 + 0.0121335i, the variance 0.0286453. For

e2 − π we get the mean value 0.000723263 + 0.00575626i and the variance
0.0296968.

5 Conclusion

Explicit formulae of Section 3 deduced in this paper yield asymptotic an-
alytical formulae for the effective tensors of 2D composites with circular
inclusions. The obtained fundamental values S2 and T2 give a possibility
to pass through the approximation O(f 2) terms to get high order analytical
formulae for the effective elastic constants of fibrous composites [12].
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