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Preface

In words of Sergei Prokofiev we define neoclassicism: “I thought that if Haydn were
alive today he would compose just as he did before, but at the same time would include
something new in his manner of composition. It seemed to me that had Haydn lived
to our day he would have retained his own style while accepting something of the new
at the same time. That was the kind of symphony 1 wanted to write, a symphony in
classical style.”

Classical theory of composites amounts to the celebrated Maxwell formula, also
known as Clausius—Mossotti approximation. Actually, all modern self-consistent
methods (SCM) perform elaborated variations on the theme, and are justified rigor-
ously only for dilute composites when interactions among inclusions are neglected. In
the same time, exact and high-order formulas for special regular composites which go
beyond SCM were derived.

Let matrix conductivity be normalized to unity and o denote the conductivity of
inclusions. Introduce the contrast parameter o = g—;i For many years it was thought
that Maxwell’s and Clausius—Mossotti approximation for the effective conductivity of
2D (3D) composites

_l+of
C1-—of

can be systematically and rigorously extended to higher orders in f by taking into ac-
count interactions between pairs of spheres, triplets of spheres, and so on. However, it
was recently demonstrated (Gluzman et al., 2017, Mityushev et al., 2018b, Mityushev,
2018) that the field around a finite cluster of inclusions can yield a correct formula for
the effective conductivity only for non-interacting clusters. Rigorous justification of
this fact is given in Appendix A.4 of the present book, based on the paper (Mityushev,
2018). The higher order term(s) can be properly found only after a subtle study of the
conditionally convergent series.

The hard experimental evidence accumulated by material scientists and engineers
begs for a constructive theory of random composites with explicit account for the
geometry. The geometry is, de facto, another important structural parameter. As dis-
cussed in Nielsen (2005), “In itself the large number of completely different empirical
stiffness expressions suggested for porous materials clearly indicates a need for a more
rational research on composite properties versus composite geometry. . . Change of ge-
ometry will influence any mechanical/physical behavior of composites. Stiffness and
viscoelasticity (creep and relaxation) will change. Shrinkage and eigenstress-strain
(such as hydro-thermal properties, and heat conductivity are other examples of ma-
terials behavior, which will change with geometry. In order to cope rationally with

+0(f?) (1)

Op¢
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such changes in composite analysis we must increase our freedom to choose other
analytical models than the specific, non-variable ones most often used to day.” Our
new book is dedicated mainly to constructive topics of boundary value problems
and their applications to macroscopic properties of composites and of porous media.
Symbolic-numerical computations are widely used to deduce new formulas important
for engineers and researchers. New formulas for the effective properties are deduced
in the form customized for engineering applications.

The outline of typical exposition is given below for the case of 2D elastic com-
posites. Composites with non-overlapping circular inclusions randomly embedded in
matrix are investigated. Special attention is paid to critical regimes related to the opti-
mal packing of inclusions and to extreme physical constants (rigid and soft inclusions).
Investigation of regular and random structures is based on the general approach of
the RVE (representative volume element) and the corresponding structural sums. The
proposed method yields an effective algorithm in symbolic-numeric form to compute
structural sums as discrete multiple convolutions. In this book, new algorithms are
described systematically, codes or pseudo-codes are given, and complexity of compu-
tations is studied.

We present also modified averaging computational method applied to the local
stresses and deformations. Properly constructed series are reduced to polynomials and
rational functions depending on the concentration of inclusions f. But it is not a final
solution to the problem. Furthermore, these functions are replaced by asymptotically
equivalent expressions. Special methods of resummation suggested in the book and in
(Gluzman et al., 2017), bring accurate and compact formulas for all concentrations.
Accurate analytical formulas for deterministic and random composites and porous
media can be derived employing approximants, when the low-concentration series are
supplemented with information on the high-concentration regime. Typical problems
we encounter are characterized by asymptotic power laws.

Our first book (Gluzman et al., 2017) may be considered as an neoclassical answer
to the question associated to Fig. 0.1, why does James Bond prefer shaken, not stirred
martini with ice? Highly accurate computational analysis of structural media allowed
us to explain the difference between various types of random composite structures. It
is strongly related to the critical exponent s in the asymptotic behavior of the effective
conductivity. In the limiting case of a perfectly conducting inclusions, the effective
conductivity o, is expected to tend to infinity as a power-law, as the concentration of

inclusions f tends to f, = %, the maximal value in 2D

oe(f)~ (fe= . 2)

The dependence of the index s on the shaken-stirred regime of inclusions is displayed
in Fig. 0.1. Similarly, one can consider different effective properties. Universality of
the mathematical modeling implies that the same equations hold for the electric and
thermal conductivity, magnetic permeability, anti-plane elastic strains and so on.
Scientific classicists are perpetually in search of universal answers to all questions
concerning the transport properties of composite materials, which can be simply ad-
justed to any concrete case. Neoclassical approach includes their classical results as a
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Figure 0.1 Why did James Bond prefer shaken, not stirred martini with ice? Because he sensed in martini
the critical exponent s from formula (2). The dependence of s on the degree of disorder measured in steps
of random walk is displayed in the graphics.

limit-case, complements it with another limit case of high-concentration percolating
inclusions, but does not stop here. The problem now is getting shifted towards method-
ology (tool-box), concerned with properly matching the limit-cases. On the way one
should develop a non-universal, structure-dependent expansions, as well as special ap-
proximation methods. From the warm and cosy world where universal answers exist,
we are getting to the cold, unfriendly one. In such world each and every problem of
the theory of composites should be studied in terms of the particular numerical set of
structural sums, the particular large f limit found, and the particular approximation
method carefully selected to receive formula for all f.

We are convinced that to derive a new formula, valid in the whole range of relevant
variables, is not merely a mathematical exercise, or even a matter of convenience. It
provides a fresh insight, since in the majority of cases realistic material sciences prob-
lems correspond neither to weak coupling (or low concentration) regime nor to strong
coupling (high concentration) limit, but to the intermediate range of parameters. Such
regime can be covered by some rather complex formula deduced from asymptotic
regimes. It is quite handy for a scientist to possess a general mathematical toolbox to
derive asymptotic, typically power laws, as well as explicit crossover formulas for a
multitude of processes. Problems discussed in the book can be viewed as asymptoti-
cally classical, but in each of them, a neoclassical twist is supposed to make them more
agreeable to the modern listener. Besides, they are all interesting and hold a promise
in days to come.

Some authors equate an approximate analytical formula with a model. Such an ap-
proach is misleading, since a mathematical modeling involves fundamental governing
equations, complemented by interface and boundary conditions. Different approxi-
mate formulas/solutions for the mathematical model hold under restrictions usually
not discussed by authors. A serious methodological mistake may follow when in-
termediate manipulations are valid only within the precision O(f), while the final
formula is claimed to work with a higher precision, see an explicit example in Ap-
pendix A.4. In particular, it follows from our investigations that it is impossible to
write a universal higher order formula independent on locations of inclusions. Such
a universal formula holds only for a limited class of composites with non-interacting
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inclusions, e.g., for dilute composites and the Hashin-Shtrikman coated sphere assem-
blage (Cherkaev, 2009).

Since Einstein, the transport coefficients in random and regular media are expressed
as expansions in concentration f. Nevertheless, despite persistent efforts of such
outstanding researchers as Batchelor, Bergman, Brady, Jeffrey, Milton, McPhedran,
Torquato, Wajnryb the problem still exists of finding correct numerical coefficients in
expansions. Besides, the validity of such short series is very limited, and their true
value is still remains to be seen.

Let us address the Hashin—Shtrikman bounds and their extensions (Milton, 2002).
The dependence of the effective conductivity of a random composite on f corresponds
to some monotonous curve, drawn between the bounds. Such a curve can be sketched
arbitrarily, and it will correspond to some unspecified distribution of inclusions. Often,
we deal with a uniform distribution corresponding to a stir-casting process described
by the random sequential addition (RSA) model (Kurtyka and Rylko, 2013, 2017).
Thence main theoretical requirement to the geometric model consists not only in writ-
ing a formula, but in a precise description of the geometrical conditions imposed on
deterministic or random locations of inclusions. The rigorous statement and study of
this theoretical problem is necessary for the proper approach to various applied prob-
lems, e.g., stir-casting process.

Our formulas for the effective properties of random composites are derived as
the mathematical expectation of the effective conductivity over the independent and
identically distributed (i.i.d.) non-overlapping inclusions. Even formulas obtained for
uniformly distributed non-overlapping balls are not universal, because the effective
conductivity depends on the protocol of computer simulations or experimental stir-
ring, meaning that the very notion of randomness is non-universal (Torquato, 2002,
Kurtyka and Rylko, 2013, Rylko, 2014, Gluzman et al., 2017).

Some famous formulas turn out to be questionable, in our opinion. The example,
why various not rigorous, popular approaches can be questioned, is given in Chapter
6 based on the paper by Mityushev and Nawalaniec (2019). It is demonstrated that the
classical Jeffrey formula contains wrong f2 term. See Chapter 6, where the terms f2
and 3 are written explicitly! In particular, we demonstrate that the f3 term depends
on the deterministic and random locations of inclusions. A novel expansion for the
random composite with superconducting (perfect conducting) inclusions is obtained,
see (6.92) on page 226. It leads to a proper estimate for the critical index for supercon-
ductivity. The finding seems to justify the whole body of work on the short series for
effective conductivity, and give a physical meaning to the series as a valuable source
of estimating critical index s.

Piotr Drygas

Simon Gluzman
Vladimir Mityushev
Wojciech Nawalaniec
Krakéw, April 2019



